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Introduction: The impactofcardiovasculardisease (CVD) risk factors, encompassing

variousbiologicaldeterminantsandunhealthy lifestyles,on the functionaldynamicsof

circulatingmonocytes—apivotal cell type inCVDpathophysiology remains elusive. In

this study, we aimed to elucidate the influence of CVD risk factors on monocyte

transcriptional responses to an infectious stimulus.

Methods: We conducted a comparative analysis of monocyte gene expression

profiles from the CTMM – CIRCULATING CELLS Cohort of coronary artery disease

(CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-

expressionanalysiswasused to identifygenemodulesand their correlationswithCVD

risk factors, while pivotal transcription factors controlling the hub genes in these

modules were identified by regulatory network analyses. The identified genemodule

was subjected to a drug repurposing screen, utilizing the LINCS L1000 database.

Results: Monocyte responsiveness to LPS showed a highly significant, negative

correlation with blood pressure levels (r< -0.4; P<10-80). We identified a ZNF12/

ZBTB43-driven genemodule closely linked to diastolic blood pressure, suggesting

that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD

patientswith elevated diastolic blood pressure. This attenuation appears associated

with a dampening of the LPS-induced suppression of oxidative phosphorylation.

Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug

candidate capable of reversing this aberrant LPS response.
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Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD

patientswithhighdiastolicbloodpressure and this attenuated inflammatory response

may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the

identified gene module is a mere indicator of, or causal factor in diastolic blood

pressure and the associated dampened LPS responses remains to be determined.
KEYWORDS

coronary artery disease, hypertension, circulating monocytes, inflammatory responses,

gene regulatory network
1 Introduction

Cardiovascular diseases (CVD), including ischemic heart disease

and strokeare themajor causes ofdeathworldwide.Recognized factors

such as gender, age, ethnicity, hyperlipidemia, diabetes, hypertension,

sedentary lifestyle, and smokinghavebeen identified as contributors to

increased CVD risk, with atherosclerosis serving as its primary

underlying pathology (1). Of these factors, hypertension emerges as

a pervasive, modifiable risk element exacerbating atherosclerosis,

particularly in the coronary and cerebral arteries (2, 3). Despite the

significance of these traditional risk factors, or composites thereof (like

the Framingham score), their predictive value at the individual level

remains limited. Seeking more precise indicators for future CVD

events, numerous biomarker discovery studies have concentrated on

plasma or serum molecules, yielding modest success. The

CIRCULATING CELLS study (4) was conceived to unveil and

validate cell-based biomarkers for risk prognostication in patients

withcoronaryarterydisease (CAD).Amongaccessible cell types,blood

monocytes, characterized by their ready trauma sensing capacity and

adaptability, emerge as promising targets for biomarker discovery (5).

Moreover, monocytes, as precursors of macrophages, are not only

important for homeostatic organ control, but also important

contributors to CVD progression as well as infarct repair (6–8).

Interestingly, circulatingmonocytes have not only been associated

with CVD progression but are also impacted by CVD risk factors. For

example, the number ofmonocytes, inparticular in theCD14++CD16+

monocyte subset, is increased in patients with acute myocardial

infarction (5, 9) and associated with further disease progression (10).

Both aging and male gender were shown to increase monocyte

numbers and pro-inflammatory cytokine production (11, 12).

Smoking was also shown to affect circulating monocyte numbers

(13, 14) but to decrease their chemotactic capacity (13).

Interestingly, monocytes from symptomatic CVD patients are

primed in vivo to produce more pro-inflammatory cytokines after an

ex vivo stimulation with the bacterial endotoxin lipopolysaccharide

(LPS), linking infection to CVD (15). Undoubtedly, the pro-

inflammatory signaling of monocytes/macrophages through toll-like

receptors, such as toll-like-receptor-4 (TLR4), triggered by bacterial

endotoxins like LPS, has been implicated in the pathogenesis of

atherosclerosis (16, 17). Significantly, even in seemingly healthy
02
individuals without clinical evidence of infection, levels of endotoxin

in plasma can be sufficient to induce inflammatory responses in

monocytes/macrophages and were seen to be linked to an elevated

risk of atherosclerosis (18).

In addition, hyperlipidemia, another prominent risk factor for

CVD, is recognized for inducing monocytosis and activating

monocytes (19, 20), while a Western type diet feeding or oxidized

low-density lipoprotein exposure are reported to produce long-term

pro-inflammatory changes in monocytes by genetic and metabolic

imprinting, a process called trained immunity (21, 22). Besides

hyperlipidemia, however, still little is known about the genomic

imprint of other CVD risk factors in monocytes that may impact

monocyte’s secondary responses to foreign substances, e.g. during

bacterial infections.

Integrating transcriptomics analysis on naïve and LPS stimulated

monocytes and patients’ cardiovascular risk profile of a sub cohort of

the beforementionedCIRCULATINGCELLS study,we here aimed to

dissect the impact of CVD risk factors onmonocyte phenotype, and in

particular on their response to trauma and infection response.

2 Materials and methods

2.1 Human blood samples

This study enrolled 50 patients with stable angina pectoris from

the Center for Translational Molecular Medicine (CTMM) –

CIRCULATING CELLS Cohort (4), who presented at the

Maastricht University Medical Center in The Netherlands. Upon

inclusion, comprehensive case record forms were completed,

capturing detailed information such as medical history, risk factors,

medication usage, extent and severity of coronary artery disease,

laboratory measurements, and final procedural outcomes. Coronary

angiography adhered to local standards, and the anatomical severity of

coronary artery disease was evaluated by calculating the SYNTAX

score for each patient, as previously described (4). Blood pressure was

measured at the time of inclusion using standard upper arm

cuff measurements.

Exclusion criteria were active inflammatory conditions,

autoimmune disease, malignancies, use of immunosuppressive

drugs, and known hematological disorders. Blood of patients with
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suspected unstable angina and ST-elevation myocardial infarction

were also not included in these 50 subjects. This study was approved

by the institutional medical ethical review board of the university

medical center Utrecht, the Netherlands.
2.2 Cell isolation and treatments

Upon inclusion, 50 blood samples were collected in

ethylenediaminetetraacetic acid (EDTA) anti-coagulated vacuum

tubes (Becton Dickinson, Breda, The Netherlands; 1.5 mg EDTA/ml

blood) and processed according to standardized procedures to analyze

leukocyte subsets. In short, blood was transferred to a 50 mL tube

(Greiner) and spun for 15 minutes at 156g without brake.

Subsequently, plasma was removed, Phosphate Buffered Saline (PBS)

was added to a volume of 70 mL, then 35 mL PBS-diluted blood cell

suspension was added on top of 15 mL Ficoll-Paque Plus (Sigma) and

spun for 20 minutes at 1000g without brake. The leukocyte enriched

interphase was collected and washed twice in BD Imag cell selection

buffer (containing PBS 0.5% BSA, 2mM EDTA and 0.09% sodium

azide) before CD14 positive monocyte isolation according to the

manufacturer’s protocol (BD Bioscience). In short, cells were

incubated with anti-human CD14 magnetic particles (75 µl/107 cells,

BDBiosciences) for 1h on ice.Magnetic selectionwas performed using

a pre-cooled BD Imagnet kept on ice. Isolated CD14+monocytes were

gently frozen (200 µl cell suspension in PBS in 1 ml Freezing medium

(RPMI+20%DMSO) was placed for 1h at -20°C, then 3-5 days in -80°

C) and stored at -180°C until further use. Monocytes from 50 patients

with stable anginawere then treatedwith 100ng/mLLPS (type 055:B5,

Sigma) in RPMI containing 10% fetal calf serum for 15 min before

RNA isolation.
2.3 RNA isolation and micro-array analysis

RNA isolation, quality check, and microarray analysis of the

baseline and LPS-stimulated monocyte samples were done by AROS

(Denmark). In brief, total RNA was isolated using Illumina TotalPrep

RNA Amplification Kit (Illumina, San Diego, CA, USA) and cDNA

wasproduced.Next, labelled cRNAwaspreparedandusedonthe array

(Human HT-12 beadchips. V3.0) for hybridization. Hybridized chips

were scanned by Illumina BeadStation (Illumina, Inc., San Diego, CA,

U.S.A.). Raw image analysis and signal extraction was performed with

Illumina BeadStudio Gene Expression software with default settings

(no background subtraction) and no normalization. Data were

exported as text files.
2.4 Data Pre-processing

Gene expression microarrays were exported to R v3.6.3 after

quality control using GenomeStudio software. Variance stabilizing

transformation and robust spline normalization were then

performed using lumi package (23). Genes with expression

significantly above the background (defined by negative control

probes in GenomeStudio) were regarded as detectable genes
Frontiers in Immunology 03
(P<0.05). We excluded 5 of the 50 microarrays from the baseline

group and 6 of the 50 microarrays from the LPS-stimulated group,

respectively, due to too low numbers of detectable genes (<9,000).

Pairing the patient IDs of the remaining 44 LPS-stimulated and the

45 baseline monocyte microarrays revealed that 39 patients

contained both baseline and LPS-stimulated microarrays for

subsequent pair-wise analyses. To reduce the impact of noise

genes, we then filtered out genes with borderline (log2(Intensity)

<7.5 across all patients) or low variance expression, providing a

robust 7,933 gene dataset for further analysis (SD < 0.5). Therefore,

matched baseline and LPS-stimulated microarrays from 39 CAD

patients were used for generating the LPS-response matrix and

differential gene expression analysis. The schematic diagram of the

cohort build-up is shown in Supplementary Figure 1A. The LPS-

response matrix was composed of each CVD patient’s log2 fold-

change (log2FC) of LPS-stimulated versus baseline expression.

Agglomerative hierarchical clustering of the LPS-response matrix

based on Euclidean distance led to the detection of one significant

outlier patient (patient ID: 31031) (Supplementary Figure 1B).

Eventually, the LPS-response matrix including 38 patients’

log2FCs were used for the following differential gene expression

and co-expression analysis. The summary of 14 CVD risk factor of

these 38 patients is shown in Table 1.
2.5 Differential gene expression analysis

To investigate the association between LPS response and CVD

risk factors, we estimated the average fold changes and standard

errors by limma linear model fitting (24), comparing LPS-
TABLE 1 Demographics of the LPS sub cohort of CTMM CIRCULATING
CELLS (n=38 CAD patients) and CVD risk factors, expressed as mean ±
sd, count or frequencies (%).

Binary CVD risk factor Count Percentage

Sex (male) 20 52.63%

Renal Failure (yes) 3 7.89%

Current Smoker (yes) 7 18.42%

Diabetes Mellitus (yes) 7 18.42%

Other CVD risk factor Mean ± sd

Age 66.68 ± 8.65 years

BMI 27.13 ± 4.14 kg/m2

Heart Rate 63.29 ± 10.32 bpm

DBP 74.78 ± 11.88 mmHg

SBP 137.68 ± 21.35 mmHg

Glucose 6.41 ± 1.15 mmol/dL

Triglyceride 1.55 ± 0.8 mmol/dL

Creatinine 87.45 ± 21.3 mmol/dL

HDL 1.11 ± 0.3 mmol/dL

LDL 2.64 ± 0.91 mmol/dL
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stimulated and baseline gene expressions. P-values were adjusted by

False Discovery Rate (FDR).
2.6 Gene co-expression network
clustering analysis

Weighted Gene Co-expression Network Analysis (WGCNA)

(25) was carried out on the LPS-response matrix. In brief, the

adjacency matrix was built on gene co-expression similarity based

on Pearson’s Correlation coefficient across genes. The soft-

thresholding power of the network was set as 5, to approximate a

scale-free topological network topology. As distance measure for

gene clustering the dissimilarity of the topological overlap between

two genes was used, based on the gene adjacency matrix [see (25)].

Hierarchical clustering (deepSplit = 3, cutHeight = 0.995,

minClusterSize = 50) was performed on the topological overlap,

followed by merging proximal clusters (Height < 0.2) in the

hierarchy tree. Eventually, 20 gene modules (clusters) with similar

LPS responses were generated, which were color coded. For each

gene module, Principal Component Analysis was performed,

regarding patients as samples and genes as variables. The

module’s eigengene was then defined as the eigenvector of the

first principal component and used for subsequent Bayesian

network construction and visualization of the hierarchical

tree dendrogram.
2.7 Gene set over-representation analysis

The enrichment score of Gene Ontology and pathway over-

representation analyses were calculated using runGSAhyper in the

piano R-package (26). The Gene Ontology and pathway databases

for enrichment analyses were downloaded from Human Molecular

Signatures Database (MSigDB) (http://www.gsea-msigdb.org/gsea/

msigdb/collections.jsp). Fisher’s exact test was applied on up and

down-regulated genes separately, with the total number of

background genes being 7,933. The p-values were adjusted for

multiple comparisons by FDR.
2.8 Bayesian network analysis

Bayesian network inference was performed on blood pressure

levels and the eigengenes of 10 gene modules that have at least one

enriched Gene Ontology term, using the R package bnlearn (v4.5)

(27), to infer causal relationships between the biological processes

represented by the gene modules and diastolic blood pressure

(DBP). To bolster the resilience of the network, we employed a

bootstrapping approach to learn network structures. Initially, we

randomly selected 20 genes from each module and computed

their average expression, generating a sample-module matrix.

Subsequently, Bayesian network structures were learned using hill

climbing. This bootstrapping procedure was iterated 1,000 times,

resulting in 1,000 Bayesian network structures. Confidence

(strength) for each network edge was then determined based on
Frontiers in Immunology 04
the frequency of its occurrence across all networks (28). The

confidence for the direction of an edge is calculated as the

probability of that direction occurring divided by the probability

of the edge occurring in all networks (29). The consensus network

was established by selecting the direction present in at least 50% of

cases, with an edge strength higher than 0.56 (the elbow point of the

cumulative distribution function of edge strengths). Ultimately, a

directed acyclic Bayesian network was constructed which

comprised 10 nodes and 11 edges, representing the relationships

between modules and DBP.
2.9 Gene regulatory
network reconstruction

An LPS Gene regulatory network was generated from an LPS

response matrix including 38 samples and 7,933 genes, using

algorithm for the reconstruction of accurate cellular networks

(ARACNe) (30, 31) [ARACNe-AP v1.4 (31)], an information

theoretic-based network reconstruction method. We first built a

gene co-expression network based on mutual information (MI)

between genes and transcription factors. After estimating the

significance threshold of MI values, we reconstructed 100 MI

networks by bootstrapping of the LPS response matrix, and

then removed the non-statistically significant links with MI <0.5.

The indirect interactions were then deleted by applying a Data

Processing Inequality tolerance filter (30), to recover transcriptional

interactions with high confidence. A consolidated gene regulatory

network including 31,884 genes was inferred by calculating the

Bonferroni-corrected significance of the relative appearance of each

edge in the bootstraps based on a Poisson distribution, and only

keeping the significant edges (Padj < 0.05). In total of 1,614 human

transcription factors with known Entrez IDs as regulators

(downloaded from http://humantfs.ccbr.utoronto.ca/).
2.10 Transcription factor activity inference

We used an analytic Rank-based Enrichment Analysis method

called VIPER (32) to infer each patient’s LPS-dependent

transcription factor activities, based on the reconstructed gene

regulatory network and the LPS-response matrix. VIPER predicts

a transcription factor’s activity by comparing the order-ranked gene

expression signature and the correlation of the expressions between

this transcription factor and its targets. These procedures converted

the gene-sample matrix to a transcription-factor-sample activity

matrix including 439 transcription factors and 38 patients. The

p-values of transcription factor’s enrichment scores were corrected

for multiple comparisons by FDR.
2.11 Co-expression network and gene
regulatory network of module salmon

By applying a cut-off of 0.4 for network edge weights (based on

weighted correlations defined by WGCNA), the salmon module
frontiersin.org
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was extracted from the entire WGCNA co-expression network,

resulting in a subnetwork comprising 155 gene nodes. The hub

genes of this subnetwork were identified by assessing five network

centrality measures (i.e. degree, betweenness, closeness, eigenvector

and page rank centrality) for all nodes from module salmon using

igraph R package (33), ranking centralities for each node, and

integrating the resulting rank lists using Robust Rank Aggregation

(34). This tool compares each gene’s position on the list to the null

hypothesis of random orders and estimating their significance

score. Module genes with a Bonferroni corrected p-value for the

aggregate gene rank lower than 0,05 were considered to be hub

genes (40 in total).

For the gene regulatory network, we selected all genes in module

salmon, the directly connected transcription factors thereof, as well

as all edges between these two entities, resulting in a total of 218

gene nodes in the salmon sub gene regulatory network. Both the

WGCNA network and the gene regulatory network for the module

salmon were visualized by Cytoscape (35). The weight of edges in

gene regulatory network were visualized as the Mode of Regulation

(MoR) from (32), which was determined based on the Spearman

correlation coefficient between a transcription factor and its target

expression, indicating the degree of suppression (MoR <0) and

activation (MoR > 0) of target genes by the transcription factor.

Correlation between a transcription factor and the DBP level was

computed as the Pearson correlation coefficient between a

transcription factor’s activity and the DBP level across all patients.
2.12 Drug repurposing

We performed drug screening based on the LINCS L1000

database to discover drugs able to reverse the high blood pressure

associated changes in the LPS response of module salmon genes

(36). Only datasets on relevant myeloid cell lines (i.e., HL60, THP1,

NOMO1, SKM1, PL21, U266, HS27A) and genes accessible in the

LINCS database were included in this study. The connectivity scores

based on the weighted bi-directional Kolmogorov-Smirnov (K-S)

enrichment statistic between changes of drug-induced gene

expression in the LINCS L1000 database and hub genes in

module salmon were calculated as described (36). A positive score

indicates there is a similarity between a drug-induced signature in

the L1000 reference database and LPS response of hub genes in

module salmon, while a negative score indicates that these two

signatures are opposing. Since all hub genes in module salmon were

downregulated by LPS and their expression increased with the

growth of DBP, any drug with a positive connectivity score

indicates that it may be able to rescue the dampened LPS

response in DBP.
2.13 Statistical analysis

For all 7933 genes, we calculated the Pearson’s Correlation

coefficients between 14 CVD risk factors and log2FC of each gene

across all patients from the LPS response matrix. P-values were

computed using the student t-test. The correlation between gene
Frontiers in Immunology 05
modules and risk factors, and among risk factors were also

measured by Pearson’s Correlation Coefficients with p-values.

Principal Component Analysis was performed on the top 25% of

the highest expressed genes from the baseline and LPS-stimulated

expression matrices (Supplementary Figure 2). The association of

gene expression projections on the top 2 principal components

(PC1 and PC2) and risk factors were calculated by Pearson’s

Correlation coefficients. In addition, multiple linear regression

models were developed between the eigengenes in each module

and DBP with diabetes, glucose, triglyceride (TG), high-density

lipoprotein (HDL), and low-density lipoprotein (LDL) as covariates

using limma (24), and the p-value of each variable was calculated

based on the moderated t-test in limma (Supplementary Table 1).

P-values were adjusted for multiple comparisons by FDR, and

denoted by *Padj < 0.05, **Padj < 0.01, ***Padj < 0.001. The

association between indicated gene’s LPS response and DBP levels

across all patients (or transcription factors regulating the gene) was

estimated using local polynomial regression (‘loess’ function in R).

The significance of all two-group comparison [such as the

comparison of the LPS responses between CVD patients with

normal and high blood pressure levels], as well as of regression

slope were calculated by t-test, after the normality check using

Shapiro-Wilk test (P > 0.05). All statistical analyses were performed

in R (v3.6.3).
3 Results

3.1 High blood pressure in stable CAD
dampens the response of monocytes
to LPS

In this study, we examined monocyte LPS responses in a sub

cohort of stable angina pectoris patients from the CTMM –

CIRCULATING CELLS Cohort of CAD patients. We only

included stable angina pectoris patients in our study to mitigate

CAD-independent effects arising from acute ischemia and cardiac

trauma commonly observed in patients with ST-segment elevation

myocardial infarction. Employing expression profiles of monocytes

at both baseline and following LPS treatment in CAD patients

(n=38), we initially conducted Principal Component Analysis

based on the 25% highest expressed genes. This analysis aimed to

explore potential associations between CVD risk factors and LPS

stimulation, as illustrated in Supplementary Figure 2. Surprisingly,

the results indicated that neither the first nor the second principal

components (PC1 and PC2) could effectively discriminate between

monocytes from CAD patients with or without LPS stimulation

(Padj > 0.16, t test of Pearson’s correlation coefficient).

Subsequently, we delved into the analysis of monocyte LPS

responses, expressed as the log2 fold change (log2FC) between

LPS-stimulated cells and baseline, seeking correlations with CVD

risk factors, using the strategy depicted in Figure 1A. In line with

previous observations that show enhanced monocyte LPS response

with age (11) and male sex (12), age and sex were identified as the

top two patient characteristics showing the highest positive

correlation to the LPS response signature (Figure 1B).
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Unexpectedly, both systolic blood pressure (SBP) and DBP were

seen to display highly significant negative correlations with the

average LPS response (r< -0,4; P<10-80, Figure 1B). This to our

knowledge hitherto unknown observation led us to dissect the

correlation between blood pressure levels and LPS responses of

monocyte, its regulation, and implications for CVD in closer detail.

First, we excluded that this correlation was reflecting an

underlying association of blood pressure with the three other risk

factors, that were significantly correlated with the LPS response

signature (i.e., sex, age, and triglyceride level). As expected, DBP

and SBP in CAD patients show significantly positive mutual

correlations (Figure 1C). While SBP and DBP did not correlate

with triglyceride levels or age, we did observe a moderate,

borderline significant negative correlation (P = 0.06) between

male sex and SBP but not DBP, indicating that systolic blood

pressure of female CAD patients tended to be higher in our cohort.

SBP did show a significant positive correlation with glucose levels,

but no correlation was observed between glucose levels and DBP

(Supplementary Figure 1C).

To further explore the negative correlation between the average

LPS response signature and blood pressure, we selected some well-
Frontiers in Immunology 06
known LPS/TLR4-response genes and calculated the correlation

between their LPS responses and blood pressure levels across all

patients in our cohort. Figure 1D clearly demonstrates that the LPS-

upregulated genes show negative correlations to blood pressure,

while LPS-downregulated genes do the opposite. Next, we

calculated the LPS response of the most significant differentially

expressed genes (absolute log2FC >1 and Padj<0.01) for

normotensive (DBP<80 mmHg, n= 20 or SBP<130, n=12) versus

hypertensive CAD patients (DBP≥ 80 mmHg, n= 17 or SBP>130

mmHg, n=25) (Figure 1E). Clearly, patients with elevated DBP and

SPB levels show a weaker LPS response (the LPS-induced

downregulation and upregulation of genes is less pronounced)

than those with low blood pressure, which is especially evident

for downregulated genes (P < 0.03). Interestingly, the expression of

several, though not all, LPS-induced response genes, e.g. Nuclear

Factor-k-B1 (NFKB1), Cluster of Differentiation 68 (CD68),

Caspase-3 (CASP3), and Heat Shock Protein Family D1

(HSPD1), already correlated with high blood pressure at baseline,

suggesting their expression was already increased under non-

stimulated conditions, while this association was absent after LPS

stimulation (Supplementary Figure 1E). This might at least partly
A B

D EC

FIGURE 1

Genes’ responses to LPS were weakened in monocytes of the CAD patients with high blood pressure. (A) Schematic diagram of the experimental set
up. (B) Volcano plot showing the correlation between CVD risk factors and the average LPS response signature. A positive correlation of a risk factor
means the increase of this trait is associated with a stronger LPS response. (C) The correlations among 5 CVD risk factors based on the values from
clinical records. P-values of correlation coefficients are shown in the boxes. FDR adjusted pvalue are denoted by **Padj < 0.01, ***Padj < 0.001. (D)
Heatmap shows that the LPS responses of 13 typical genes in TLR4 pathway and their correlation with DBP and SBP are in reverse. Genes were
color-coded green through to magenta to indicate value of correlation coefficients. Bar plots displayed the genes’ log2FCs. (E) Box plots compared
the LPS responses of CAD patients with normal (DBP<80 or SBP<130) and high (DBP>=80 or SBP>=130) blood pressure levels, on down and up
regulated genes respectively. A point on a boxplot represents the median of the most significantly up/down regulated gene’s LPS responses of a
CAD patient. All correlations were calculated using Pearson’s product moment correlation coefficient. Statistical significances were calculated using
Student t-test. LPS: lipopolysaccharide, BMI: Body Mass Index. HDL, High-density lipoprotein; BP, blood pressure; SBP, systolic blood pressure; DBP,
diastolic blood pressure; TG, triglyceride.
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explain the dampened LPS response in patients with high blood

pressure. Altogether these results suggest that high blood pressure,

be it diastolic or systolic, is associated with a dampened monocyte

LPS response. Since, unlike SBP, the association of DBP with

other risk factors was not significant, we focused on DBP for

further study.
3.2 An oxidative-phosphorylation-related
gene module is significantly related
with DBP

To systematically map the genes that underly the strong

association between LPS response in monocytes and blood

pressure, we built a co-expression network for log2FC LPS

responses of all genes, by WGCNA (25) (Figure 2A). Twenty

gene modules (clusters) could be defined, of which modules

salmon and cyan were strongly correlated with DBP (Figure 2B)
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and closely interrelated (Supplementary Figure 3A). Module

salmon also positively correlated with LDL cholesterol levels

(P =0.04) while module cyan showed a negative correlation

(P=0.04) to creatinine levels, and thus kidney dysfunction

(Supplementary Figure 3B). No modules showed significant

correlations with anti-hypertensive drugs (i.e., angiotensin

receptor antagonists, angiotensin-converting enzyme inhibitors,

beta blocker, and calcium channel blockers, Supplementary

Figure 3B), suggesting that the correlations are not caused by the

therapy itself. To verify whether the strong association of modules

salmon and cyan with DBP is confounded by other clinical

parameters, we developed multiple linear regression models using

limma (24), linking the eigengene of salmon and cyan with DBP, as

well as with other risk factors that showed a significant correlation

with the attenuated LPS response (i.e., diabetes mellitus, glucose,

triglyceride, high-density and low-density lipoprotein). As shown in

Supplementary Table 1, apart from DBP, none of these 5 additional

risk factors were significantly associated with the modules salmon
A B

D

EC

FIGURE 2

WGCNA network analysis. (A) Schematic diagram of the co-expression network build-up. (B) The correlations between eigengenes of 10 gene
modules and DBP and SBP. P-values of correlation coefficients are shown in the boxes. FDR corrected pvalue are denoted by *Padj < 0.05. (C)
Volcano plot showing each gene’s average LPS response and its association with DBP in module salmon and cyan. Genes were color-coded green
through to magenta to indicate value of correlation coefficients. (D) A dot plot visualized the significant levels of top enriched GO terms of 2 DPB-
related gene module (salmon and cyan). Significant levels were evaluated by Fisher’s exact test. Dot plots were color-coded in red (log2FC>0) and
blue (log2FC < 0). Top 5 significantly enriched GO terms of module salmon were highlighted in bold. Significant levels are shown by using log10-
transformed adjusted p-values. (E) A Bayesian network to infer the causal relations between 10 gene modules and DBP. LPS, lipopolysaccharide;
SBP, systolic blood pressure; DBP, diastolic blood pressure; GO, Gene Ontology; BP, blood pressure.
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and cyan, thus ruling out the confounding influence of other

risk factors.

As illustrated by the volcano plots in Figure 2C and

Supplementary Figure 3C, most genes in modules salmon and

cyan are downregulated by LPS and are positively correlated with

DBP, which is not the case for other modules (Supplementary

Figure 3C). This concurs with the earlier finding that higher blood

pressure is preferentially associated with the expression of LPS

downregulated genes. Over-representation analyses revealed strong

enrichment of respiratory electron transport chain and oxidative

phosphorylation (OXPHOS) genes in salmon (Padj < 10-12), while

module cyan was significantly related to co-translational protein

targeting to membrane (Padj = 1.09*10-6) and protein localization

to the endoplasmic reticulum (Padj = 1.77*10-5, Figure 2D). These

results suggested that higher diastolic blood pressure is associated

with (LPS-induced) downregulation of genes involved in metabolic

processes, particularly OXPHOS. Of note, modules red, green and

greenyellow were enriched in genes related to immune responses

(Supplementary Figure 3D).

Next, we constructed a Bayesian network model to infer the

causal relation between the 10 gene modules that have at least one

enriched Gene Ontology term, and DBP (Figure 2E). Salmon was

the only module that directly connects to and impacts on DBP

levels. In addition, it is also the main module able to infer cyan, the

other DBP-related module. This suggests that salmon is impacting

both on DBP and in parallel on cyan. In addition, we validated the

link from salmon to cyan by counting the genes in downstream

module cyan that were regulated by the transcription factors in the

upstream module salmon in the gene regulation network. Four

transcription factors from salmon were seen to regulate as many as

15 of the 76 genes contained in the cyan module, which is a highly

significant enrichment (Fisher’s exact P = 1.4*10-9).
3.3 Gene co-expression network and
regulatory network analysis on the
OXPHOS-related gene module

To unravel the regulatory landscape controlling module salmon

and, consequently, the connection between OXPHOS in activated

monocytes and DBP, we extracted the co-expression network

associated with this module. Hub genes within module salmon

were defined by achieving consensus among five network centrality

measures (degree, betweenness, closeness, eigenvector, and page

rank) using the Robust Rank Aggregation method (34) (Figure 3A).

Consistent with earlier observations (Figure 2C), all but one of the

40 hub genes in module salmon were downregulated by LPS, and

their responses to LPS exhibited a positive correlation with DBP

(Figure 3A). Notably, a substantial proportion of these hub genes

were identified as OXPHOS term genes, as confirmed by Fisher

exact test results (P=7.98*10-4). These findings substantiate

OXPHOS as the principal driving process within module salmon

and suggest a weakened response of the module’s genes to LPS with

increasing blood pressure. Subsequently, we visualized individual

patients’ DBP levels along with the LPS responses of salmon’s

reporter genes, including adenosine triphosphate synthase-coupling
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factor 6 (ATP5J, the #1 hub gene correlated with DBP) and

cytochrome C oxidase subunit 7C (COX7C, a hub and OXPHOS

term gene) (Figure 3B). The notably positive associations between

DBP and the LPS responses of these genes indicate compromised

monocyte OXPHOS regulation by LPS in individuals with

elevated DBP.

To pinpoint the regulatory landscape of salmon, a gene

regulatory network was firstly constructed using ARACNe

(30) based on all genes measured in our patient cohort, and a

sub-network including all target genes of the module salmon was

extracted from the entire gene regulatory network (Supplementary

Figure 4A). Based on the gene regulatory network, we inferred the

transcription factor activities for each patient’s LPS response using

VIPER (32), and subsequently calculated their correlations and

DPB levels, to investigate which transcription factors were involved

in the transcriptional response associated with changes in DBP.

Zinc finger protein 12 (ZNF12) and zinc finger and BTB domain

containing 43 (ZBTB43) were identified to regulate most genes in

the module salmon (including COX7C and ATP5J), and their

activities are significantly negatively correlated with DBP (r<
-0.37 and P<0.025, Supplementary Figure 4B). The sub gene

regulatory network of salmon in Figure 3C demonstrate that most

of the target genes were suppressed by ZNF12 and ZBTB43. The

repressive effect of these 2 transcription factors was also reflected by

the negative association of ZNF12 with its target gene ATP5J, and of

ZBTB43 with its target gene COX7C (Figure 3D). Taken together,

our findings suggest that high DBP is connected to this

diminished suppression.
3.4 In silico drug repurposing on the
OXPHOS related module

Our data suggest that salmon, a module strongly correlated with

DBP, is enriched in metabolic pathways/OXPHOS genes, which are

downregulated by LPS. As a final step we set out to screen for drugs

(by a network-guided approach), able to target the hypertension-

associated module and reverse the module’s biological activity (i.e.

OXPHOS) underlying the dampened LPS response in DBP and

likely DBP itself. We confined to datasets obtained in myeloid-

related cell lines from the LINCS L1000 repository and screened for

drugs with highest ‘connectivity scores’ (36) (Figure 4A). Only

drugs with high statistical significance (Padj <0.05) and high

connectivity score (>0.7) were considered effective. Consistent

with previously reported association of single nucleotide

polymorphisms (SNPs) in the serine-threonine kinase STK33

gene with hypertension in Europeans (37), our investigation

revealed several STK33 inhibitors as effective drugs targeting the

attenuated LPS response associated with hypertension (Figure 4B).

Notably, the top candidate drug, MW-STK33-97, was previously

identified by us as one of the leading compounds capable of

neutralizing a detrimental gene program in macrophages exposed

to the macroenvironment of acute myocardial infarction patients

(38). Our findings add to this notion and suggest that MW-STK33-

97 may enhance monocyte responses to LPS, concomitantly

downregulating genes involved in OXPHOS.
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4 Discussion

In this study, we examined the impact of CVD risk factors on

monocyte inflammatory response capacity in a cohort of stable

coronary artery disease patients. To our surprise, we found a

negative correlation between blood pressure and monocyte LPS-
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responses, suggesting dampened LPS response capacity in patients

with high blood pressure. WGCNA analysis identified a co-expressed

gene module (salmon) to correlate with DBP. This module was

enriched in OXPHOS and respiratory electron transport chain term

genes. While most of its hub genes were downregulated by LPS, this

suppression was significantly weaker in patients with high DBP.
A

B

D

C

FIGURE 3

WGCNA and gene regulatory network of module salmon. (A) Co-expression network of module salmon. A node in the network represents a gene.
The colors of node borders indicate the correlations between LPS responses and DBP. The color of a node stands for the average LPS response of
this gene. Genes with red symbols are genes in the GO term: oxidative phosphorylation. (B) Scatters displaying the association between DBP levels
and LPS response of gene ATP5J and COX7C. (C) Two networks showing the targets of ZNF12 and ZBTB43 in sub-gene regulatory network of
module salmon. An ellipse represents a gene, and a diamond node stands for a transcription factor. A node’s color stands for the average LPS
response of this gene. The color of edges of the network indicates the degree of a transcription factor repression (in blue) or activate (in red) its
targets. (D) Association of the LPS response between ZNF12 and ATP5J, and between ZBTB43 and COX7C respectively. LPS, lipopolysaccharide;
DBP, diastolic blood pressure; TF, transcription factor.
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As inferred from Bayesian network analysis module salmon is

upstream of DBP, suggesting that this module, enriched in OXPHOS

genes, directly or indirectly impacts on DBP. This finding was not

confoundedbyhiddencorrelationsbetweenDBPandother risk factors

such as age, gender, or cholesterol levels. Although SBP showed a

positive correlation to glucose levels and diabetesmellitus, this was not

the case for DBP.Moreover, the correlation betweenDBP andmodule

salmon was maintained even despite antihypertensive treatment.

Monocyte/macrophage activation is known to induce pro-

inflammatory responses, which are fostered by a shift in metabolism

towards enhanced glycolysis and reducedOXPHOS (39).Adampened

metabolic response may compromise the inflammatory response, as

has been reported before (40).

A direct link betweenmonocyteOXPHOS and hypertension is to

our knowledge hitherto unknown. The observed link could implicate

monocyte metabolic dysfunction in the development of DBP, but it

may well reflect systemic metabolic dysfunction, including in cell

types known to control DBP, such as the endothelial and smooth

muscle cells of the microvasculature. Indeed, impaired

mitochondrial activity (OXPHOS) has been repeatedly shown to

mark many (age-related) cardiometabolic diseases and to induce

microvascular dysfunction in cardiomyopathy, as well as in portal

(41), pre-eclampsic (42), and pulmonary hypertension (43) (for a

review see (44):). LPS-induced pro-inflammatory responses are

known to be associated with mitochondrial dysfunction and

excessive formation of reactive oxygen species, factors that also can

induce vascular dysfunction, hypertension and atherosclerosis (17,
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45). Vice versa, accumulating evidence suggests that hypertension

itself can increase oxidative stress in vasculature and heart, leading to

a vicious cycle mitigating disease (2). Alternatively, the dampened

monocyte response may act as a proxy for a broader (endothelial/

microcirculatory) dampening of LPS response capacity in

hypertension, rather than being a direct causal factor in

hypertension. Whether the observed co-expressed monocyte module

is amere indicator of, or a causal factor inDBP, e.g. possibly by trained

immunity (22), remains subject for further study.

Alternatively, the dampened response could also be due to low

grade chronic inflammation, often observed in hypertensive

patients (46, 47). In fact, (low grade) inflammation/pro-

inflammatory cytokines have been shown to activate the renin-

angiotensin-aldosterone system, even in local vascular tissue,

leading to endothelial dysfunction and vascular stiffening (48, 49).

In turn, high blood pressure can cause low grade inflammation itself

(48). The elevated baseline expression (i.e. without LPS stimulation)

of several TLR4 response genes, such as NFKB1, CD68, CASP3 and

HSPD1, in hypertensive patients, corroborates this notion and

could at least partly explain why responses to the subsequent LPS

stimulation were dampened. It should be noted though, that C-

reactive protein levels were not correlated with DBP in our cohort

(P=0.41), making it less probable that the dampened inflammation

is caused by DBP-associated low-grade inflammation.

Themainhubgenes in themodule salmonarewell known for their

role in OXPHOS. COX7C is part of the terminal component of the

mitochondrial respiratory chain, while ATP5J catalyzesATP synthesis
A

B

FIGURE 4

Drug reproposing based on the hub genes from module salmon. (A) Schematic diagram of the pursued drug repurposing pipeline. (B) Bar plot
showing the 20 most significant drugs that can enhance the LPS responses in the result of drug reproposing. Drugs were ranked based on the
Connectivity Score (or Enrichment Score). Bars of drugs were color-coded from white to red based on -log10(P).
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during OXPHOS. Interestingly, ATP5J overexpression in mice on a

high salt diet led to increasedbloodpressure levels (50). ForCOX7Cno

direct link to hypertension has been demonstrated so far, though

COX7C expressionwas increased in PBMCs of chronic kidney disease

patients, which often display hypertension (51). Considering the

transcriptional regulation of the salmon co-expression network, we

identified ZBTB43 and ZNF12 as transcription factors that were most

extensively connected to network members (including COX7C and

ATP5J) and their activities are most relevant to DBP. Interestingly,

ZBTB43 has been identified as a quantitative trait locus (QTL)

associated with high blood pressure, as well as familial

hyperlipidemia (https://rgd.mcw.edu/rgdweb/report/gene/

main.html?id=1310287#pubMedReferences), which is in line with

our findings that module salmon is not only associated with DPB

but also to some extent with LDL cholesterol levels. Similarly, ZNF12,

the regulator of ATP5J as well as COX6C, was also identified as

hypertension-associated QTL in rats (52).

While these findings provide circumstantial evidence, they point to

a direct connection between (LPS-induced suppression of) OXPHOS

andelevatedbloodpressure.Thisnotiongains further support fromour

subsequent drug repurposing screening, revealing several candidates

associated with blood pressure regulation or hypertension to target the

core of the identified module. In addition to STK33 inhibitors, the

broad-spectrum deubiquitinating enzyme inhibitor NSC-632839 and

pyrvinium pamoate emerged as top candidates with the highest

connectivity scores. Intriguingly, the ubiquitin proteasome system,

targeted by NSC-632839, has already been recognized for its crucial

role in blood pressure regulation (53). Pyrvinium, a Wnt/beta-catenin

inhibitor, has demonstrated cardioprotective effects by improving

calcium homeostasis and mitigating mitochondrial dysfunction (54).

Notably, emerging evidence suggests a role for Wnt signaling in the

regulation of blood pressure (55–57). It is noteworthy that even

apparently healthy individuals exhibit detectable levels of endotoxin

in plasma (18). This may be derived from gram-negative bacteria that

colonize the gastrointestinal, genitourinary, and respiratory tracts

amongst others. Endotoxin levels may be elevated not only during

infections but also in common subclinical or chronic conditions like

periodontitis, sinusitis, or bronchitis. Interestingly, increased intestinal

barrier disruption, often observed in patients and mouse models of

CVD, is accompanied by a concurrent elevation in plasma endotoxin

levels, inevitably contributing to systemic inflammation, hypertension,

and atherosclerosis (58). Collectively, this endorses the (patho)

physiological relevance of our experimental setting and findings.

A limitation of this study lies in the relatively modest number of

participants and its exclusive focus on patients with clinically manifest

CAD, presenting a complex constellationof cardiovascular disease risk

factors. Due to the deliberate inclusion of only CAD patients in our

cohort, the study design did not allow examination of the module’s

correlationwithhypertension in anon-CADcontext. Furthermore,we

acknowledge that a significant proportion of CAD patients in our

cohort had undergone anti-hypertensive treatment, often in

conjunction with lipid-lowering or anticoagulant drugs. While we

successfully ruled out a confounding role of drug treatment on the

module’s correlation with DBP for various medications, including

angiotensin-converting enzyme inhibitors, beta-blockers, angiotensin

receptor antagonists, and calcium channel blockers (both individually
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and collectively), the presence of medication may still complicate the

data interpretation. The observed correlation in hypertensive patients

undergoing anti-hypertensive treatment, however, suggests that the

module exposes a common underlying disease mechanism that is

either not targeted or inadequately addressed by the prescribed

antihypertensive drugs themselves. Finally, monocyte LPS

responsiveness was studied ex vivo. Although the isolation procedure

was performed on ice, LPS stimulation was short (15min), precluding

early differentiation effects, and baseline monocytes did not show any

indication of activation because of sample preparation and bead

isolation, we cannot exclude that monocytes ex vivo behave different

than in vivo.

In conclusion, our study demonstrated a strong negative

association of diastolic blood pressure with LPS responses in

monocytes of advanced, stable CAD patients, and identified a

gene cluster sharply enriched in OXPHOS term members to

mediate this correlation. Drug repurposing screening showed that

serine-threonine inhibitor MW-STK33-97 could be able to reverse

this DBP-associated gene profile (or target this disease cluster).

While pointing towards a causal relationship between diastolic

blood pressure and OXPHOS in activated monocytes, the actual

direction of the observed relationship remains to be determined.
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