
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhichao Fan,
UCONN Health, United States

REVIEWED BY

Lei Pei,
Huazhong University of Science and
Technology, China
Swati Sharma,
University of North Carolina at Chapel Hill,
United States
Yufen Zhang,
Washington University in St. Louis,
United States

*CORRESPONDENCE

Hailin Yang

bioprocessor@126.com

Jian Zou

zoujan@njmu.edu.cn

†These authors share first authorship

RECEIVED 07 September 2023
ACCEPTED 15 January 2024

PUBLISHED 29 January 2024

CITATION

Wang Q, Qin Y, Ma J, Zhou K, Xia G, Li Y,
Xie L, Afful RG, Lan Q, Huo X, Zou J and
Yang H (2024) An early warning indicator of
mortality risk in patients with COVID-19: the
neutrophil extracellular traps/neutrophilic
segmented granulocyte ratio.
Front. Immunol. 15:1287132.
doi: 10.3389/fimmu.2024.1287132

COPYRIGHT

© 2024 Wang, Qin, Ma, Zhou, Xia, Li, Xie, Afful,
Lan, Huo, Zou and Yang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 29 January 2024

DOI 10.3389/fimmu.2024.1287132
An early warning indicator of
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COVID-19: the neutrophil
extracellular traps/neutrophilic
segmented granulocyte ratio
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Background: Neutrophil extracellular traps (NETs) play a key role in thrombus

formation in patients with coronavirus disease 2019 (COVID-19). However, the

existing detection and observation methods for NETs are limited in their ability to

provide quantitative, convenient, and accurate descriptions of in situ NETs.

Therefore, establishing a quantitative description of the relationship between

NETs and thrombosis remains a challenge.

Objective: We employed morphological observations of blood cells and

statistical analyses to investigate the correlation between the NETs/

neutrophilic segmented granulocyte ratio and mortality risk in patients with

COVID-19.

Methods: Peripheral blood samples were collected from 117 hospitalized

patients with COVID-19 between November 2022 and February 2023, and

various blood cell parameters were measured. Two types of smudge cells were

observed in the blood and counted: lymphatic and neutral smudge cells.

Statistical data analysis was used to establish COVID-19 mortality risk

assessment indicators.

Results: Morphological observations of neutrophilic smudge cells revealed

swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently,

the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A

high concentration of NETs poses a fatal risk for thrombus formation in patients.

Statistical analysis indicated that a high NNSR was more suitable for evaluating

the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB)

and D-dimer (DD) levels.
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Conclusion: Observing blood cell morphology is an effective method for the

detection of NETs, NNSR are important markers for revealing the mortality

risk of patients with COVID-19.
KEYWORDS

COVID-19, peripheral blood, smudge cells, neutrophil extracellular traps (NETs),
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Introduction

In 2019, the COVID-19 pandemic caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was a

significant public health event that affected the world (1, 2). Viral

infections can cause death or severe cascading reactions such as

cytokine storms, thrombosis, pulmonary embolism, myocardial

infarction, or stroke (3, 4).

SARS-CoV-2 binds to the ACE-2 receptor on endothelial cells

and induces the release of inflammatory cytokines. Activated

endothelial cells produce monocyte chemoattractant factors, such

as CCL2 and P-selectors, adhesion molecules, and tissue factor (TF)

(5, 6). Circulating pathogen-associated molecular patterns

(PAMPs), damage-associated molecular patterns (DAMP), and

cytokines can activate blood monocytes, leading to the expression

and release of monocyte-derived vesicles. The release of vesicles,

activated monocytes, and TF expression in endothelial cells leads to

the activation of the extrinsic coagulation pathway (7). Activated

endothelial cells express P-selectin, which binds to P-selectin

glycoprotein ligands (PSGL) on neutrophils, inducing neutrophil

extracellular traps (NETs) and activating the intrinsic coagulation

pathway (8). Additionally, endothelial cell activation causes a

decrease in nitric oxide (NO) and an increase in von Willebrand

factor (VWF), leading to vascular constriction, stasis, and platelet

aggregation. Inhibition of the endogenous anticoagulation pathway,

including tissue factor pathway inhibitors (TFPI), antithrombin,

and protein C expression downregulation, is due to the release of

plasminogen activator inhibitor 1 (PAI 1) (9). Activation of the

intrinsic and extrinsic coagulation pathways and inhibition of the

endogenous anticoagulation pathway can cause thrombus

formation (10).

NETs play an important role in thrombus formation in patients

with COVID-19, however, they are difficult to observe directly.

Methods for detecting NETs include enzyme-linked immunosorbent

assay (ELISA), immunofluorescence staining, fluorescence

spectroscopy, flow cytometry (FCM), and electron microscopy (11).

ELISA is sensitive, rapid, low-cost, and automated; however, it has poor

reproducibility. Plasma DNA quantification requires centrifugation,

which can interfere with other NETs components (12–14).

Immunofluorescence staining with antibodies against NETs

components and embedded DNA dyes has become the preferred

method for qualitative and semi-quantitative detection of NETs;
02
however, antibodies primarily target peroxidases and histones, which

may be difficult to distinguish from other substances (15–17).

Fluorescence spectroscopy allows high-throughput and rapid

detection; however, not all cf-DNA originates from NETs (18, 19).

FCM is a reliable method for analyzing thousands of cells in

each sample, but it may focus on the detection of NETosis in

progress and miss dissolved or late-stage NETosis cells as well as cit-

H3-negative NETs (20–22). Electron microscopies, including scanning

electron microscopy (SEM) and transmission electron microscopy

(TEM), have become important tools for detecting NETs because of

their visual characteristics, but may require verification by

immunofluorescence microscopy (23). However, these methods are

cumbersome and do not meet the requirements for rapid and

convenient clinical use.

Neutral smudge cells have been reported in patients with

COVID-19 (24). Smudge cells in the peripheral blood usually

refer to lymphatic smudge cells; however, in our study, we found

a large number of suspicious non-lymphatic smudge cells in the

peripheral blood of patients with COVID-19, which requires

further investigation.
Materials and methods

Human subjects

Demographic and clinical data were collected from 117 patients

admitted to Wuxi People’s Hospital affiliated with Nanjing Medical

University in China between November 2022 and February 2023.

Among them, 107 had a confirmed diagnosis of COVID-19 and 10

were negative controls. Peripheral blood was collected from all

patients and detailed information on age, sex, and medical history

was recorded.
Hematology assay in vitro

Elbow venous blood (2.5 mL) was drawn from all subjects.

Blood cell parameters, including red blood cell parameters, white

blood cell parameters, and platelet concentration (PLT) were

directly determined using an automated hematology analyzer

(Sysmex XN-20 (Schreiber and Farrar)).
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Hematology slide analysis

The automated hematology slide preparation system (Sysmex

SP-10) automatically tested the slides if the patient’s routine blood

test results were abnormal, triggering relevant review criteria.

Images and data were analyzed using CellaVision software (RL-

10191). Two independent skilled operators reviewed the blood

smear images. Morphological analysis of smudge cells was

independently performed by Jingyun Ma and Qiong Wang, a

physician proficient in peripheral blood smear analysis. They

have long been involved in the accurate identification of

peripheral blood cell images using CellaVision software, and a

review of related reports.

Analysis indicators of smudge cells morphology:

Smudge cells were divided into two categories.
Fron
1. Lymphatic smudge cells are round or round-like cells with

no cytoplasm and degenerated nuclei. The nucleus

appeared swollen, with a blurred structure and uniformly

stained lavender.

2. Neutral smudge cells are uneven in size, lack a fixed shape,

have reticular, lobulated nuclei that are depolymerized with

granular character is t ics , and are sta ined in a

uniform lavender.
Albumin smudge cell experiment

Bovine serum albumin (20%) was mixed with EDTA-K2

anticoagulated whole blood at a ratio of 1:5 (v/v), pushed onto a

slide using an automated blood system (Sysmex SP-10) and stained

with DI-60. CellaVision (RL-10191) was used for white blood cell

classification and morphology analysis, and the results were

compared with those of blood smears without albumin treatment.
Definition of “mild, moderate, severe,
and critical”

This definition is based on the “Diagnosis and Treatment

Protocol for Novel Coronavirus Infection (trial version 10), issued

by the People’s Republic of China.
Definition of peripheral blood
neutrophils count

The number of neutrophils in 100 white blood cells in

peripheral blood smears was determined using CellaVision (RL-

10191), excluding neutrophilic promyelocytes, neutrophilic

myelocytes, neutrophilic metamyelocytes, and neutrophilic stab

granulocytes , and counting only functional ly mature

segmented neutrophils.
tiers in Immunology 03
Definition of smudge cells and neutral
smudge NETs count

Peripheral blood smudge cell count: The number of cells in the

cell classification of peripheral blood smudges was counted using

CellaVision (RL-10191).

Lymphatic smudge cell count: Peripheral blood was observed

using CellaVision (RL-10191), and cells with only one degenerated

nucleus, no cytoplasm, swollen nuclei, an unclear nuclear structure,

and uniformly stained light-purple nuclei were observed.

Neutral smudge NETs count: Peripheral blood was observed

using CellaVision (RL-10191), and cells with mesh-like segmented

nuclei, degranulation, and granular features, defined as NETs, were

counted. Features of non-neutrophil extracellular traps include bare

nuclei, staining, and lymphocyte smears without filaments

or granules.
Definition of two parameters related
to NETs

Definition of two parameters related to NETs: The number of

neutrophil extracellular traps (NETs) in the peripheral blood (per

100 cells) refers to the number of neutrophil smudges counted by

the CellaVision software in 100 white blood cells. The neutrophil

extracellular trap-segmented neutrophil ratio (NNSR) refers to the

ratio of the number of neutrophil smudges to the number of

segmented neutrophils counted in 100 white blood cells using

CellaVision software.
Demarcation of thresholds and
reference intervals

Logarithmic normal analysis was used to convert NNSR into the

corresponding logarithm, and the normal distribution was

presented after transformation (p<0.05, Shapiro–Wilk normal

test). The mean ± 95% CI was used as the effective reference

interval for each group. To mitigate false positives, NNSR is

treated as suspected cases between the lower threshold mean,

NNSR < lower thresholds, which are low-risk death patients, and

NNSRs > mean value, for patients at high risk of death.
Quantification and statistical analysis

Statistical analyses were performed using Origin 2020 and IBM

SPSS Statistics version 27. To evaluate the significance of the count

results, a non-paired t-test with Welch correction was applied when

both sample groups passed the Shapiro–Wilk normality test. If one

or more groups failed the normality test, a non-parametric

multivariate analysis of variance was performed on the indicator

diagram with multiple queues. Unless otherwise indicated, all P-

values were adjusted for multiple comparisons. Statistical
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significance was defined as p < 0.05. Unless otherwise specified,

error bars in all graphs represent one standard deviation.
Results

Compare the demographic, clinical, and
laboratory characteristics of COVID-19
surviving and non-surviving cases

Patients with COVID-19 were classified into mild, moderate,

severe, and critically ill categories, with 42 and 86 patients treated in

the ICU and non-ICU settings, respectively. There were no

significant differences in complications or underlying diseases

among the patients. Cardiovascular diseases (76%) had the

highest proportion, followed by diabetes and heart disease (33%

and 22%, respectively), whereas kidney disease and other

comorbidities were less common (16% and less than 7%,

respectively) (Table 1).
Frontiers in Immunology 04
Morphological changes of peripheral blood
smudge cells before and after bovine
serum albumin treatment, and the
discovery of neutrophil extracellular traps
in neutral smudges

The International Council for Standardization in Hematology

(ICSH) recommends a solution for preparing and classifying

smudge cells in peripheral blood after processing with one part of

albumin and four parts of peripheral blood (25). Adding BSA to

ethylenediaminetetraacetic acid (EDTA) acid-anticoagulated blood

specimens for blood smears reduces the number of smudge cells

and improves the consistency of morphological evaluation of

peripheral blood smears in patients with chronic lymphocytic

leukemia (CLL) patients (26, 27). In a routine blood sample from

a patient with CLL, 82 smudge cells were observed when 100 white

blood cells were counted using CellaVision DI-60 software

(Figure 1A). However, when BSA was added to this CLL

specimen and processed with peripheral blood at a ratio of 1:4,
TABLE 1 Patient characteristics.

Variable Total
(n=117)

Control
(non-
COVID-
19)
(n=10)

Mild-
COVID-
19
(n=19)

Moderate-
COVID-
19(n=47)

Severe-
COVID-
19
(n=15)

Especially
severe-
COVID-
19 (n=12)

Dead
(n=14)

p-
value

Age, years
75
(28-102)

72(41-86) 78(47-96) 74(45-91) 78(43-94) 79(28-102)
74
(68-94)

0.0799

Sex 0.1528

Female 39(33.3%) 6(60.0%) 8(42.1%) 16(34.0%) 4(26.7%) 3(25.0%) 2(14.3%)

Male 78(66.7%) 4(40.0%) 11(57.9%) 31(66.0%) 11(73.3%) 9(75.0%)
12
(85.7%)

Underlying diseases

Non 26(22.2%) 4(40.0%) 5(26.3%) 9(19.1%) 4(26.7%) – 4(28.6%)

diabetes 32(27.4%) – 3(15.8%) 15(31.9%) 6(40.0%) 5(41.7%) 3(21.4%)

Cardiovascular and cerebrovascular
diseases (hypertension, cerebral
infarction, cerebral hemorrhage, etc.)

70(59.8%) 6(60.0%) 10(52.6%) 31(66.0%) 7(46.7%) 11(91.7%) 5(35.7%)

Kidney diseases (chronic renal failure,
uremia, etc.)

16(13.7%) 1(1.0%) 3(15.8%) 4(8.5%) 3(20.0%) 4(33.3%) 1(7.1%)

Cardiac diseases (atrial
fibrillation, etc.)

16(13.7%) – 3(15.8%) 4(8.5%) 5(33.3%) 3(25.0%) 1(7.1%)

Liver diseases 6(5.1%) – – 2(4.3%) 1(6.7%) 2(16.7%) 1(7.1%)

Psychiatric
disorders, neurodegeneration

6(5.1%) – 1(5.3%) 5(10.6%) – – –

Anemia (thrombocytopenia) 4(3.4%) – – 2(4.3%) 1(6.7%) – 1(7.1%)

Pulmonary diseases (tuberculosis) 10(8.5%) – 2(10.5%) 1(2.1%) 2(11.8%) 3(25.0%) 2(14.3%)

Others (hyperthyroidism,
lymphadenoma, splenomegaly)

1(0.9%) – – 1(2.1%) – – 1(7.1%)

Times from infection (hospitalization)
to death (discharge), days (IQR)

18(1-82) 14(5-17) 15(3-36) 24(3-37) 24(1-53) 27(12-82) 11(2-28)
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the total number of lymphatic cells was significantly reduced to only

4 when 100 white blood cells were counted using the CellaVision

software (Figure 1B), indicating that BSA effectively protected the

lymphocytes from disruption during the slide preparation process

(26). Smudge cells have also been observed in blood samples from

patients with COVID-19 (28). When 100 white blood cells were

counted using CellaVision software in a routine blood sample from

a COVID-19 patient, only three smudge cells were observed

(Figure 1C). However, when serum albumin was added to the

COVID-19 specimens and processed with peripheral blood at a

ratio of 1:4, the total number of smudge cells did not

decrease (Figure 1D).

From Figures 1A, B, it is evident that blood samples from

patients with CLL treated with BSA had significantly fewer smeared

cells. This verifies that BSA, as mentioned in the literature, can

effectively protect lymphocytes from being destroyed during the

smear process, preventing the formation of smeared cells. In

Figures 1C, D, it is observed that the so-called “smudge cells” in

the blood samples of patients with COVID-19 treated with BSA did

not decrease. This confirmed that these cells were not smudge cells,

but rather neutrophil nets. In contrast to eosinophils, basophils, and

mast cells, neutrophils can be easily distinguished based on

their morphology.

Smudge cells in peripheral blood smears are a characteristic of

CLL (29). These smudge cells are degenerated lymphocytes are

easily fragmented during slide preparation and appear as smudge

cells under a microscope (30). The formation of smudge cells is

related to the low expression of vimentin, which is associated with

cell stiffness in lymphocytes and leads to lymphocyte fragility (31).
Frontiers in Immunology 05
The size, shape, and color of smudge cells in the blood smears of

patients with COVID-19 are significantly different from those of

lymphatic smudge cells, suggesting that smudge cells are neutral

smudge cells. Neutrophils in patients with COVID-19 undergo cell

death and their cell membranes are fragile and easily ruptured in

smears (32). Detailed observation of COVID-19 smudge cells

revealed segmented nuclei with swelling, granulations in the

periphery of the swollen nucleus, and the appearance of filaments,

which were significantly different from the characteristics of

lymphocytic smudge cells. Fragments similar to those of the dyes

were also observed (Figure 1D). Lymphatic smudge cells have

unsegmented nuclei and no filamentous substances, and may

contain naked nuclei. The equipment used in this experiment,

CellaVision DI-60 software, did not perform detailed and

accurate identification and classification of smudge cells.
Morphological observation of NETs in
blood smears from patients with COVID-19

In 117 blood smears from patients with COVID-19, neutrophils

with lobulated nuclei and swollen cell bodies were observed in 117

blood smears from patients with COVID-19, with blurry and

indistinct edges (Figures 2A, a). Neutrophils with exacerbated

lobulat ion, accompanied by nuclear disso lut ion and

fragmentation, showed unclear nuclear chromatin structures, light

staining, and blurred nuclear contours, which began to erupt

(Figures 2A, b). Neutrophils were found in the process of NETs

eruption, with nuclear membrane rupture and disintegration,
A

B

D

C

FIGURE 1

Morphological changes of peripheral blood smudge cells before and after bovine serum albumin (BSA) treatment. (A) Smudge cell count of the
patient’s peripheral blood cell smear. (The serial numbers of pictures from left to right are 1-82). (B) Smudge cell count of peripheral blood cell
smear of the blood sample treated with BSA. (The serial numbers of pictures from left to right are 1-4). (C) Smudge cell count on peripheral blood
smear of patients with COVID-19. (The serial numbers of pictures from left to right are 1-3). (D) Smudge cell count on peripheral blood cell smears
of patients with COVID-19 after the same blood sample was treated with BSA. (The serial numbers of pictures from left to right are 1-11).
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releasing fibrous chromosome-like material into the cytoplasm and

causing destruction of the neutrophil structure (Figures 2A, c).

Neutrophils were found to release a net-like structure, with red

blood cells (black arrows) passing through the chromosome-like

structure formed by their ejection and becoming trapped within the

net-like structure (Figures 2A, d). Neutrophils with ruptured cell

membranes, releasing granules, and forming net-like structures

were also observed (Figures 2A, e). Furthermore, the

phenomenon of neutrophil NETs net-like structures trapping red

blood cells was observed, with an unclear neutrophil structure,

swollen nucleus, and released net-like structure chemotactic to red

blood cells (Figures 2B, a-d).

Abnormal red blood cells were found near the observable NETs

(Figure 2C). Following ICSH guidelines for microscopy evaluation

of fragmented cells, a higher proportion of fragmented red blood

cells (≥1%) were found in patients with COVID-19 at different

stages of the disease severity, which is unrelated to lung involvement

and obvious intravascular coagulation (33). Patients with abnormal

red blood cell morphology have lower peripheral blood oxygen

saturation upon admission (34). Abnormal RBC morphology

includes polychromasia, basophilic stippling, rouleaux formation,

agglutination, spherocytes, fragmented cells, stomatocytes,
Frontiers in Immunology 06
nucleated RBCs, and mushroom cells (35), which are usually not

associated with hemolysis. Some abnormal red blood cell shapes

observed in patients with COVID-19 in peripheral blood smears

upon admission included fragmented cells, spur cells, teardrop cells,

and mushroom cells (Figures 2C, a-d). The fragmented cells were

red or incompletely red cells with irregular sizes and shapes

(Figures 2C, a). Spur cells had needle-like projections on the red

cell surface with irregular spacing and varying lengths and widths

(Figures 2C, b). The teardrop cells had a teardrop or pear shape

(Figures 2C, c). Mushroom cells had a mushroom-like shape with

variable sizes (Figures 2C, d). Spur cells may reflect early changes in

RBC membrane components induced by SARS-CoV-2 infection,

whereas stomatocytes may reflect a later-stage loss of elasticity. Spur

cells may be damaged by the protein and lipid membrane

components of red cells. The degree of abnormal RBC

morphology correlates with disease severity, making peripheral

blood smear a potential prognostic tool for patients with COVID-

19 (34). The analysis of blood smears from patients with COVID-

19-related anemia revealed several abnormal RBC shapes. The

numbers of stomatocytes and bridge cells were very high, which

is uncommon in other types of anemia blood smears. Recent

research has suggested that RBC damage is a result of immune-
A

B

D

C

FIGURE 2

Morphological observation of neutrophil smudge NETs cells in patients with COVID-19 (A) Morphology of neutrophil smudge NETs cells in
peripheral blood slide of patients with COVID-19 at different stages. (B) Erythrocyte is reticulated by neutrophil smudge cells NETs in peripheral
blood slide of patients with COVID-19. (C) Poiki-locyte around neutrophil smudge cells NETs in p peripheral blood slide of patients with COVID-19.
(D) Status of platelets around neutrophil smudge cells NETs in peripheral blood slide of patients with COVID-19.
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mediated mechanisms and/or physical cell damage caused by

COVID-19 microvascular changes. The observed biconcave shape

of red blood cells in COVID-19 and complement activation may

facilitate red blood cell aggregation and spontaneous agglutination

and may promote typical microvascular thrombosis in COVID-

19 (35).

Platelet aggregation was observed near the NETs (Figure 2D). In

the EDTA-anticoagulated blood smear, platelets were randomly

distributed or platelet aggregation was induced, with no platelet

aggregation. Platelets around the neutrophil smudge cells were

aggregated (Figures 2D, a). Normal platelets are two-sided,

slightly convex discs, with a diameter of 2–4 mm, and larger in

volume for newly formed platelets and smaller for mature ones.

Blood smears were often scattered or clustered, mostly in circular,

oval, or irregular shapes, and the cytoplasm was light blue or

purple-red with small, evenly distributed purple-red granules in

the central region. In this image, deeply stained platelets had

increased volume, with a diameter greater than 4 mm, and the

azure granules in the cytoplasm were small or fused into larger ones

(Figures 2D, b). Platelets clustered around the neutrophils

(Figures 2D, c). Red blood cell aggregation and platelets wrapping

around neutrophil smudge cells were observed (Figures 2D, d).

Platelet aggregation and the presence of giant platelets suggested

increased platelet activity. These morphological features may be

consistent with severe COVID-19, further confirming the

important role of platelets in COVID-19 as a thrombotic

complication (36). Several studies have shown that an increase in

mean platelet volume (MPV) may reflect the risk of thrombosis and

that MPV can be used as a marker of platelet activity in patients

with pulmonary embolism. In a recent large-scale clinical

evaluation, early cardiovascular events after COVID-19 were

primarily caused by pulmonary embolism, atrial fibrillation, and

venous thrombosis. Morphometric analysis using flow cytometry

and electron microscopy showed that MPV, internal complexity,

and the proportion of giant platelets increased in critically ill

patients, confirming the role of platelets in COVID-19

cardiovascular complications (37).

In COVID-19, activated platelets may play a role in inducing

NETs formation. In patients with COVID-19, the number of NETs

increases with a significant decrease in lymphocytes. NETs density

correlated with the severity of COVID-19. NETs also activate

platelets via p-selectin, leading to platelet aggregation and

thrombus formation (38). Another pathological mechanism

associated with severe COVID-19 is an increase in platelet-

neutrophil aggregates (39). The most common quantitative

hematological abnormality in complete blood cell counts (CBC) is

anemia, followed by an increase in neutrophils, a left shift of

neutrophil nuclei, and a decrease in lymphocytes. The most

significant morphological changes were chromatin aggregation in

neutrophils, multiple abnormal nuclear shapes, and pseudo-Pelger-

Huet anomalies. Lymphocytes exhibited abundant blue cytoplasm

and/or lymphoplasmacytoid morphology, whereas monocytes

showed abnormal shapes and vacuolization. The platelets can

then aggregate. Red blood cells exhibit normocytic and

normochromic features, with few nucleated red blood cells and

rough granular eosinophils (40). The presence of fragmented blood
Frontiers in Immunology 07
cells is a morphological hallmark of thrombotic microangiopathy

(TMA) in hemolytic anemia, with the main forms being helmet-

and crescent-shaped (41).

Elevated D-dimer levels, prolonged prothrombin time, and

decreased platelet counts reflect a close association between

coagulation and COVID-19. Notably, despite the use of standard

prophylactic anticoagulation with heparin, severe thrombotic

complications may still occur (42). Analysis of platelet

characteristics in COVID-19 revealed that these platelets have

increased reactivity (increased aggregation and expression of P-

selectin and CD40) and unique transcriptional characteristics of

prethrombotic large and immature platelets. Platelet count, size,

and maturity were associated with an increased risk of critical

illness and all-cause mortality in hospitalized patients with

COVID-19. Significant dysregulation of the coagulation cascade is

observed in critically ill patients with COVID-19, including elevated

D-dimer, fibrinogen, and von Willebrand factor. Thrombotic events,

including pulmonary embolism, venous thrombosis, and ischemic

stroke, are common in critically ill patients. A hypercoagulable state is

a major pathological event in COVID-19, and thromboembolic

complications are life-threatening. Platelets are the main effector

cells for hemostasis and pathological thrombus formation (43). As

the understanding of severe COVID-19 develops, hypercoagulability

has become a core pathological feature and clinical complication.

Thrombotic events are particularly common in critically ill patients

with COVID-19, with an increased incidence of venous and arterial

thromboembolism and even life-threatening complications such as

pulmonary embolism, ischemic stroke, and myocardial infarction.

Compared with bacterial pneumonia, SARS, or influenza pneumonia,

COVID-19 deaths have increased microthrombi in the alveolar

capillaries and a higher frequency of disseminated intravascular

coagulation. Autopsy studies revealed small thrombi in the

pulmonary arterioles in areas where the alveolar-capillary integrity

was compromised (43).
Compared to high fib and d-dimer, the
nets/neutrophilic segmented granulocyte
ratio is more easily assessable for
predicting the risk of mortality in patients
with COVID-19

In peripheral blood, FIB can be reported within the range of

0.35–10 g/L, and D-dimer can be reported within the range of 112–

55845 µg/L. Notably, the FIB levels were not significantly different

between the groups (Figure 3A), making it an unreliable predictor

of disease progression. Similarly, the role of D-dimer as an early

warning indicator of severe, critical, and fatal disease risk in adults

remains unclear (Figure 3B). D-dimer (a degradation product of

fibrinogen that indicates hypercoagulability) is a reliable marker of

COVID-19 severity (44). The presence of coagulation disorders

characterized by elevated D-dimer and FDP levels is strongly

associated with more severe disease and higher mortality rates

(45). Nonsurvivors exhibited higher D-dimer levels than

survivors, with approximately 70% of nonsurvivors meeting the

criteria for dispersive intrinsic coagulation during hospitalization,
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whereas the proportion was 0.6% for survivors. There is a positive

correlation between the D-dimer levels and thrombus formation

(46). Elevated D-dimer levels are the most common coagulation

abnormality in COVID-19 (observed in up to 45% of patients) and

are an independent risk factor for death (45). However, these

findings do not agree with the results of our study. This

discrepancy may be due to the lack of NETs observation methods

in previous studies, coupled with the absence of quantitative

analysis and statistics of NETs quantity in patients’ blood cells.

However, the role of NETs in the coagulation system has been
Frontiers in Immunology 08
neglected in these studies. NNSR is a more significant risk factor for

death than D-dimer level. Consequently, the estimation of risk

factors for severe disease and death in these studies is questionable.

Comprehensive descriptions of the clinical and virological courses

pose challenges. Compared to the other groups, there was a

significant decrease in the absolute count of neutrophilic

segmented granulocytes (cells/100 cells) in the peripheral blood of

the dead group (Figure 3C). Similarly, there was a significant

decrease in the neutrophilic NETs count (cells/100 cells) in the

peripheral blood of the dead group (Figure 3D). Additionally, there
A B

D

E F

C

FIGURE 3

Hematological Index of COVID-19 (positive and negative) patients (A, B) Box and whisker (25–75 percentile) plots of FIB(g/L) and D-dimer(ug/L) in
peripheral blood samples of patients with COVID-19 compared with the control group. (C, D) Box and whisker (25–75 percentile) plots indicating
the count levels of segmented neutrophils and NETs in peripheral blood collected from samples infected with SARS-COV-2 viruses at specific times.
(E) Box and whisker (25–75 percentile) plots depicting the divergence in each group by the defined index (NETs/Segmented Neutrophil (%)).
(F) Density specific for each group visualized along the percentage (NETs/Segmented Neutrophil), highlighting the distinction of symptoms of
patients with COVID-19. Dotted lines indicate the threshold of NNSR which divide reference interval on logarithmic normal analysis. The valid data
range is mean ± 95%CI. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Non-parametric multivariate ANOVAs with Dunn’s post hoc test for
multiple comparisons.
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was a significant increase in NNSR in the peripheral blood of the

deceased group (Figure 3G).

The levels of FIB, a precursor of fibrin, were not significantly

increased in patients with COVID-19. D-dimer, a degradation

product of cross-linked fibrin, increased in acute thrombus. It

also increased physiologically with age, cancer, infection, or other

inflammatory states. Therefore, a negative D-dimer level helps

exclude venous thromboembolism in patients with normal

concentrations, but an elevated D-dimer level does not confirm

venous thromboembolism (47). This conclusion is consistent with

our results. Owing to the invasion of the body by the COVID-19

virus and a decrease in the body’s immune system, there was a

significant decrease in the number of neutrophilic segmented

granulocytes, especially in those at risk of death (Figure 3C). In

the deceased group (indicators measured 3–4 days before death),

the number of NETs was significantly increased (Figure 3D). In

COVID-19 dead patients, although the number of NETs increased,

NNSR also significantly increased (Figures 3D, E). Figure 4 reveals

that D-dimer exhibited a notable difference only in the moderate

disease group (p < 0.0001), rendering it inadequate for predicting

the risk of death in patients with COVID-19. In contrast, the NETs/

segment neutrophil index demonstrated a substantial increase

(more than two times) in the death group, making it a more

effective predictor of mortality risk in patients with COVID-19

(Figure 4). The serum levels of NETs in many hospitalized patients

with COVID-19 have increased. Severe COVID-19 appears to be

defined by an increase in neutrophils, IL-1b, IL-6, and D-dimer,

suggesting an activated coagulation system (4). The number of

neutrophils in the circulation of patients increases, and patients

with severe COVID-19 exhibit high levels of NETs markers in their

circulation. The higher levels of NETs in the circulation of patients

with COVID-19 may be due to an increase in the neutrophil count
Frontiers in Immunology 09
during the severe stage and, more importantly, due to an increase in

the ability of neutrophils to release NETs (46).

Other studies have also reported the lethal mechanism of

intrinsic coagulation (NETs) caused by the COVID-19 virus. Due

to the activation of the intrinsic coagulation pathway, neutrophils

are decorated with platelets in COVID-19, especially in severe cases,

and form cell aggregates. Removing neutrophils from the cells of

patients with COVID-19 resulted in a depleted phenotype that

reduces the spontaneous oxidative burst in response to

lipopolysaccharide (LPS). Activated neutrophils are more prone

to aggregation and the formation of high-density NETs, which can

block tubular structures. However, under inflammatory conditions,

the local degradation of stable NETs may be excessive, resulting in

vascular occlusion. Neutrophil activation is an important

component of the immune pathogenesis of COVID-19. Many

pulmonary microvessels are blocked by neutrophil aggregates or

neutrophil-derived DNA (48). This has led to an increasing trend in

the ratio of NETs/neutrophilic segmented granulocytes in patients

with COVID-19. When the NETs ratio reaches a high value, it can

increase the risk of thrombotic death. From a 95% confidence

perspective, a NETs ratio > 50% increases the risk of thrombus

death. The increase in the NETs ratio was mainly due to a decrease

in the number of segmented neutrophils. Abnormal coagulation

parameters (elevated D-dimer and FDP levels) are associated with

disease severity. Although free DNA is not a highly specific marker

for NETs, it is closely related to the absolute neutrophil count.

Elevated levels of D-dimer and cell-free DNA have also been

reported (47). The number of neutrophils in circulation increased.

Excess NETs can cause tissue damage and harm to the host. This

goes beyond their direct toxic effects on tissues, but when released

into the circulation, they lead to inappropriate activation of

coagulation and thrombus formation, blocking blood flow and
FIGURE 4

The contents of D-dimer (red) and percentage of NETs/Segment Neutrophil (purple) in patients with different symptoms (from mild to dead,
compared with control group), nonparametric tests, *p<0.05, **p<0.01, ****p<0.0001.
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oxygen, as well as the supply of nutrients to tissues. During COVID-

19, ~60% of patients with severe disease develop COVID-19-

associated coagulopathy (CAC), which is characterized by

elevated levels of D-dimer in the circulation, unchanged or

decreased platelet count, shortened prothrombin time, and

increased risk of thrombosis (46). However, the aforementioned

literature does not provide experimental data on NETs.
Discussion

Compared to traditional methods of detection, utilizing blood

cell morphology to observe and count the morphology of NETs in

peripheral blood slides and subsequently calculating the ratio of

NETs to neutrophilic segmented granulocytes to assess the risk of

patients with COVID-19 is a simple, direct, fast, and economical

method with good clinical value.

The introduction of two indices, namely the quantity of NETs

(number per 100 cells) and the ratio of NETs to neutrophilic

segmented granulocytes (NNSR), allows for a quantitative

description of the changes in NETs in peripheral blood. Based on

the definition of the ratio of NETs to neutrophils, low-risk and

high-risk zones can be established as new criteria for assessing

COVID-19 mortality risk. An NNSR between 32.5% and 50.4% was

considered a suspicious indicator and required further testing. An

NNSR greater than 50 .4% indicated a high r i sk of

mortality (Figure 3F).

The peripheral blood of patients with COVID-19 provides a

good scenario for observing NETs. The formation process, count,

and ratio changes of neutrophil NETs can be observed on blood

slides, providing an effective monitoring tool for disease prognosis.

Furthermore, NET-related parameters can be used as monitoring

and risk assessment indicators during the treatment of diseases,

such as viral infections, tumors, and microbial infections.

Thrombosis, the local clotting of blood, can occur in arterial or

venous circulation and pose a significant medical risks (49–51).

Acute arterial thrombosis is the main cause of myocardial infarction

and stroke, whereas acute venous thrombosis is the primary cause

of pulmonary embolism. Myocardial infarction, stroke, and

pulmonary embolism pose severe threats to the lives of affected

patients (52–54). The mechanisms underlying the pathological

changes in blood vessel walls and blood that lead to thrombosis

are not yet fully understood. Therefore, developing safer and more

effective antithrombotic drugs is of great scientific and clinical

significance (55, 56). SARS-CoV-2 infection triggers the activation

of monocytes, which along with monocyte-derived microvesicles

and tissue factors expressed by endothelial cells activate the

extrinsic coagulation pathway, leading to fibrin deposition and

blood clotting (57, 58). Neutrophils release NETs that activate the

intrinsic coagulation pathway, bind to and activate platelets, and

amplify blood clotting (8). However, this model does not further

elaborate on the weighted impact of intrinsic and extrinsic

coagulation on patient mortality caused by COVID-19-induced

thrombosis. FIB and D-dimer can be easily quantified through

blood tests; however, the difficulty in quantifying NETs is a major

reason why they cannot be discussed in depth. This model does not
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indicate the weighted impact of intrinsic and extrinsic coagulation

on the mechanism of thrombus formation nor does it indicate

which type of clotting has a greater impact on patients.

NETs play important roles in the pathogenesis of COVID-19-

associated arterial thrombosis (59–61). Neutrophil extracellular traps

(NETs) are formed when neutrophilic intracellular proteins are

degraded by elastase (NE), causing nuclear disintegration.

Peptidylarginine deiminase 4 (PAD4) promotes histone

depolymerization and facilitates chromosomal DNA release.

Gasdermin D produces pores in the cell membrane, promoting cell

membrane rupture and discharge of DNA and its associatedmolecules,

resulting in the formation of NETs (44, 62). Histones H3 and H4 in

NETs activate the intrinsic coagulation pathway by interacting with

FXI and XII and downregulating thrombomodulin, leading to a

procoagulant state. Endothelial injury activates the extrinsic pathway

by expressing TFIII, which binds to FVII and triggers the coagulation

cascade (63, 64). The interaction of thrombin, FXa, and the TFIII-FVII

complex with protease-activated receptors (PARs) leads to platelet

activation and aggregation, followed by the release of granule contents

such as P-selectin (65). Excessive circulating NETs can trigger an

inflammatory cascade, leading to tissue damage, small vessel occlusion,

and microthrombus formation in the lungs and cardiovascular and

renal systems. This can lead to permanent damage (5 to 66). The

mechanism is thought to be caused by abnormal signaling during the

cytokine storm, where NETs induce macrophages to secrete IL-1b,
further promoting the formation of NETs (67).The impact on the

coagulation system is associated with significant incidence and

mortality rates (68, 69). Coagulation disorders can lead to arterial

and venous thrombosis, particularly pulmonary embolisms and

microthrombi. The incidences of thrombus formation and

thrombus-related complications are high in adults with severe

COVID-19 (70). Microthrombus not only exist in pulmonary vessels

but also in other organs, and acute limb ischemia (ALI) is a severe

complication of COVID-19 (47, 71). The interaction between NETs

and activated platelets plays a role and enhances procoagulant activity

in patients with acute stroke and carotid artery occlusion (72).

Neutrophil depletion reduced blood-brain barrier (BBB) breakdown

at 14 days and promoted neovascularization. It has also been observed

that the percentage of circulating neutrophils is higher in the peripheral

blood 3 days after stroke, as determined by flow cytometry for blood

cell counts. Neutrophils cause delayed vascular damage. Stroke causes

neutrophil accumulation in the brain (73). Immune cell control of

thrombus formation has cell-type specificity that is limited to

neutrophils. Neutrophils drive myocardial infarction thrombosis

formation (74). This highlights the importance of effective

thromboprophylaxis and treatment of patients with COVID-19 with

thrombus complications. Given the established association between

NETs and thrombus formation in many inflammatory diseases, these

data suggest that the role of NETs in COVID-19-related thrombus

formation warrants systematic and prospective investigations.

The clotting mechanisms of fibrinogen and NETs differ

significantly. Thrombin cleaves fibrinogen into fibrin monomers,

which are then crosslinked to form stable fibrin clots. The

concentration of fibrinogen in human plasma is approximately 3

g/L. Fibrinogens are highly insoluble protein polymers with

needlelike crystal structures. Both FIB and D-dimer levels are
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indicators of fibrin clotting. Our study revealed no significant

correlation between high FIB concentrations and COVID-19

mortality (Figure 3). After neutrophil NETs formation, the

complex of NETs and red blood cells forms with a diameter of

about 40–70 µm, which under the influence of blood flow can block

arteries and form blood clots (Figure 5A). The fibrinogen-

independent clotting mechanism is similar to that of water

hyacinths in waterways, which do not cause fatal blockages in

waterways or obstruction of blood vessels. However, the NETs

+RBC complex resembled a large vessel in a waterway that could

obstruct the waterway, similarly blocking blood vessels (Figure 5B).

In Figure 5, we can observe nets enmeshing several red blood cells

(Red blood cell diameter= 7.0–7.6 µm) and the formation of emboli

in the micro and small vessels (Microvessels diameter = 4–6 µm).

The count of NETs in the peripheral blood of patients with COVID-

19 shows that the ratio of NETs to neutrophilic segmented
Frontiers in Immunology 11
granulocytes is greater than 85%, which increases the risk of

vascular obstruction and easily leads to patient death. This ratio

can serve as a warning indicator of the COVID-19 mortality risk.

Table 2 shows that drugs targeting NETs to induce internal

coagulation have not been the focus of COVID-19 drug development.

Table 2 shows the drugs possibly related to thrombosis

treatment. Antiviral therapy is an effective treatment for COVID-

19. Antiviral drugs, such as the small-molecule antiviral drug

nirmatrelvir/ritonavir (Paxlovid) (75, 76), which have been

marketed since the outbreak, can only reduce the likelihood of

developing severe cases. It is indicated for the treatment of mild-to-

moderate COVID-19 in adults with high-risk factors that progress

to severe disease.

In terms of antiplatelet therapy drugs, dipyridamole belongs to

the phosphodiesterase inhibitor class and can inhibit platelet

aggregation by increasing the intracellular cyclic adenosine
A

B

FIGURE 5

Mechanism underlying COVID-19 thrombosis and the difference between intrinsic and extrinsic coagulation (A) Thrombosis mechanism of intrinsic
and extrinsic coagulation in new crown patients. (B) Differences in coagulation mechanisms of FIB and NETs+RBC complex.
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monophosphate concentration. Dipyridamole has a specific affinity

for SARS-CoV-2 protease Mpro and inhibits SARS-CoV-2

replication in vitro. Patients treated with dipyridamole had

decreased D-dimer levels, improved platelet and lymphocyte

counts, and a trend towards improved clinical cure and discharge

rates compared with the control group (Table 2, row 7).

In terms of anticoagulant therapy, owing to the obvious

hypercoagulable state of patients with COVID-19, especially those

with severe or critical illness, and factors such as prolonged bed rest

and steroid therapy, the incidence of thrombotic events is higher

(77), which severely affects patient prognosis. Both domestic and

international guidelines and expert consensus recommend that all

hospitalized patients with COVID-19 without contraindications

should consider using prophylactic doses of low molecular weight

heparin (LMWH) (78, 79). Currently, the clinical treatment of

COVID-19-induced thrombosis mainly relies on LMWH as an

anticoagulant. LMWH can inhibit the activation of thrombin and

subsequent fibrin generation, and reduce inflammation.

Unfortunately, clinical results have not shown consistent efficacy,

and anticoagulants have not been able to prevent thrombosis.

Additionally, anticoagulants were not very effective in clearing

pre-existing blood clots (Table 2, row 10).

Thrombolytic drugs are a potential treatment for COVID-19

thrombotic complications (80, 81) and ARDS (82). In China, drugs

commonly used for thrombolytic therapy include urokinase,

streptokinase, and rt-PA, which promote fibrinolysis by activating

plasminogen (Table 2, row 13-15).

In terms of targeted therapy for NETs, the important role of

neutrophils in the pathophysiology of COVID-19-related

thrombosis makes them highly scrutinized targets (Figure 5A).

For example, the use of anti-Ly6G antibodies to clear neutrophils

can reduce NETs production in neutrophils. NETs are composed of

DNA as a backbone embedded with histones (primarily

citrullinated histone 3, CitH3), neutrophil elastase (NE),

myeloperoxidase (MPO), antimicrobial peptides (LL-37), and

serine proteases. DNase1 can promote NETs degradation (83).

Research results have shown that pharmacological inhibition of

GSDMD by disulfide can prevent NETs release (84) (Table 2, row

16-21) (Figure 5A). Targeting NETs with anti-thrombotic drugs

could bring hope to patients, as severe complications such as

myocardial infarction, stroke, and pulmonary embolisms caused

by thrombi can lead to rapid death.

In the ongoing combat against COVID-19 and its constant

evolution, developing targeted drugs for NETs is a future

research direction.
TABLE 2 Potential thrombosis-related therapeutics for COVID-19.

Drugs type
Drugs
name

Mechanism
of action

Antiplatelet
drugs

TXA2 inhibitors Aspirin Inhibit COX

ADP P2Y12
receptor
antagonist

Thiopyridines,
such
as clopidogrel

Irreversibly inhibit
platelet
ADP receptors

Non-
thienopyridines,
such
as ticagrelor

Directly and
reversibly inhibit
platelet
P2Y12 receptors

GP lI b/IIIa
receptor inhibitors

Abximab

The steric
hindrance was
used to prevent the
ligand from
binding to
GPIIb/IIIa

Tirofiban

Specific non-
peptide GPIIb/IIIa
receptor
antagonists mimic
GPIIb/IIIa
receptors to
recognize
RGD peptides

Phosphodiesterase
inhibitors

Dip
Phosphodiesterase-
5 inhibitors

Cilostazole
Phosphodiesterase-
3 inhibitors

Anticoagulant
drugs

Vitamin
K antagonists

Warfarin

Inhibit liver
synthesis of
coagulation factors
II, VII, IX, X

LMWH

Enhance the
activity of
antithrombin and
stimulate the
release of TFPI
from vascular
endothelial cells

Non-vitamin
K antagonists

Dabigatran
Inhibition of
coagulation
factor IIa

Rivaroxaban Inhibition of FXa

Fibrinolytic
drugs

Nonspecific
plasminogen
activator

Streptokinase,
urokinase

Non-specific
activation
of plasminogen

Specific
plasminogen
activator

Rt-PA
Selective activation
of plasminogen

NETs
degrading
drugs

Anti-Ly6G
Promote
neuter depletion

DNase 1 Degraded DNA

Cl-amidine
Inhibition
of PAD4

TcpC
Inhibition
of PAD4

(Continued)
TABLE 2 Continued

Drugs type
Drugs
name

Mechanism
of action

GSK
Inhibition
of PAD4

Disulfide GSDMD
TXA2, Thromboxen A2; COX, Cyclooxygenase; ADP, Adenosine diphosphate; GP,
Glycoprotein; RGD, Arginine-Glycine-Aspartate; Dip, Dipyridamole; LMWH, Low
molecular weight heparin; TFPI, Tissue factor pathway inhibitor; DNase 1,
Deoxyribonuclease 1.
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Glossary

NETs neutrophil extracellular traps

FIB fibrinogen

DD D-dimer

NNSR NETs/neutrophilic segmented granulocyte ratio

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

TF tissue factor

PAMPs pathogen-associated molecular patterns

PSGL P-selectin glycoprotein ligand

VWF von willebrand factor

TFPI tissue factor pathway inhibitor

PAI 1 plasminogen activator inhibitor 1
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