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Background: Despite establishing an association between gut microbiota and

spondyloarthritis (SpA) subtypes, the causal relationship between them

remains unclear.

Methods: Gut microbiota data were obtained from the MiBioGen collaboration,

and SpA genome-wide association study (GWAS) summary data were obtained

from the FinnGen collaboration. We conducted a two-sample Mendelian

randomization (MR) analysis using the inverse-variance-weighted method

supplemented with four additional MR methods (MR-Egger, weighted median,

simple mode, and weighted mode). Pleiotropy and heterogeneity were also

assessed. Reverse MR analysis was used to detect reverse causal relationships.

Results: We identified 23 causal links between specific gut microbiota taxa and

SpA levels. Of these, 22 displayed nominal causal associations, and only one

demonstrated a robust causal connection. Actinobacteria id.419 increased the

risk of ankylosing spondylitis (AS) (odds ratio (OR) = 1.86 (95% confidence interval

(CI): 1.29–2.69); p = 8.63E−04). The family Rikenellaceae id.967 was associated

with a reduced risk of both AS (OR = 0.66 (95% CI: 0.47–0.93); p = 1.81E−02) and

psoriatic arthritis (OR = 0.70 (95% CI: 0.50–0.97); p = 3.00E−02). Bacillales

id.1674 increased the risk of AS (OR = 1.23 (95% CI: 1.00–1.51); p = 4.94E−02) and

decreased the risk of enteropathic arthritis (OR = 0.56 (95% CI: 0.35–0.88); p =

1.14E−02). Directional pleiotropy, or heterogeneity, was not observed. No

reverse causal associations were observed between the diseases and the

gut microbiota.

Conclusion: Our MR analysis suggested a genetic-level causal relationship

between specific gut microbiota and SpA, providing insights into the

underlying mechanisms behind SpA development mediated by gut microbiota.
KEYWORDS

spondyloarthritis, gut microbiota, Mendelian randomization, causal effect, genome
wide association study
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1 Introduction

Spondyloarthritis (SpA) is a group of rheumatic diseases

characterized primarily by sacroiliitis and accompanied by

musculoskeletal and extra-articular manifestations. It

encompasses several subtypes, including ankylosing spondylitis

(AS), enteropathic arthritis (EA), psoriatic arthritis (PsA), reactive

arthritis, undifferentiated SpA, and juvenile SpA (1).

The aetiology and pathogenesis of SpA remain unknown, with

substantial evidence indicating a connection between intestinal and

articular inflammation (2–4). The investigation of the gut-joint axis

has become a significant domain in unraveling the pathogenesis of

SpA (5). However, studies investigating gut microbiota dysbiosis in

patients with SpA have produced inconsistent results, and the key

bacteria identified vary between studies (6–15). Previous studies

have failed to elucidate the causal association between gut

microbiota and the development of SpA (16, 17), necessitating

further investigation.

Mendelian randomization (MR) is a method utilized to infer

causal associations between instrumental variables, typically single-

nucleotide polymorphisms (SNPs) (18). By utilizing natural genetic

variations associated with a specific exposure factor, MR simulates

the effects of randomized controlled trials and infers the causal

impact of the exposure factor on a specific outcome (19). SNPs are

randomly assigned prior to the occurrence of disease, thereby

enabling the elimination of potential confounding factors and

reverse causality influences (20). A recent study using MR

examined the potential causal association between six bacteria

and AS, but no significant causal associations were found (21).

However, considering the growing evidence supporting the

significant role of the gut microbiota in the development of SpA,

there is still no consensus regarding the specific taxonomic group of

gut microbiota that has the greatest impact on SpA. Additionally, it

remains unclear whether there is a mutual influence of gut bacteria

among different subtypes of SpA, highlighting the need for further

research to clarify this aspect.
Frontiers in Immunology 02
Our research focuses on investigating the causal association

between the gut microbiota and three types of SpA: AS, PsA, and

EA. Another objective is to identify shared bacteria among these

three diseases. This approach identifies gut bacteria that have a

causal relationship with SpA, providing new avenues for future

prevention and treatment of SpA.
2 Methods

2.1 Study design

We aimed to examine the causal association between gut

microbiota and different subtypes of SpA (AS, PsA, and EA)

using a two-sample MR approach. Figure 1 illustrates the

schematic diagram of the study design. MR studies must adhere

to three key assumptions for reliable and valid results. Firstly, the

first assumption is that genetic variants are used as instrumental

variables for the exposure of interest. These instrumental variables

should be strongly associated with the exposure but not directly

associated with confounding factors or the outcome. Secondly, the

instrumental variables should be independent of confounding

factors that could bias the causal relationship. Lastly, the outcome

variable should be solely associated with the exposure factor,

without direct influence from other variables.
2.2 Data sources

Genome-wide association study (GWAS) data concerning

human gut microbiota, which served as the exposure variable, were

obtained from the MiBioGen study. This study involved a total of

18,340 individuals from 24 cohorts and recorded 211 taxonomic units

(131 genera, 35 families, 20 orders, 16 phyla, and nine classes), as well

as 122,110 SNPs (22). GWAS summary data for the different subtypes

of SpA (AS, PsA, and EA) were obtained from the FinnGen Biobank.
FIGURE 1

Three assumptions of MR and process diagram.
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Patients with AS (21), PsA (23), and EA were selected using ICD-10

diagnostic codes. Table 1 provides detailed data. Ethical approval is

not required for this study as all summary-level data have already

obtained ethical approval in previous GWAS studies.
2.3 Genetic instruments selection

To ensure robustness and accuracy while adhering to the

assumptions necessary for MR analysis, a quality check was

performed on the SNPs to obtain valid instruments (Figure 1). Due

to the strict threshold (p < 5.0 × 10−8), only a few instrumental variables

were obtained. To increase the number of instrumental variables, a

threshold of p < 1.0 ×10−5 was adopted (24, 25). Palindromic SNPs and

SNPs not present in the outcomes (AS, PsA, and EA) were excluded

from the instrumental variables. We utilized the PhenoScanner

database (http://www.phenoscanner.medschl.cam.ac.uk/

phenoscanner, accessed on 7 October 2022) to exclude confounding

factors reported in the literature, including body mass index (BMI) and

smoking (26). Linkage disequilibrium was eliminated using a threshold

of r2 < 0.001 and a clumping distance of 10,000 kb. The basic formula

for the F-statistic in MR analysis is: F = (r2/(1−r2)) * ((N−k−1)/k),

where r2 is the proportion of variance in the exposure variable

explained by the instrumental variables, N is the sample size, and k

is the number of instrumental variables used in the analysis. The F-

statistic was calculated for all the instrumental variables, with a value of

> 10 considered sufficient and unbiased (27, 28).
2.4 MR analysis

MR analysis employed five methods, including inverse variance

weighting (IVW), MR-Egger, weighted median, simple mode, and

weighted mode, to infer causal relationships (29–31). IVW was the

primary method, with the other four serving as supplementary

approaches. Estimates were presented using odds ratios (ORs) along

with their respective 95% confidence intervals (CIs). The study also

investigated reverse causality, with SpA considered the exposure

and gut microbiota the outcome. The procedures for the reverse and

regular MR analyses were identical.
2.5 Sensitivity analysis

Heterogeneity in IVW and MR Egger was detected by

calculating Cochran’s Q statistic and its corresponding p-value.
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The evaluation of pleiotropy, a potential source of heterogeneity,

was performed using the MR-Egger intercept test. The leave-one-

out analysis method was utilized to identify and eliminate

potential outliers.
2.6 Statistical analysis

To ensure a more rigorous interpretation of the causal

relationship between bacterial species and health outcomes, the

Bonferroni correction was applied to address the issue of increased

false-positive results when conducting multiple hypothesis tests for

different levels of bacterial classification. In our study, since

statistical tests were conducted for 131 genera, 35 families, 20

orders, 16 classes, and nine phyla, the significance level was

adjusted to 0.05/131 (3.8 × 10−4) for genera, 0.05/35 (1.4 × 10−3)

for families, 0.05/20 (2.5 × 10−3) for orders, 0.05/16 (3.1 × 10−3) for

classes, and 0.05/9 (5.5 × 10−3) for phyla after applying the

Bonferroni correction (32). MR results with p-values lower than

the adjusted significance level were considered statistically

significant, while MR estimates with p-values less than 0.05 were

considered nominally significant (31). All analyses were conducted

using the TwoSample MR package (version 0.5.6) in R 4.0.2 (31, 33).
3 Results

3.1 Selection of instrumental variables

Overall, 1,784 unique SNPs were identified as the final

instrumental variables, which were associated with exposure at p-

values < 1E−5 (Supplementary Table S1). They were classified into

five different levels of bacterial classification. There were 54

instrumental variables in phyla, 181 instrumental variables in

classes, 14 instrumental variables in orders, 313 instrumental

variables in families, and 1,222 instrumental variables in genera.

The F-statistics range from 16.91 to 58.15, and all the F-values are

greater than 10.
3.2 Mendelian randomization analysis

Using the IVW method, we discovered significant associations

between the nine microbial taxa and AS. The results indicate that

the class Actinobacteria id.419, order Bacillales id.1674, genus

Enterorhabdus id.820, and genus Ruminococcaceae NK4A214
TABLE 1 GWAS data used in this study.

Trait Consortium Case Control SNPs Year

Gut microbiota MiBioGen 18,340

Ankylosing spondylitis FinnGen Biobank 1,462 164,682 16,380,022 2021

Arthropathic psoriasis FinnGen Biobank 1,637 212,242 16,380,462 2021

Enteropathic arthropathies FinnGen Biobank 295 147,221 16,380,134 2021
frontie
GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.
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group id.11358 may increase the risk of AS. By contrast, the families

Lactobacillaceae id.1836 and Rikenellaceae id.967, and the genera

Anaerotruncus id.2054, Howardella id.2000, and Oscillibacter

id.2063 were negatively associated with AS (Figure 2).

Supplementary Table S2 displays the IVW results as well as the

results using the four complementary methods (MR-Egger,

weighted median, simple mode, and weighted mode). After using

Bonferroni correction, the Actinobacteria id.419 class (OR = 1.86

(95% CI: 1.29–2.69); p = 8.63E−04) remained a risk factor for AS. In

the reverse MR analysis, no causal association was found between

AS exposure variable and gut microbiota as an outcome

(Supplementary Table S3).

The results of IVW showed that the class Verrucomicrobia

id.4029, the order Verrucomicrobiales id.4030, the family

Verrucomicrobiaceae id.4036, and the genera Akkermansia

id.4037, Coprococcus1 id.11301, and Lactococcus id.1851 were

associated with an increased risk of PsA, whereas the family

Rikenellaceae id.967 and the genus Odoribacter id.952 were

associated with a decreased risk of PsA (Figure 2; Supplementary

Table S2). However, after Bonferroni correction, these microbial

taxa did not show any significant causal effect on PsA. In the reverse

MR analysis, no causal association was found between PsA as an

exposure variable and gut microbiota as an outcome

(Supplementary Table S3).

We also used the IVW method to evaluate the causal

associations between gut microbiota and EA. The results

indicated that the genera Anaerostipes id.1991, Olsenella id.822,

Parabacteroides id.954, and Ruminococcaceae UCG013 id.11370

were associated with an increased risk of EA, whereas the order

Bacillales id.1674 and the genus Lachnospiraceae FCS020 group

id.11314 were associated with a decreased risk (Figure 2;

Supplementary Table S2). However, after Bonferroni correction,

these microbial taxa did not show significant causal effects on EA. In

the reverse MR analysis, the genera Parabacteroides id.954 and

Lachnospiraceae FCS020 showed nominal reverse causal
Frontiers in Immunology 04
relationships with EA; however, these associations disappeared

after Bonferroni correction.

The MR results are also presented as scatterplots, and the causal

associations of gut microbiota on the risks of AS (Supplementary

Figure S1), PsA (Supplementary Figure S2), and EA

(Supplementary Figure S3) are illustrated. Supplementary Figures

S4-S6 indicate the forest plot results for the bacteria in terms of AS,

PsA, and EA, respectively.

The causal associations between the gut microbiota taxa

identified in our study and the risks of AS, PsA, and EA were

visualized using a heatmap (Figure 3). The Rikenellaceae id.967

family showed a reduced risk of both AS (OR = 0.66 (95% CI: 0.47–

0.93); p = 1.81E−02) and PsA (OR = 0.70 (95% CI: 0.50–0.97); p =

3.00E−02), while the order Bacillales id.1674 increased the risk of

AS (OR = 1.23 (95% CI: 1.00–1.51); p = 4.94E−02) and decreased

the risk of EA (OR = 0.56 (95% CI: 0.35–0.88); p = 1.14E−02).
3.3 Sensitivity analysis

Cochran’s Q test was used to assess heterogeneity, and MR-

Egger and IVW tests were conducted as well. Except for the genus

Oscillibacter id.2063, which showed heterogeneity in the MR

analysis, all other p-values were greater than 0.05 (Table 2).

The Egger intercept was used to evaluate the horizontal

pleiotropy, and the results showed no evidence of horizontal

pleiotropy (Table 3). The leave-one-out results of the above

bacteria for AS, PsA, and EA are shown in Supplementary

Figures S7-S9, respectively.
4 Discussion

Our study is the first to identify the causal effects of gut

microbiota on various subtypes of SpA. Actinobacteria id.419
FIGURE 2

Forest plot of gut microbiota taxa associated with spondyloarthritis by inverse variance weighting.
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TABLE 2 The heterogeneity results from the Cochran’s Q test.

Subtype Bacterial taxa MR-Egger IVW

Q Q_df p-value Q Q_df p-value

A
n
ky
lo
si
n
g
 s
p
o
n
d
yl
it
is

Class Actinobacteria id.419 11.12 12 5.19E−01 11.12 13 6.01E−01

Order Bacillales id.1674 2.59 7 9.20E−01 4.42 8 8.18E−01

Family Lactobacillaceae id.1836 2.38 5 7.95E−01 2.74 6 8.41E−01

Family Rikenellaceae id.967 7.51 15 9.42E−01 7.51 16 9.62E−01

Genus Anaerotruncus id.2054 8.08 11 7.06E−01 10.64 12 5.60E−01

Genus Enterorhabdus id.820 5.35 4 2.53E−01 8.48 5 1.32E−01

Genus Howardella id.2000 6.03 7 5.36E−01 6.44 8 5.98E−01

Genus Oscillibacter id.2063 94.81 10 5.94E−16 113.16 11 4.27E−19

Genus Ruminococcaceae NK4A214 group id.11358 10.86 11 4.55E−01 13.54 12 3.31E−01

A
rt
h
ro
p
at
h
ic
 p
so

ri
as
is

Class Verrucomicrobiae id.4029 8.66 9 4.69E−01 8.99 10 5.33E−01

Order Verrucomicrobiales id.4030 8.66 9 4.69E−01 8.99 10 5.33E−01

Family Rikenellaceae id.967 10.96 15 7.56E−01 14.46 16 5.65E−01

Family Verrucomicrobiaceae id.4036 8.66 9 4.69E−01 8.99 10 5.33E−01

Genus Akkermansia id.4037 8.66 9 4.70E−01 8.98 10 5.34E−01

Genus Coprococcus1 id.11301 9.15 9 4.24E−01 9.15 10 5.18E−01

Genus Lactococcus id.1851 5.31 7 6.23E−01 5.91 8 6.57E−01

Genus Odoribacter id.952 2.47 5 7.81E−01 5.00 6 5.43E−01

(Continued)
F
rontiers in Immun
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FIGURE 3

Heatmap of GM taxa causally associated with ankylosing spondylitis, psoriatic arthritis, and enteropathic arthritis.
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increased the risk of AS, while Rikenellaceae id.967 protected

against both AS and PsA. Bacillales id.1674 increased the risk of

AS but decreased the risk of EA. These findings shed light on the

potential role of the gut microbiota in influencing different

SpA subtypes.
Frontiers in Immunology 06
Our study revealed a robust causal relationship wherein the

Actinobacteria id.419 class remained significantly associated with

an increased risk of AS, even after adjusting for multiple

comparisons using Bonferroni correction. Patients with AS have a

higher abundance of Actinobacteria in their gut compared to
TABLE 2 Continued

Subtype Bacterial taxa MR-Egger IVW

Q Q_df p-value Q Q_df p-value

E
n
te
ro
p
at
h
ic
 a
rt
h
ro
p
at
h
ie
s Order Bacillales id.1674 3.00 7 8.85E−01 6.62 8 5.78E−01

Genus Anaerostipes id.1991 11.41 11 4.10E−01 12.90 12 3.76E−01

Genus Lachnospiraceae FCS020 group id.11314 8.55 10 5.75E−01 8.70 11 6.49E−01

Genus Olsenella id.822 0.60 8 1.00E+00 0.87 9 1.00E+00

Genus Parabacteroides id.954 3.14 3 3.71E−01 3.32 4 5.05E−01

Genus Ruminococcaceae UCG013 id.11370 10.71 10 3.81E−01 10.72 11 4.67E−01
fro
IVW, inverse-variance weighted.
TABLE 3 Pleiotropy results from Egger intercept analysis.

Subtype Bacterial taxa Egger_intercept S.E. p-value

A
n
ky
lo
si
n
g
 s
p
o
n
d
yl
it
is

Class Actinobacteria id.419 0.00 0.04 9.76E−01

Order Bacillales id.1674 0.09 0.07 2.19E−01

Family Lactobacillaceae id.1836 −0.03 0.06 5.76E−01

Family Rikenellaceae id.967 0.00 0.04 9.66E−01

Genus Anaerotruncus id.2054 0.06 0.04 1.38E−01

Genus Enterorhabdus id.820 0.12 0.08 2.01E−01

Genus Howardella id.2000 0.04 0.07 5.42E−01

Genus Oscillibacter id.2063 −0.22 0.16 1.94E−01

Genus Ruminococcaceae NK4A214 group id.11358 −0.07 0.05 1.30E−01

A
rt
h
ro
p
at
h
ic
 p
so

ri
as
is

Class Verrucomicrobiae id.4029 0.03 0.05 5.78E−01

Order Verrucomicrobiales id.4030 0.03 0.05 5.78E−01

Family Rikenellaceae id.967 0.07 0.04 8.08E−02

Family Verrucomicrobiaceae id.4036 0.03 0.05 5.80E−01

Genus Akkermansia id.4037 0.03 0.05 5.82E−01

Genus Coprococcus1 id.11301 0.00 0.03 9.59E−01

Genus Lactococcus id.1851 0.05 0.07 4.63E−01

Genus Odoribacter id.952 −0.09 0.06 1.72E−01

E
n
te
ro
p
at
h
ic
 a
rt
h
ro
p
at
h
ie
s Order Bacillales id.1674 0.29 0.15 9.88E−02

Genus Anaerostipes id.1991 0.13 0.11 2.55E−01

Genus Lachnospiraceae FCS020 group id.11314 0.03 0.08 7.05E−01

Genus Olsenella id.822 −0.05 0.10 6.15E−01

Genus Parabacteroides id.954 0.16 0.38 7.04E−01

Genus Ruminococcaceae UCG013 id.11370 −0.01 0.10 9.42E−01
S.E., standard error.
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healthy individuals (10, 34). Another study proposed that

Actinobacteria may regulate the ubiquitination of IkB-a, activate
the NF-kB signaling pathway, and promote the accumulation of

inflammatory factors, thereby contributing to the progression of AS

(35). Our study further reveals a causal relationship between

Actinobacteria and the onset of AS, suggest ing that

Actinobacteria may be implicated as a potential cause of AS.

In our investigation of the causal relationship between various

SpA subtypes and gut bacteria, we discovered that the Rikenellaceae

id.967 family exhibited a potential protective effect against AS and

PsA, albeit with nominal significance. Notably, previous studies

have reported an elevated abundance of Rikenellaceae in terminal

ileum biopsy samples from patients with AS (36), as well as a

positive correlation between psoriasis-like pathological features and

Rikenellaceae (37). Based on these findings, we hypothesize that the

increased presence of Rikenellaceae may offer some degree of

protection against disease pathogenesis but may also coincide

with heightened disease activity. Interestingly, the order Bacillales

id.1674 was associated with a reduced risk of EA. This finding aligns

with suggestions that Bacillus species can alleviate enterococcal

spondylitis (“kinky back”) in poultry (38). However, we observed an

increased risk of AS associated with the order Bacillales id.1674,

suggesting that the same bacterium may exert opposing effects on

different subtypes of SpA. This intriguing discrepancy warrants

further investigation to better understand the complex interplay

between Bacillales id.1674 and different SpA subtypes.

The potential link between SpA and gut microbiota has

garnered increasing research attention in recent years (39–41).

For instance, approximately 7% of patients with AS also have

inflammatory bowel disease (IBD), while 10–50% of patients with

IBD eventually develop SpA (42). HLA-B27 transgenic rats reared

under germ-free conditions do not exhibit arthritic symptoms (43)

until they are colonized by bacteria (44). Three hypotheses have

been proposed to explain this, including the “arthritogenic peptide

theory”, the “migration of mucosal cells to the joints theory”, and

the “gut bacteria-driven theory” (45). Analyzing the correlation

between SNPs in gut bacteria and susceptibility genes for SpA, such

as HLA-B27 and IL-23/IL-17 pathway genes, is indeed a meaningful

and valuable area of study (46). Several meta-analyses suggest that

susceptibility genes, such as TNF-a polymorphisms (rs769178)

(47), the SNPs (rs11209026, rs1004819, rs10489629, rs11465804,

rs1343151, rs11209032, rs1495965, rs7517847, and rs2201841) of

IL-23R (48), and the SNPs (rs27044, rs10050860, rs2287987,

rs17482078, rs26653, rs30187, rs27037, rs27980, and rs27582) of

endoplasmic reticulum aminopeptidase 1 (49), could influence the

susceptibility to ankylosing spondylitis in the total population. In

our study, it should be emphasized that the selected SNPs used in

the MR analysis did not include the susceptibility gene SNPs

mentioned in the aforementioned literature. Because our study

did not specifically investigate the correlation between the

selected SNPs and the susceptibility genes mentioned, we were

unable to provide an exhaustive analysis of all the susceptibility

genes involved in this matter. Further in-depth research is required

to explore this relationship in future studies.

Our study represents the first attempt to establish a causal

association between gut microbiota and SpA, including its subtypes,
Frontiers in Immunology 07
thus offering potential candidate bacteria for future functional

investigations. Nevertheless, our study has several limitations.

First, due to the stringent threshold (p < 5.0 × 10−8) required for

instrumental variables, we adopted a relatively lenient threshold

(p < 1.0 × 10−5) to screen for instrumental variables. This may have

introduced some potential bias. Second, the study population is

predominantly of European descent, and therefore the findings

cannot be generalized to other ethnicities. Third, the EA subtype of

SpA had a relatively small number of cases, based on its strict

definition criteria. Consequently, future analyses using GWAS

summary data from larger sample sizes are required to enhance

confidence in our results. Fourth, current research on gut

microbiota mainly focuses on bacteria; however, other types of

gut microorganisms may also contribute significantly. In our study,

we employed the MR-Egger intercept to detect pleiotropy. While

these methods enhance the reliability of causal relationships in MR

analysis, they do not conclusively rule out the presence of

pleiotropy, as mentioned in our manuscript. Therefore, we

recognize the significance of accounting for other biases and

limitations in MR analysis and interpreting the findings

with caution.
5 Conclusion

Through MR analysis, we conducted a comprehensive

investigation of the causal association of 211 gut microbiota taxa

on SpA. We ultimately identified 23 causal effects, including 22

nominal and one strong causal relationship. Specifically, the class

Actinobacteria id.419 showed a significant association with an

increased risk of AS. Our findings provide potential biomarkers

and therapeutic targets for the progression of SpA.
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