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Serum secreted phosphoprotein
1 level is associated with plaque
vulnerability in patients with
coronary artery disease
Ke Huang1,2†, Shuai Chen1,2†, Lin-Jun Yu1,3, Zhi-Ming Wu1,2,
Qiu-Jing Chen2, Xiao-Qun Wang1,2, Fei-Fei Li1,2,
Jing-Meng Liu1,2, Yi-Xuan Wang1,2, Lin-Shuang Mao1,2,
Wei-Feng Shen1,2, Rui-Yan Zhang1,2, Ying Shen2, Lin Lu1,2,
Yang Dai1,2* and Feng-Hua Ding1,3*

1Department of Vascular and Cardiology, Rui Jin Hospital Shanghai Jiaotong University School of
Medicine, Shanghai, China, 2Institute of Cardiovascular Diseases, Shanghai Jiaotong University, School
of Medicine, Shanghai, China, 3Shanghai Clinical Research Center for Interventional Medicine,
Shanghai, China
Background: Vulnerable plaque was associated with recurrent cardiovascular

events. This study was designed to explore predictive biomarkers of vulnerable

plaque in patients with coronary artery disease.

Methods: To reveal the phenotype-associated cell type in the development of

vulnerable plaque and to identify hub gene for pathological process, we combined

single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic

plaques using Single-Cell Identification of Subpopulations with Bulk Sample

Phenotype Correlation (Scissor) and Weighted gene co-expression network

analysis (WGCNA). We also validated our results in an independent cohort of

patients by using intravascular ultrasound during coronary angiography.

Results:Macrophageswere found to be strongly correlatedwith plaque vulnerability

while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate

cell state (ICS) clusters were negatively associated with unstable plaque. Weighted

gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1)

in the turquoise module was highly correlated with both the gene module and the

clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher

in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 -

147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate

regression analysis revealed that serum SPP1was an independent determinant of the

presence of vulnerable plaque. Receiver operating characteristic curve analysis

indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P <

0.001) for adding serum SPP1 in predicting of vulnerable plaques.

Conclusion: Elevated serum SPP1 levels confer an increased risk for plaque

vulnerability in patients with coronary artery disease.
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1 Introduction

Acute coronary syndrome (ACS) is a rapidly progressing and

life-threatening disease characterized by a sudden reduction in

myocardial blood supply, most commonly due to rupture of

atherosclerotic plaque with subsequent thrombus formation (1).

Although well-developed techniques such as percutaneous coronary

intervention allow quick and efficient blood flow restoration in

culprit vessels, they do little to prevent future cardiovascular events

(2). Pathological autopsy results have described the characteristics

of such rupture-prone plaques in patients with sudden

cardiovascular death (3). Recent clinical trials have suggested that

patients with such unstable plaque were at increased risk for future

major adverse cardiac events (MACEs) (4, 5). Therefore, early

detection of the so-called unstable plaque—vulnerable plaque

should be given the top priority. Recently, vulnerable plaque has

been commonly summarized as a type of plaque with one of the

following features such as a thin cap with large lipid core, active

inflammation, severe stenosis and superficial calcified nodules (6–

8), which could be detected by diagnostic imaging techniques such

as intravascular ultrasound (IVUS).To date, only few biochemical

markers have been identified to play a predictive role in vulnerable

plaque, thus limiting their importance in clinical practice.

Secreted phosphoprotein 1 (SPP1), also known as osteopontin,

was initially identified as sialoproteins deriving from bone matrix

(9), with presumed involvement in bone morphogenesis and

calcification. As a member of the small integrin-binding N-linked

glycoprotein (SIBLING) family, SPP1 can serve as both cell

adhesion modulators and cytokines through their interaction with

cell surface receptors. Purified SPP1 injection in rat led to an

increase in macrophage infiltration (10), while the obstructed

kidney model of SPP1 null mice exhibited a significant reduction

in acute macrophage infiltration (11), suggesting its regulatory role

in inflammation in several inflammatory diseases, including

atherosclerosis (12). Clinically, Elevated serum SPP1 levels have

been linked to the presence and severity of coronary artery disease

(13). More recently, several studies have identified that high SPP1

levels could also act as a novel biomarker for predicting major

adverse cardiac events in patients with atherosclerotic

cardiovascular disease (14–17). These findings suggest that SPP1

may contribute to the development of atherosclerotic plaque and

potentially be associated with plaque vulnerability.

Single-cell sequencing is one of the most powerful techniques

for dissecting cellular networks. By mapping cells in tissues or

organs, it clarifies the molecular regulatory patterns and state

changes of cells, providing systematic insights into the cellular

interaction networks at single-cell resolution. Numerous studies

are now focusing on constructing and mapping the plaque

landscape at the single-cell level (18–20), which allows further

understanding of the cell-cell communication network in the

plaque. However, its high cost limits its role in clinical research,

which could be perfectly complemented with traditional RNA

sequencing. The integration of bulk RNA and single cell

sequencing data provides a further step to improve our

understanding of cross-talks between cells in the plaque to
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explore significant hub genes, which could be performed using

bioinformatics tools such as Scissor (21) or WGCNA (22).

The purpose of the study was to identify susceptible cell type

and hub genes associated with the formation of vulnerable plaque

by combining single-cell and bulk transcriptome data with

bioinformatics tools and to provide novel non-invasive

biomarkers by analyzing serum levels of candidate genes from

patients with coronary plaques. The study commenced with an

initial analysis of omics data, subsequently progressing to clinical

validation of our omics results.
2 Methods

2.1 Study population

A total of 1751 consecutive patients with coronary artery disease

referred for diagnostic coronary angiography and IVUS from

January 2020 to December 2022 were enrolled from the database

of the Shanghai Ruijin Hospital Percutaneous Coronary

Intervention Outcomes Program. Diagnosis criteria of coronary

artery disease, hypertension and diabetes were consistent with our

previous studies (23, 24). For this research, patients with acute

coronary syndrome (n = 405), chronic total occlusion (n = 487), a

history of coronary revascularization (n = 127), malignant tumor or

immune system disorders (n = 78), chronic kidney diseases

requiring hemodialysis (n = 14) were excluded. Forty two patients

were further excluded due to unavailability of blood sample.

Patients with not available IVUS image data were also excluded

(n = 5). Thus, the remaining 593 patients were included in the final

analyses. Baseline demographics, risk factors for coronary artery

disease, and medications of all patients were recorded. This analysis

was approved by Ethics Committee of the Ruijin Hospital and

Shanghai Jiao Tong University School of Medicine (RJH20140311),

and written informed consent was obtained from all patients.
2.2 Coronary angiography

Coronary angiography was performed through radial or

femoral approach. Quantitative coronary angiography was

performed using the Cardiovascular Measurement System version

3.0 software (Terra, GE, USA) by two interventional cardiologists.

Significant coronary artery disease was diagnosed if luminal

diameter narrowing was estimated as ≥ 50% in a major epicardial

coronary artery. The SYNTAX score and Gensini score were

calculated and used as indices of the anatomic extension and

severity of coronary atherosclerosis (25, 26).
2.3 Intravascular ultrasound

IVUS imaging was performed after intracoronary

administration of nitroglycerin (200 mg) with a motorized

transducer pullback system and a commercial scanner (Galaxy;
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Boston Scientific, Natick, Massachusetts, USA) consisting of a

rotating 30 or 40-MHz transducer. Imaging results were acquired

from beyond the target lesion and rendered with a motorized

catheter pullback system set at a speed of 0.5 mm/s. All real-time

images were recorded on a disk for subsequent analysis. IVUS

imaging analysis was performed by three independent analysts

according to the criteria of American College of Cardiology

Clinical Expert Consensus Document on IVUS (27). Vulnerable

plaque was defined by plaque rupture or hypoechoic plaque with at

least one of the following based on previous research with minor

modifications (28–31) 1) attenuated plaque, 2) microcalcification

(lesions of 1 to 4 mm in length and < 90° arc of calcification), 3)

thrombosis 4) thin-cap fibroatheroma (TCFA). Using planimetry

software (Virtue intra-Vascular imaging, Beijing, China), external

elastic membrane (EEM), stent, and lumen cross-sectional area

(CSA) were determined. Plaque burden was calculated as the ratio

of plaque CSA (EEM minus lumen CSA) to EEM.
2.4 Sample acquisition and
biochemical measurement

Blood samples were obtained from patients undergoing

angiography after 12 hours of fasting. Samples were collected by

centrifugation at the speed of 3000rpm for 10 minutes. All serum

samples were stored at -80°C until analysis. Serum glucose,

glycosylated hemoglobin A1c (HbA1c), blood urea nitrogen,

creatinine, uric acid, and lipid profiles were measured with

standard laboratory techniques on a Hitachi 912 Analyzer (Roche

Diagnostics, Germany). The modified estimated glomerular

fi l tration rate (eGFR) was calculated. Serum Secreted

Phosphoprotein 1(SPP1) level were assayed with commercially

available ELISA kits (SX01123, Shanghai Senxiong Technology

Industrial Co.) according to the manufacturer’s instructions. The

absorbance value at 450m was checked with a microplate reader,

and the final SPP1 level was presented in ng/ml with a small inter-

assay variations (<10%).
2.5 Single cell RNA sequencing data
collection and integration

The single-cell transcriptome data containing three human

plaque samples were obtained from the GEO dataset

(GSM4705589-GSM4705591 from GSE155514). The zip files with

expression matrix, features and barcodes files were downloaded and

performed with Read10x Function using Seurat (32), Standard

preprocessing was performed to obtain nFeature count

and percentage of mitochondrial RNA for quality control. Then,

we integrated three samples using the R package Harmony as

previously described (33). Next, we used Seurat functions

such as “RunPCA”, “FindNeighbors”, “FindClusters” and

“FindAllMarkers” to identify different cell populations. Finally, we
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annotated the cell clusters by R package SingleR (34) and markers

provided in the previous research (19).
2.6 Identification of phenotype-associated
cell cluster

Single-Cell Identification of Subpopulations with Bulk Sample

Phenotype Correlation (Scissor) was developed by Xia’s lab to

identify novel cell subpopulations with a given phenotype from

single-cell and RNA-seq data based on a similarity measure and

computation of a cell–cell similarity network (21). Briefly, through

the integration of a bulk RNA expression matrix with phenotype

data and a single-cell RNA sequencing dataset, we were able to

identify the cell subpopulations most strongly associated with

previously unreported information in the single RNA-sequencing

dataset. Scissor positive (Scissor+) cells and Scissor negative (Scissor

−) cells were identified by the algorithm as positively and negatively

associated with the phenotype of interest, respectively. Therefore,

we downloaded RNA-seq data with corresponding clinical

information from the GEO dataset (GSE120521) (35). The

GSE120521 dataset contained unstable and stable plaque sections

from 8 patients. By inputting the single cell expression matrix

(GSE155514), bulk expression matrix and clinical information as

mentioned above, we were able to define cell subsets that were the

most highly relevant to vulnerable plaque phenotype.
2.7 Differentially expressed genes
identification and functional
enrichment analysis

We performed differential expression analysis between the most

highly relevant cell subsets detected in single-cell transcriptome

dataset using the Seurat “FindMarkers” function. The gene with

absolute log2FC threshold ≥1.25, difference ≥ 0.2 (difference in the

percentage of two cell clusters) and P value <0.05 was considered as

a hub gene. The volcano plots were also generated to compare the

expression levels of differential genes between groups using ggplot2

in R. Next, through the ClusterProfiler package, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses of these hub genes were carried out as

previously described to investigate their potential roles in this status

(36). The results were generated using ggplot2 as bar plots or others.
2.8 Cell communication analysis

The CellChat package was utilized to infer, analyze, and

visualize cell-cell communication between phenotype-associated

cell clusters and others (37). The ligand-receptor interaction

database was included in the package. All analyses were

performed according to the official workflow.
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2.9 Weighted gene correlation
network analysis

The Weighted gene correlation network analysis (WGCNA)

package (22) was used to construct the co-expression network and

uncover the correlation of genes and critical interacted genetic

modules based on the microarray expression matrix (GSE28829)

(38). The Soft thresholding power b was selected when the fit index

of scale-free topology first reached 0.90 using PickSoftThreshold

function. Co-expression modules were then established via

dendrogram. The Pearson correlation of each module’s eigengene

with phenotypes was analyzed and shown in the module-trait

heatmap. We then selected the most correlated module and

evaluated genes in the module to identify hub genes with gene

significance>0.7 and module membership>0.8. Module

membership represents the relationships between gene expression

profiles and module eigengenes, and gene significance represents

the absolute value of the associations between gene expression and

module traits.
2.10 Statistical analysis

Continuous variables are presented as mean ± standard deviation

(SD) and median (25th–75th percentile) for normal and non-normal

distribution, respectively, and categorical data are summarized as

frequencies (percentages). Normality of distribution was assessed

with the Kolmogorov–Smirnov test in continuous variables. We

applied logarithmic transformations to continuous variables showing

a non-normal distribution. Differences between groups for continuous

variables were analyzed by Student t test. For categorical variables, we

evaluated the differences between groups with a chi-square test.

Correlation between factors was analyzed by Pearson and Spearman

correlation test when appropriate. The diagnostic value of SPP1 was

calculated by constructing a receiver-operating characteristic (ROC)

curve, and the optimal cutoff threshold was determined by Youden’s
Frontiers in Immunology 04
index. We constructed multivariable logistic regression models to

assess the independent determinants of vulnerable plaque.

Independent determinants for vulnerable plaque, including SPP1

level, gender, age, body mass index (BMI), smoke, diabetes mellitus,

total to HDL cholesterol, estimated glomerular filtration rate (eGFR),

high-sensitivity C-reactive protein (hsCRP), SYNTAX score, Gensini

score and plaque burden were incorporated into multivariable logistic

regression analyses. In the multivariate analysis, three models were

developed. In model I, we included all conventional risk factors along

with SPP1 level. Subsequently, in model 2, we added total-to-HDL

cholesterol ratio, estimated glomerular filtration rate, and high-

sensitivity C-reactive protein. In model 3, we further incorporated

SYNTAX score, Gensini score, and plaque burden. All analyses were

performed using 2-tailed tests with an overall significance level (alpha)

of 0.05, and all tests were performed with SPSS 25.0 for Windows

(SPSS, Inc., Chicago, IL, USA).
3 Results

3.1 Data preprocessing of the single-cell
RNA sequencing

To identify potential cell types and biochemical markers

associated with the vulnerable plaque, the flowchart of this

research was set up and shown in Figure 1A. We downloaded the

GSE155514 dataset containing three human plaque samples. The R

package Seurat was utilized for data preprocessing. After a similar

data preprocessing (Supplementary Figures 1A, B), we integrated

three samples using the R package Harmony (Supplementary

Figure 1D). We visualized the top 10 highly variable genes in

Supplementary Figure 1C. A total of 4519 cells were identified

after quality control. We then annotated the cell clusters based on

previous studies and R package SingleR, and visualized with T-SNE

plot. Overall, we identified twelve cell clusters on the basis of their

expression genes levels, including six non-immune clusters and six
BA

FIGURE 1

Flowchart describing the schematic overview of the current study design. (A) The microarray data, single cell and bulk RNA-seq atherosclerotic
plaque data were downloaded from Gene Expression Omnibus. Key genes associated with unstable plaque were identified by bioinformatics
analysis. (B) Clinical patient data were gathered and serum level of Secreted Phosphoprotein 1 were tested based on previous analysis. scRNA-seq
indicates single-cell RNA sequencing; RNA-seq, RNA sequencing; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; CAD,
coronary artery disease; IVUS, Intravascular Ultrasound; SPP1, Secreted Phosphoprotein 1.
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leukocyte clusters (Figure 2A). The former included three

endothelial cell clusters, one smooth muscle cell cluster, one

fibroblast cell cluster, one fibrochondrocyte cluster and one

intermediate cell state cluster (between SMC and FC), whereas

the latter included one T cell cluster, one plasma cell cluster, one

mast cell cluster and three macrophage cell clusters. Markers for

defining these cell clusters were shown in Figure 2B.
3.2 Identifiers identification of phenotype-
associated cell type and functional
enrichment analysis of hub genes

To further the understanding of the role of cells in plaques in the

vulnerable plaque development, we integrated bulk RNA-seq and
Frontiers in Immunology 05
single-cell sequencing data using R package Scissor. By using bulk

expression matrix and clinical information, we successfully identified

264 phenotype-associated cells, of which 165 were Scissor+ (cells were

positively associated with vulnerable plaque (Figure 2C).

Macrophage.1 accounted for the majority, while a small percentage

of Macrophage.2 and Macrophage.3 were present. Vascular Smooth

muscle cells, intermediate cell state and fibrochondrocytes formed

Scissor- cell cluster. To uncover the underlying transcriptional patterns

of the identified cells linked to vulnerable plaque, we compared the

gene expression between Scissor+ cell cluster and Scissor- cell cluster.

In total, 1240 significantly upregulated genes and 1055 significantly

downregulated genes were detected (Figure 2D). SPP1 showed the

most significant change in the differential expression genes, indicating

its potential role in the development of vulnerable plaque associated

with macrophage. GO enrichment analysis revealed that the Scissor+
B

C D

E F

A

FIGURE 2

Identification and functional enrichment analysis of cell cluster associated with plaque vulnerability. (A) TSNE plot of atherosclerotic plaque from
three human samples, showing 12 subpopulations in different colors. (B) Dot plot of cluster-identifying marker genes. (C) TSNE visualization of the
Scissor-selected cells. The blue and red dots are Scissor+ (unstable plaque) and Scissor- (stable plaque) cells, respectively (D) Volcano plot of
differential gene expressions in Scissor+ cells versus Scissor- cells. (E, F) Hallmark gene ontology (GO) and KEGG analysis between Scissor+ cells and
Scissor- cells.
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cell cluster was mainly involved in inflammatory process, such as

neutrophil activation, t cell activation, cytokine production and

leukocyte cell adhesion or differentiation (Figure 2E). KEGG

enrichment analysis further confirmed the upregulation of the

inflammation related signaling pathways (NF-kB, Nod-like receptor,
TNF signaling pathways), which was consistent with the molecular

function of macrophages. In addition, the Scissor- cell cluster was

found to be mainly involved in extracellular matrix organization and

muscle system process. Pathway enrichment analysis indicated that

PI3K-akt, MAPK and TGF-beta signaling pathways were markedly

enriched and associated with the Scissor- cell cluster (Figure 2F).

Therefore, our integration analysis of single cell RNA and RNA

sequencing data by Scissor identified the cell subpopulation that are

most highly correlated with the development of vulnerable plaque and

emphasized the critical function of the Scissor+/- cell cluster in the

vulnerable plaque formation.
3.3 Cell-cell communication
network construction

Cell-cell communication is intricate and plays a pivotal role in

vulnerable plaque formation. To delineate the cell communication

of cell clusters especially phenotype-related, we analyzed and

inferred the communication network using the R package

CellChat, which contained a manually curated ligand-receptor

database called CellChatDB and allowed user-assigned cell labels

input. We used the circle plots to show the number and strength of

interactions in the total cell clusters, and results suggested complex

interactions among these cell clusters (Figure 3A). To further the

understanding of the input and output signaling patterns among

these cell clusters, heatmap was utilized to describe potential

signaling pathways. Our result revealed that Scissor+ cell cluster

rather than Scissor- cell cluster functioned as an activated signaling

sender and receiver (Figure 3B). Of note, SPP1 signaling was found

to be the most prominent output signaling pathway (Figure 3C) and

BTLA signaling as the most significant input signaling pathway

(Figure 3D). Furthermore, we found that the Scissor+ cell cluster

was as the only cluster to send SPP1 signaling to interact with

multiple cell types, including non-immune cells (endothelial cells,

fibrochondrocytes, fibroblasts, smooth muscle cells and ICS cells)

and T cells. Importantly, since the ICS cell cluster represented the

intermedia status between FC and VSMC, our results indicated that

SPP1 signaling may significantly influence the smooth muscle cell

phenotype switching. Taken together, these observations

highlighted the important function of SPP1 signaling of

phenotype-related cells in the plaque instability.
3.4 Identification of key modules and hub
genes through WGCNA analysis

We applied WGCNA methods to explore the co-expression

genes of the disease using the expression profile and clinical

information in GSE28829 dataset. The top 5000 of genes with

high expression variance were selected for analysis. One specimen
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(GSM714096) was removed before constructing the weighted co-

expression network for its incorrect clustering (Supplementary

Figure 2). We found that when the power value was set to 18, the

scale independence was >0.90 and the mean connectivity was higher

(Supplementary Figures 3A–E). Next, we established the co-

expression modules for further analysis using a hierarchical

clustering tree. 12 modules were identified by their unique color

and the number of genes in these modules ranged from 93 to 962

(Supplementary Figure 4). The gray module represented genes

without similar expression patterns and was eliminated for

further analysis. As shown in the results, genes in the turquoise

module were most significantly associated with the occurrence of

vulnerable plaque (Figure 4A). A scatterplot showed that 97 co-

expression genes were highly associated with vulnerable plaque trait

in turquoise module with module membership >0.8 and gene

significance >0.7 (Figure 4B). 83 hub genes were obtained by

combining co-expression genes and DEGs in single cell RNA-

sequencing dataset (Figure 4C). The top differential genes in the

GSE155514 and GSE28829 dataset were shown in Figures 4D, E,

respectively. We found that SPP1 served as the most prominent

gene based on DEGs and cell-cell communication analysis. In

summary, we identified and validated that SPP1 in the turquoise

module as the most significant gene for the occurrence of

vulnerable plaque.
3.5 Hub gene validation in an independent
patient cohort

To explore the potential role of SPP1 in clinical practice, we

enrolled patients undergoing coronary angiography and IVUS from

the database of the Shanghai RuiJin Hospital Percutaneous

Coronary Intervention Outcomes Program. A total of 593

patients met the inclusion criteria (Figure 1B). Patients with

unstable plaque identified by IVUS had higher SYNTAX (12.38 ±

7.14 versus 9.17 ± 5.16; P < 0.001), higher Gensini score (25.13 ±

17.41versus 16.82 ± 11.79; P < 0.001), elder age (65.24 ± 10.31

versus 61.98 ± 10.09; P < 0.001) and exhibited higher serum levels of

SPP1(113.21 [73.6 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/

ml; P < 0.001) in compassion with those with stable plaque

(Figure 5). No significant differences were detected between the

two groups with respect to gender, body mass index, history of

cigarette smoking, hypertension, prior myocardial infarction and

diabetes, blood pressure, renal function, lipid profiles, plaque

burden and medical treatments (all P > 0.05) (Table 1). In the

correlation analyses, no significant correlation was found between

serum SPP1 levels and plaque burden (r = -0.010, P = 0.804) or

minimal lumen area (r = -0.501, P = 0.219).

Receiver operating characteristic curve analysis showed that the

area under the curve was 0.643 (95% CI, 0.603 - 0.681; P < 0.001) for

serum SPP1 in predicting of patients with unstable plaque, with an

optimal cutoff point of 64.354 ng/ml (sensitivity = 79.36%, and

specificity = 47.85%) (Figure 6A). Besides, receiver operating

characteristic curve in models adjusted for conventional risk

factors showed that the addition of SPP1 effectively elevated the

AUC (Figures 6B-D). Inclusion of SPP1 in the model considering
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Gensini score as conventional risk factor showed the best AUC

(AUC = 0.737, 95% CI, 0.697 - 0.773; P < 0.001), with a significant C

statistics 0.061(95%CI, 0.022 - 0.099; P = 0.002) compared with

conventional risk factor model. In the subgroup analysis, we

confirmed that the results were consistent in all subgroup patients

and higher level of serum SPP1 was indicative of vulnerable

plaques (Figure 7).

We performed logistic regression analyses to determine the

association between SPP1 and patients with unstable plaque. In

model 1 (Table 2), major risk factors including male, age, BMI,

hypertension, smoking, and diabetes were included. SPP1 level

was divided into 2 groups based on the cutoff value from receiver

operating characteristic curve. Group 1 indicated patients with

serum SPP1 level less than 64.354 (ng/ml), and Group 2 indicated
Frontiers in Immunology 07
serum SPP1 level equaled to or larger than 64.354. The result

showed that high level of SPP1 (OR = 3.354, 95% CI, 2.289 –

4.915; P < 0.001) was significantly associated with unstable

plaque. In model 2, total-to-HDL cholesterol ratio, eGFR and

Log hsCRP were included together with abovementioned factors

in model 1. High level of SPP1 remained a significant independent

risk factor of unstable plaque (OR =3.390, 95% CI, 2.236- 5.139; P

< 0.001). In model 3a, 3b and 3c, when SYNTAX score, Gensini

score and plaque burden was further included on the basis of

model 2, respectively, high level of SPP1 still remained significant

to be independent determinants of unstable plaque. (ORModel

3a = 3.344, 95% CI, 2.188 - 5.110; ORModel 3b = 3.173, 95% CI,

2.078 – 4.843; and ORModel 3c = 3.469, 95% CI, 2.282 - 5.273; all P

< 0.001).
B

C D

A

FIGURE 3

CellChat analysis of the communications between cells in atherosclerosis plaque. (A) Circle plot of number and strength of interactions in
atherosclerotic plaque from three human samples, Circular compartments representing subclusters with weighted sizes. (B) Heatmap shows the
relative importance outcoming and incoming signal network of each cell group based on the network centrality analysis (C) Heatmap of SPP1
signaling network. (D) Heatmap of BTLA signaling network.
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FIGURE 5

Serum secreted phosphoprotein 1 (SPP1) in coronary artery disease patients with stable and unstable plaque. Boxplot of serum SPP1 in patients with
stable and unstable plaque.
B C

D E

A

FIGURE 4

Identification and validation of hub genes associated with plaque vulnerability. (A) Heat map of the correlation between clinical traits, including
Stable and Unstable. Each column corresponds to a clinical trait, and each row corresponds to a module. Each box contains the corresponding
correlation coefficient and P value. Green represents negative correlation, and red represents positive correlation. (B) Correlation between MM of
modules of interest and GS with clinical traits. Scatterplot of GS for Unstable vs MM in the turquoise module. (C) Venn diagram showing 83
overlapped hub genes (D) Violin plot of top 9 differential gene expression between Scissor+ and Scissor- cell cluster in GSE155514 dataset. (E) Box
plot of top 10 differential gene expression in GSE28829 dataset.
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4 Discussion

In this study, we integrated single-cell transcriptome data from

three human plaques and constructed a specific cell-cell network by

combining single-cell and RNA-seq transcriptome data using the

Scissor algorithm. Our network analysis suggested that SPP1

signaling (inflammatory macrophages as the main signal sender)

acted as an important role in the vulnerable plaque formation and

SPP1 as the hub gene associated with vulnerable plaque. Our study

also demonstrated that elevated serum SPP1 level was an

independent predictive factor in patients with vulnerable plaques.

Atherosclerosis featured a highly dynamic plasticity, during

wh i c h m a c r o p h a g e s w e r e s u b j e c t e d t o mu l t i p l e

microenvironmental signals, thus influencing its polarization and

activation process. After analyzing atherosclerotic plaque scRNA-

seq (GSE155514) and bulk RNA-seq expression matrix

(GSE155514) using the scissor algorithm, we identified mixed

macrophage clusters that were significantly associated with plaque

instability. Functional enrichment analysis revealed that signaling

pathways such as inflammation-related TNF signaling, Nod-like

receptors, or NF-kB were highly enriched in the modified cell

cluster, suggesting that this macrophage subpopulation was

predominantly pro-inflammatory macrophages. A large amount

of evidence shows that the number of pro-inflammatory

macrophages is positively correlated with the stability of

atherosclerotic plaques (39–41), which also confirms that the

single-cell analysis of this study is credible and reasonable. To

identify the factors most correlated with plaque stability, we used
TABLE 1 Baseline characteristics of patients with stable and
unstable plaque.

Demographic character-
istics and clini-
cal assessments

Stable
group
(n

= 186)

Unstable
group

(n = 407)

P
value

Male, n (%) 117 (62.9) 285 (70.0) 0.085

Age, years
61.98
± 10.09

65.24 ± 10.31 <0.001

Body Mass Index, Kg/m2 24.71
± 2.97

24.83 ± 3.14 0.648

Cigarette smoking, n (%) 58 (31.2) 129 (31.7) 0.901

Hypertension, n (%) 127 (68.3) 287 (70.5) 0.582

Systolic blood pressure, mm Hg
138.78
± 18.81

139.68
± 19.47

0.596

Diastolic blood pressure, mm Hg
78.36
± 10.97

76.99 ± 10.99 0.160

Previous myocardial infarction, n (%) 5 (2.7) 17 (4.2) 0.373

Diabetes, n (%) 45 (24.2) 124 (30.5) 0.116

Laboratory measurements

Fasting blood glucose, mmol/L
5.80
± 1.64

6.17 ± 3.89 0.225

HbA1c, %
6.08
± 0.99

6.27 ± 1.09 0.047

Serum creatinine, mmol/L
79.43
± 28.38

81.88 ± 41.73 0.404

Serum uric acid, mmol/L
334.60
± 83.39

348.08
± 88.52

0.081

eGFR, mL/min/1.73m2 85.56
± 15.99

82.19 ± 16.72 0.022

NT-proBNP, pg/mL
218.76
± 998.29

215.75
± 693.79

0.967

Triglyceride, mmol/L
1.57
± 0.82

1.63 ± 1.02 0.482

Total cholesterol, mmol/L
4.01
± 1.06

4.09 ± 1.14 0.385

HDL cholesterol, mmol/L
1.13
± 0.26

1.16 ± 0.34 0.202

LDL cholesterol, mmol/L
2.33
± 0.90

2.36 ± 0.94 0.710

Apolipoprotein A, g/L
1.25
± 0.21

1.26 ± 0.21 0.445

Apolipoprotein B, g/L
0.77
± 0.23

0.79 ± 0.26 0.234

Lipoprotein (a), g/L
0.26
± 0.32

0.27 ± 0.31 0.680

hsCRP, mg/L
0.91 (0.36
- 2.00)

1.00 (0.48
- 2.30)

0.108

SPP1, ng/ml
71.08
(20.64

- 135.68)

113.21 (73.65
- 147.70)

<0.001

(Continued)
TABLE 1 Continued

Demographic character-
istics and clini-
cal assessments

Stable
group
(n

= 186)

Unstable
group

(n = 407)

P
value

Quantification of coronary lesions

Gensini score
16.82
± 11.79

25.13 ± 17.41 <0.001

SYNTAX score
9.17
± 5.16

12.38 ± 7.14 <0.001

Minimum lumen area, mm2 3.99
± 1.88

3.67 ± 2.16 0.090

Plaque burden, %
69.60
(60.31
- 75.46)

72.20 (66.37
- 77.71)

<0.001

Medication, n (%)

ACE inhibitors/ARBs/ARNI 68 (36.8) 173 (42.5) 0.187

b-blockers 59 (31.7) 110 (27.0) 0.240

Calcium channel blockers 67 (36.0) 126 (310) 0.222

Statins 121 (65.1) 289 (71.0) 0.145
front
Values are given as mean ± SD, median (25th–75th percentile), or number (percentage).
HbA1c, glycated hemoglobin; eGFR, estimated glomerular filtration rate; NT-proBNP, N-
terminal pro-B-type natriuretic peptide; HDL, high‐density lipoprotein; LDL, low‐density
lipoprotein. hs‐CRP, high‐sensitivity C‐reactive protein; SPP1, Secreted Phosphoprotein 1;
ACEI indicates angiotensin‐converting enzyme inhibitor; ARB, angiotonin receptor blocker;
ARNI, indicates angiotensin receptor neprilysin Inhibitor.
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WGCNA to analyze another independent atherosclerotic plaque

dataset (GSE28829). After intersecting the hub genes screened out

by the scissor algorithm and WGCNA, the most prominent DEG,

SPP1, was determined (Figure 4). SPP1, also known as osteopontin,

is a type of secreted glycoprotein with similar structure and function

to the matricelluar protein (42). SPP1 expression was found to be

mainly driven by proinflammatory cytokines including IL-1b,
TNFa and IL-6 (43). Previous studies have confirmed that SPP1

was involved in multiple macrophage biological processes,

including adhesion (44), migration (45), chemotaxis (46), and

polarization (47). Macrophages in murine SPP1 deletion model

showed significantly impaired phagocytosis ability compared with

those in normal murine model (48). Silencing SPP1 gene in APOE

deficient mice had smaller atherosclerotic lesion sizes and

inflammatory cell (especially macrophage) infiltration areas (49),

indicating important chemotactic role that SPP1 plays in the

regulation of proinflammatory macrophages. Consistent result

have also been detected in abdominal aortic aneurysm model in

ApoE–/–OPN–/–mice characterized by impaired leukocyte

recruitment and cell migration (50). In addition, SPP1

knockdown also facilitated macrophage polarization toward the
B

C D

A

FIGURE 6

Receiver-operating characteristic curve analysis for identifying vulnerable plaque. (A) ROC curve of serum SPP1 for diagnosing vulnerable plaque. (B)
ROC curve derived from regression model 3a for detecting vulnerable plaque. conventional risk factors: age, sex, body mass index, smoking habits,
hypertension, body mass index, diabetes, estimated glomerular filtration rate, Log hsCRP, Syntax score. (C) ROC curve derived from regression
model 3b for detecting vulnerable plaque. conventional risk factors: age, sex, body mass index, smoking habits, hypertension, body mass index,
diabetes, estimated glomerular filtration rate, Log hsCRP, Gensini score. (D) ROC curve derived from regression model 3c for detecting vulnerable
plaque. conventional risk factors: age, sex, body mass index, smoking habits, hypertension, body mass index, diabetes, estimated glomerular filtration
rate, Log hsCRP, plaque burden. hsCRP indicates high-sensitivity C-reactive protein; and ROC, receiver operating characteristic.
FIGURE 7

Forest plot of adjusted ORs in subgroups. eGFR, estimated
glomerular filtration rate; and ORs, odd ratio.
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M2 subtype (51), generally considered to be the anti-

inflammatory macrophage.

Cellular crosstalk is fundamental to the development of

vulnerable plaques since intercellular communication drives many

pathological processes including cell signaling transduction and cell

differentiation. Our cell-cell communication analysis revealed that

SPP1 signaling was the exclusive signaling from Scissor+

macrophage cluster. Besides, endothelial, FC and VSMC clusters

were the major clusters responding to SPP1 signaling. One group

reported that SPP1 could induce angiogenesis of endothelial cells

through VEGF-dependent activation of signaling pathways such as

PI3K/AKT and ERK1/2 in vitro (52). Moreover, SPP1 could

promote endothelial cell migration through ERK1/2 activation

(53). This phenomenon is consistent with the previous study that

angiogenesis acted as a source of intraplaque hemorrhage—

significantly associated with plaque instability (54). SPP1 was

firstly postulated to influence the VSMCs migration process
Frontiers in Immunology 11
through integrin receptor (55). Recent study has confirmed that

autocrine SPP1 was highly correlated with PDGF-mediated smooth

muscle cell migration (56). In addition, SPP1 facilitated a more

proliferative VSMC phenotype. Both migration and proliferation

suggested a close relationship with intima thickness (57), which

promotes macrophage infiltration and foam cell formation (58, 59).

In addition, SPP1 expression represented a smooth muscle-derived

foam cell phenotype (60) and was found to inhibit two specific

VSMC differentiation makers (calponin and a-SM actin) (61).

Therefore it has been commonly suggested that VSMC

contributed largely to the different cell phenotypes in the

development of atherosclerosis (62), although the underlying

mechanism was still unknown.

The term “vulnerable plaque” was defined largely based on the

concept that most future event-related atherosclerotic plaques in

patients with acute coronary syndrome shared the characterization

of angiographically mild stenosis (63, 64) and were often non-
TABLE 2 Multivariate logistic regression analyses for coronary artery disease in patients with stable and unstable plaque.

Variables Model 1 Model 2 Model 3a Model 3b Model 3c

OR
(95% CI)

P
value

OR
(95% CI)

P
value

OR
(95% CI)

P
value

OR
(95% CI)

P
value

OR
(95% CI)

P
value

SPP1(Group 1)

SPP1(Group 2) 3.354 (2.289
- 4.915)

<0.001 3.390 (2.236
- 5.139)

<0.001 3.344 (2.188
- 5.110)

<0.001 3.173 (2.078
- 4.843)

<0.001 3.469 (2.282
- 5.273)

<0.001

Male 1.664 (1.068
- 2.593)

0.025 1.666 (1.038
- 2.673)

0.034 1.460 (0.899
- 2.373)

0.126 1.415 (0.870
- 2.302)

0.162 1.706 (1.058
- 2.748)

0.028

Age 1.034 (1.015
- 1.054)

<0.001 1.042 (1.017
- 1.067)

0.001 1.037 (1.012
- 1.063)

0.003 1.036 (1.011
- 1.061)

0.005 1.041 (1.016
- 1.066)

0.001

Body Mass Index 1.019 (0.958
- 1.083)

0.556 1.021 (0.955
- 1.091)

0.544 1.029 (0.961
- 1.102)

0.417 1.027 (0.959
- 1.100)

0.447 1.023 (0.956
- 1.094)

0.510

Smoke 0.883 (0.561
- 1.388)

0.588 0.882 (0.546
- 1.420)

0.609 0.848 (0.520
- 1.383)

0.509 0.871 (0.534
- 1.421)

0.580 0.901 (0.554
- 1.463)

0.673

Hypertension 0.896 (0.596
- 1.345)

0.596 0.911 (0.591
- 1.404)

0.672 0.859 (0.552
- 1.335)

0.498 0.857 (0.552
- 1.330)

0.491 0.938 (0.606
- 1.450)

0.773

Diabetes 1.220 (0.802
- 1.856)

0.354 1.316 (0.848
- 2.042)

0.220 1.174 (0.750
- 1.840)

0.483 1.132 (0.721
- 1.778)

0.591 1.295 (0.832
- 2.017)

0.252

Total-to-
HDL cholesterol

1.000 (0.976
- 1.026)

0.976 1.001 (0.977
- 1.027)

0.908 1.002 (0.975
- 1.030)

0.895 1.000 (0.976
- 1.026)

0.975

eGFR 0.999 (0.985
- 1.013)

0.902 0.998 (0.984
- 1.013)

0.801 0.998 (0.984
- 1.012)

0.790 0.999 (0.984
- 1.013)

0.842

Log hsCRP 0.995 (0.887
- 1.115)

0.927 0.987 (0.879
- 1.108)

0.820 0.987 (0.879
- 1.108)

0.825 0.994 (0.886
- 1.115)

0.922

SYNTAX score 1.076 (1.039
- 1.115)

<0.001

Gensini score 1.033 (1.016
- 1.049)

<0.001

Plaque burden 1.449 (0.627
– 3.349)

0.386
front
Model 1, adjustment for age, sex, body mass index, smoke, hypertension and diabetes; Model 2, additional adjustment for Total-to-HDL cholesterol, Log hypersensitive C-reactive protein, and
estimated glomerular filtration rate; Model 3a, additional adjustment for SYNTAX score; Model 3b, additional adjustment for Gensini score; Model 3c, additional adjustment for plaque burden.
HbA1c indicated glycated hemoglobin; eGFR, estimated glomerular filtration rate; HDL, high‐density lipoprotein; hs‐CRP, high‐sensitivity C‐reactive protein; SPP1, Secreted Phosphoprotein 1.
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culprit lesions for the current condition (2) to highlight its pivotal

role in potential clinical practice. The result of the first prospective

natural cohort study suggested that such vulnerable plaques were

associated with recurrent events and could be determined by gray-

scale IVUS (4). Our results indicated that serum biomarker SPP1

was increased in patients with vulnerable plaque and served as a

potential risk factor for plaque instability even after adjusting

multiple variables. The receiver operating characteristic curve

suggested that the addition of serum SPP1 level on the basis of

traditional risk factor allowed a better detection of the vulnerable

plaque. Previous studies revealed that SPP1 served as an effective

prognostic or diagnostic biomarker in circulatory system diseases

such as ischemic stroke (65), stable coronary artery disease (66, 67),

heart failure (68, 69) and peripheral artery disease (17). Our studies

clarified the potential vulnerable plaque landscape through

integration of both single-cell and RNA transcriptome sequencing

data and extended the information to a retrospective cohort likely to

be representative of patients seen in clinical practice, ultimately

demonstrating that serum SPP1 levels significantly contribute to the

diagnostic of vulnerable plaque.

We acknowledge that there are limitations in our current findings.

First, this study is a cross-sectional study with a small sample size,

which prevents us from predicting long-term endpoints such as

recurrent myocardial infarction or cardiovascular death. Second, the

spatial resolution of gray scale IVUS does not suffice us to detect all

crucial features of vulnerable plaque. For example, the histopathological

definition of thin-cap fibroatheroma thickness was usually less than

65mm, thereby leading to the overestimation of the number of TCFA

lesions. Third, although we applied rigorous data preprocessing,

normalization, and batch correction techniques to harmonize the

datasets as much as possible, the integration of bulk RNA

sequencing data and single-cell RNA sequencing data from different

datasets may introduce a potential source of confounding in our results.

However, we only focused on the most robust and consistent findings

across both datasets, and validated our results with independent clinical

data. Finally, further molecular research is required to clarify the

potential mechanism of SPP1 on plaque vulnerability.
5 Conclusions

In summary, our study demonstrated that SPP1 identified by

integrating of single cell and RNA sequencing analysis is associated

with plaque vulnerability. These observations may provide

substantial insights for predicting vulnerable plaques in patients

with coronary artery disease. However, further studies are

warranted to elucidate the specific mechanism of SPP1 in the

regulation of vulnerable plaque formation in patients with

coronary artery disease.
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