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The immune landscape of sepsis
and using immune clusters for
identifying sepsis endotypes
Guoxing Tang, Ying Luo, Huijuan Song, Wei Liu, Yi Huang,
Xiaochen Wang, Siyu Zou, Ziyong Sun, Hongyan Hou*

and Feng Wang*

Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
Background: The dysregulated immune response to sepsis still remains unclear.

Stratification of sepsis patients into endotypes based on immune indicators is

important for the future development of personalized therapies. We aimed to

evaluate the immune landscape of sepsis and the use of immune clusters for

identifying sepsis endotypes.

Methods: The indicators involved in innate, cellular, and humoral immune cells,

inhibitory immune cells, and cytokines were simultaneously assessed in 90 sepsis

patients and 40 healthy controls. Unsupervised k-means cluster analysis of

immune indicator data were used to identify patient clusters, and a random

forest approach was used to build a prediction model for classifying

sepsis endotypes.

Results: We depicted that the impairment of innate and adaptive immunity

accompanying increased inflammation was the most prominent feature in

patients with sepsis. However, using immune indicators for distinguishing

sepsis from bacteremia was difficult, most likely due to the considerable

heterogeneity in sepsis patients. Cluster analysis of sepsis patients identified

three immune clusters with different survival rates. Cluster 1 (36.7%) could be

distinguished from the other clusters as being an “effector-type” cluster, whereas

cluster 2 (34.4%) was a “potential-type” cluster, and cluster 3 (28.9%) was a

“dysregulation-type” cluster, which showed the lowest survival rate. In addition,

we established a prediction model based on immune indicator data, which

accurately classified sepsis patients into three immune endotypes.

Conclusion: We depicted the immune landscape of patients with sepsis and

identified three distinct immune endotypes with different survival rates. Cluster

membership could be predicted with a model based on immune data.
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Introduction

Sepsis, one of the leading causes of morbidity and mortality in

hospitals, was traditionally considered a systemic inflammatory

response syndrome due to infection (1–3). Sepsis is now defined

as a life-threatening organ dysfunction caused by a dysregulated

host response (4, 5). A recent burden of sepsis report highlights

nearly 50 million new cases globally per year (3, 6). Although the

prognosis of sepsis varies depending on the different organisms,

sites of infection, or underlying host conditions, there are an

estimated 10 million deaths each year (3, 6). Despite hundreds of

clinical trials conducted, there is currently no single treatment that

consistently saves lives in sepsis patients (4, 6).

The dysregulated immune response is described as concurrent

hyperinflammation and immune suppression, which is related to

many protection mechanisms that become detrimental (4, 6). Among

the many mediators implicated in sepsis-associated excessive

inflammation, neutrophils, macrophages, cytokines, and

coagulation systems are prominently featured (7–10). On the other

side, immune suppression, which also involves different cell types, is

related to enhanced apoptosis of T cells and increased numbers of

inhibitory cells, including regulatory T (Treg) cells and myeloid-

derived suppressor cells (MDSCs) (11–14). Generally, longitudinal

analyses of immune reactions from early pathogen–host interactions

to clinically manifested sepsis in humans are lacking, making the

concurrent hyperinflammation and immune suppression during the

pathophysiological path of sepsis speculative.

Another core challenge in depicting the immune response of

sepsis is the considerable heterogeneity in which the extent of

proinflammatory and immunosuppressive responses and their

relative contribution to sepsis-associated immunopathology varied

between patients (15, 16). Heterogeneity is considered a major

factor in the failure of immune modulatory trials in patients with

sepsis, and it has been proposed that stratification of patients in

subgroups with shared features can improve the effect of therapy, in

particular if patient classification is based on characteristics of host

response (15–17). Recently, attempts have been made to identify

sepsis subgroups with different disease outcomes using clinical,

laboratory, and transcriptome data and unbiased computational

analysis tools (18–23). In spite of the importance of sepsis subgroup

classification in understanding the heterogeneity of patients,

stratification of sepsis patients into endotypes based on immune

indicators is still rare, and the utility of these subgroups in clinical

practice needs to be further determined.

In view of the fact that the immune response is complicated and

of key importance in the prognosis of sepsis, we systematically

investigated the immune indicators involved in innate, cellular, and

humoral immune cells, inhibitory immune cells, as well as cytokines

and chemokines simultaneously, in the prognosis of patients with

sepsis and bacteremia. Furthermore, unsupervised hierarchical

clustering was used to identify clusters of patients with sepsis

based on similar immune profiles. Notably, we have not only

described the immune landscape of patients with sepsis and

bacteremia but also identified three clusters of sepsis patients with
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different survival rates. Additionally, we build a prediction model by

using immune data to enable the stratification of patients into three

clusters, which might be useful in standard practice as a convenient

tool to identify endotypes in the future.
Materials and methods

Study subjects

Between February 2021 and February 2022, patients with

positive blood cultures for bacteria who were finally diagnosed

with bacteremia or sepsis were recruited from Tongji Hospital (the

largest tertiary hospital in central China). Blood culture was

performed using an automatic blood culture system, and

organisms were identified. Antibiotic susceptibility was carried

out using standard microbiological methods. We categorized

blood cultures that identified coagulase-negative Staphylococcus in

only one bottle as contaminated, and consequently, the patients

with identified coagulase-negative Staphylococcus were excluded

from the study. Another group of healthy controls (HCs) without

any clinical symptoms of disease matched for gender and age was

randomly selected as the control group. Moreover, another cohort

of patients with sepsis enrolled at Sino-French New City Hospital (a

branch hospital of Tongji Hospital with 1600 beds) was used to

validate the accuracy of the built model. This study was approved by

the Ethics Committee of Tongji Hospital, Tongji Medical College,

Huazhong University of Science and Technology, Wuhan, China

(ID: TJ-IRB20211009).
Data collection and patient classification

At the time of notification of a positive blood culture, the

physiological indicators (body temperature, heart rate, breathing

rate, and sequential organ failure assessment (SOFA) score) and

routine laboratory results were collected from electronic medical

records. The demographic and clinical information was also

recorded. The enrolled patients mainly received appropriate

antibiotics and symptomatic treatment. The clinical outcome was

30-day all-cause mortality from the day of the first positive culture.

Patients with positive blood cultures were categorized into

bacteremia and sepsis groups. Bacteremia was defined as the

isolation of bacteria from at least one blood culture with a

compatible clinical syndrome during a hospital stay. Sepsis was

defined as patients who meet the criteria of bacteremia together

with an acute change in SOFA score ≥ 2, according to the sepsis-3

definitions (5, 24).
Flow cytometry analysis

Heparinized blood samples were collected from study

participants at the time of notification of a positive blood culture.
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The absolute numbers of T, B, and NK cells were determined by

using TruCOUNT tubes and the BD Multitest 6-color TBNK

Reagent Kit (BD Biosciences, San Jose, CA, USA) according to

the manufacturer’s instructions. Peripheral blood mononuclear

cells (PBMCs) were isolated by using Ficoll–Hypaque density

gradients. The 10 cell subsets, including CD4+ T cells, CD8+ T

cells, Treg cells, T helper (Th) cells, follicular helper T (Tfh) cells, B

cells, NK cells, monocytes, dendritic cells (DCs), and MDSCs

(Supplementary Table S1), were detected by flow cytometry. All

the staining was blocked using an Fc-blocking buffer, and isotype

controls with irrelevant specificities were included as negative

controls. The pellets were finally analyzed with a FACSCanto flow

cytometer (BD Biosciences). The detailed antibody information is

presented in Supplementary Table S2. Gating strategies for flow

cytometric analysis are shown in Supplementary Figures S1–S8.
Cytokine and chemokine analysis

Peripheral blood samples were collected from study

participants, and serum was separated by centrifugation and

stored at −80°C until use. The serum concentrations of 24

cytokines and chemokines (CCL2, CCL3, CCL4, CD40L,

CXCL10, GM-CSF, granzyme B, IFN-a, IFN-g, IL-1a, Il-1b, IL-
1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-

33, PD-L1, and TNF-a) (catalog No. LKTM010; R&D Systems,

Minneapolis, MN, USA) were measured by microbead array

technology using Luminex 200 system (Luminex, Austin, TX, USA).
Statistical analysis

Continuous variables were expressed as mean ± standard

deviation (SD) or median (interquartile range), and comparisons

were performed by using the Mann–Whitney U test or one-way

ANOVA test when appropriate. Categorical variables were

compared using the Chi-square test or Fisher’s exact test.

Differences among groups based on immune indicators were also

determined by t-distributed stochastic neighbor embedding (t-SNE)

analysis with R package “Rtsne”. Cluster analysis of the heat map

was performed to identify patients with similar immune patterns by

using the R package “pheatmap”, and represented as a dendrogram.

Unsupervised k-means cluster analysis of the immune indicator

data was used to identify sepsis patient clusters, and the optimal

number of clusters was determined using the elbow method with R

package “factoextra” and “cluster”. Principal component analysis

(PCA) was used to determine major variables between different

groups. The prediction model was built using a supervised random

forest approach by using the R package “randomForest” and

“caret”. The importance of each indicator in the classification of

patients was estimated by using the mean decrease in accuracy.

Kaplan–Meier curves were used for survival analysis and compared

by using the log-rank test. Statistical significance was determined as

p < 0.05. Statistical analyses were performed using SPSS version 19.0

(SPSS, Chicago, IL, USA), GraphPad Prism 8.0 (San Diego, CA,

USA), and R 4.0.3 (R Foundation, Vienna, Austria).
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Results

The immune landscape of patients
with sepsis

A total of 115 patients with positive blood cultures were

enrolled, including 25 with bacteremia and 90 with sepsis (24

died, 66 survived). Another 40 healthy individuals were recruited

as a control group. Sepsis patients have a median age of 57 years old

(IQR: 49–66), with men accounting for 76.67%. The main clinical

and demographic characteristics of the participants are presented in

Table 1. The results of all immune indicators in enrolled individuals

are presented in Supplementary Table S3.

For innate immunity, the percentage of nonclassic monocytes

trended higher in bacteremia and sepsis patients versus HCs.

Conversely, bacteremia patients displayed lower HLA-DR

expression of monocytes than HCs, and this trend was more

pronounced in sepsis patients. Accordingly, the frequency of

monocytic MDSCs (M-MDSCs) showed a progressive increase

from HCs to bacteremia and sepsis patients. The percentage of
TABLE 1 The demographic and clinical characteristics of
the participants.

Healthy
controls (n

= 40)

Bacteremia
patients (n

= 25)

Sepsis
patients (n

= 90)

Age [years, median
(25th–
75th percentiles)]

54 (47–61) 59 (52–63) 57 (49–66)

Males [n (%)] 30 (75.00) 20 (80.00) 69 (76.67)

SOFA / 1 (0–1) 7 (5–10)

Medical department

Intensive care
unit [n (%)]

/ 3 (12.00) 39 (43.33)

Department of
Infectious Diseases
[n (%)]

/ 9 (36.00) 11 (12.22)

Other
departments
[n (%)]

/ 13 (52.00) 40 (44.45)

Species

Gram-positive
bacteria [n (%)]

/ 8 (32.00) 38 (46.67)

Gram-negative
bacteria [n (%)]

/ 17 (64.00) 48 (53.33)

Underlying condition or illness

Diabetes mellitus
[n (%)]

/ 4 (16.00) 17 (18.89)

Hypertension
[n (%)]

/ 3 (15.00) 15 (16.67)

Solid tumor
[n (%)]

/ 5 (20.00) 7 (7.78)
Data are presented as number (%) or median (25th–75th percentiles). SOFA, sequential organ
failure assessment.
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DCs, especially the subset of myeloid DCs (mDCs), showed a

progressive decrease from HCs to bacteremia and sepsis patients.

Although NK cell numbers also showed a decreased trend from

HCs to bacteremia and sepsis patients, the expressions of functional

markers (NKG2A, perforin, and granzyme B) were comparable

among them (Figure 1A). For cellular immunity, the numbers of

both CD4+ and CD8+ T cells showed a progressive decrease from
Frontiers in Immunology 04
HCs to bacteremia and sepsis patients, whereas the frequency of

activated HLA-DR+CD8+ T cells tended to be higher in bacteremia

and sepsis patients versus HCs. In addition, sepsis patients

demonstrated higher proportions of Th2 and Th17 cells but lower

proportions of Th1 and Tfh cells, compared to HCs (Figure 1B). For

humoral immunity, bacteremia and sepsis patients had a lower

number of B cells compared to HCs. In particular, the frequency of
A

B D

E

C

FIGURE 1

The immune landscape of patients with sepsis. Bar graphs showing the results of representative immune indicators involved in (A) innate immunity,
(B) cellular immunity, (C) cytokine profiles, and (D) humoral immunity in HC and patients with sepsis and bacteremia. Data are presented as mean
and SD. *p < 0.05; **p < 0.01; ***p < 0.001. (E) Hierarchical cluster analysis of immune indicators in HC (n = 40) and patients with sepsis (n = 90)
and bacteremia (n = 25). The pink lines represent typical immune characteristics among different groups. HC, health control.
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unswitched memory B cells was decreased while that of plasma cells

was conversely increased in bacteremia and sepsis patients

compared to HCs (Figure 1D). For cytokine profiles, the levels of

both proinflammatory (such as IL-6, GM-CSF, and CXCL10) and

anti-inflammatory (such as IL-1ra, IL-10, and PD-L1) cytokines

were increased in bacteremia and sepsis patients compared to

HCs (Figure 1C).

Remarkably, cluster analysis of the heat map showed that low

levels of immune potential indicators (e.g., CD4+ T-cell count,

CD8+ T-cell count, and HLA-DR expression on monocytes)

coexisted with high levels of inhibitory cells (e.g., Treg cells, M-

MDSCs, and Th2 cells), and inflammatory cytokines were the most

prominent characteristics in sepsis patients when comparing

bacteremia patients or HCs (Figure 1E). These data support the

impairment of innate and adaptive immunity accompanying

increased inflammation in patients with sepsis.
Frontiers in Immunology 05
The differentiation of patients with sepsis
and bacteremia

Many indicators displayed efficient performance in

distinguishing between sepsis patients and HCs (Figure 2A).

Although many indicators like M-MDSCs (%), CD4+ T-cell

count, and Tfh17 cells (%) differed significantly between sepsis

and bacteremia patients, using a single indicator for distinguishing

these two conditions was unsatisfactory. The best indicator was M-

MDSCs (%) with an AUC of 0.75 (Figure 2B). Expectedly, the t-SNE

analysis based on 80 immune indicators showed that sepsis patients

could be well distinguished from HCs. However, patients with

sepsis and bacteremia showed much overlap and could not be

well separated (Figure 2C). The subsequent principal component

analysis showed that the immune potential indicators (CD4+ T-cell

count, HLA-DR+ monocytes (%), and mDCs (%)) and anti-
A

B

DC

FIGURE 2

The differentiation of patients with sepsis and bacteremia. (A) ROC analysis showing the performance of the top ten indicators in discriminating
between sepsis patients and HCs. Cleveland dot plots showing the AUCs of these indicators. (B) ROC analysis showing the performance of the
indicators (with p < 0.01) in discriminating between sepsis and bacteremia patients. Cleveland dot plots showing the AUCs of these indicators.
(C) The t-SNE analysis using 80 immune indicators to clarify the differences among HC, bacteremia, and sepsis patients. (D) The PCA showing the
most important variables in the differentiation of patients with sepsis and bacteremia. HC, health control; t-SNE, t-distributed stochastic neighbor
embedding; AUC, area under the curve; PCA, principal component analysis.
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inflammatory cytokine IL-1ra were the most important variables in

HCs and sepsis patients, respectively (Figure 2D).
The immune characteristics of sepsis
patients with different outcomes

Generally, a few indicators differed significantly between

survived and deceased patients with sepsis. Specifically, survived

patients displayed higher levels of indicators that represent normal

immune potential, such as CD4+ T-cell count, HLA-DR+

monocytes, and mDCs (%) compared to deceased patients.

Conversely, deceased patients demonstrated higher levels of

inhibitory cells (M-MDSCs and PMN-MDSCs) and anti-

inflammatory cytokines (PD-L1 and IL-1ra) compared to

survived patients (Supplementary Table S4). Cluster analysis of

the heat map did not reveal any pattern of immune characteristics

between deceased and survived patients with sepsis (Figure 3A).

Accordingly, the t-SNE analysis did not advocate the possibility of a

combination of these immune indicators for distinguishing

deceased from survived patients (Figure 3B). Nevertheless, the

principal component analysis still showed that the immune

potential indicators [CD4+ T-cell count, HLA-DR+ monocytes

(%), and mDCs (%)] and anti-inflammatory cytokine IL-1ra were
Frontiers in Immunology 06
the most important variables in survived and deceased sepsis

patients, respectively (Figure 3C).
Using immune indicators for classifying
sepsis endotypes

Considering the difficulty of using immune indicators for either

distinguishing sepsis from bacteremia or predicting the outcome of

sepsis, which may be attributed to considerable heterogeneity

among sepsis patients, we further determined whether sepsis

patients could be classified into different clusters based on these

indicators. Notably, unsupervised k-means cluster analysis of 80

immune indicators delivered three distinct clusters of patients

with sepsis (Figure 4A). Cluster 1 represented 36.7% of the

patients with sepsis. Cluster 1 was characterized by an effector

phenotype expressed on T cells distinctive from that of the other

clusters by virtue of having a high level of HLA-DR on CD4+ and

CD8+ T cells, accompanying increased EM CD4+ T-cell frequency

(Figures 4B, C).

Cluster 2 represented 34.4% of the patients with sepsis. The

patients in this cluster had significantly higher levels of immune

potential indicators such as CD4+ T-cell number, naïve CD8+ T-cell

percentage, and CD28+CD8+ T-cell percentage than did the patients
A

B C

FIGURE 3

The immune characteristics of sepsis patients with different outcomes. (A) Hierarchical cluster analysis of immune indicators in deceased and
survived sepsis patients. (B) The t-SNE analysis using 80 immune indicators to clarify the difference between deceased (n = 24) and survived (n = 66)
sepsis patients. (C) The PCA showing the most important variables in discriminating between deceased and survived patients with sepsis. t-SNE, t-
distributed stochastic neighbor embedding; PCA, principal component analysis.
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in clusters 1 and 3 (Figures 4B, C). Cluster 3 represented 28.9% of

the patients with sepsis. Cluster 3 was characterized by a

dysregulated immune state distinctive from that of the other

clusters by virtue of having the highest levels of proinflammatory

cytokines (such as CXCL-10 and GM-CSF), anti-inflammatory

cytokine (such as IL-1ra and PD-L1), and inhibitory cells (such as

M-MDSCs and Treg cells) simultaneously (Figures 4B, C).

Accordingly, we named clusters 1, 2, and 3 as “effector type”,

“potential type”, and “dysregulation type”, respectively, in terms

of the most important variables by principal component

analysis (Figure 4D).

Expectedly, the survival rate of sepsis patients in cluster 2

(potential type) reached 83.87% and was the highest among the

three clusters. The survival rates in cluster 1 (effector type) and

cluster 3 (dysregulation type) were 75.76% and 57.69%, respectively.

Notably, sepsis patients in cluster 2 demonstrated significantly

higher survival rates than those in cluster 3 (Figure 5).
Prediction model for classifying
sepsis endotypes

Considering the different survival rates in three sepsis

endotypes, we further used the random forest approach to build a

prediction model for classifying sepsis endotypes (cluster 1, 2, or 3)
Frontiers in Immunology 07
based on 80 immune indicator data from 90 patients with sepsis. It

was found that after 50 trees, the out-of-bag (OOB) error rate

tended to be stable (Figure 6A). The top 30 immune indicators were

sorted by importance for prediction based on the mean decrease in

accuracy (Figure 6B). The top 15 indicators were HLA-DR+CD8+ T

cells (%), HLA-DR+ T cells (%), Naïve CD8+ T cells (%),

CD28+CD8+ T cells (%), CD4+ T-cell count, B cells (%), T-cell

count, T cells (%), CD8+ T-cell count, CD8+ T cells (%), IL-10, Tfh1

cells (%), IL-1ra, B cell count, and mDCs (%).

The confusion matrix shows the accuracy of the model built on

the 80 immune indicator data measured in 90 patients with sepsis

(Table 2). Except for cluster 3, the other two clusters had a class
A

B D

C

FIGURE 4

The classification of sepsis endotypes based on immune indicators. (A) Unsupervised k-means cluster analysis of 80 immune indicators delivering
three distinct clusters of patients with sepsis. (B) Hierarchical cluster analysis of immune indicators in sepsis patients grouped by immune cluster
(cluster 1, n = 33; cluster 2, n = 31; cluster 3, n = 26). The pink lines represent typical immune characteristics among different clusters of sepsis
patients. (C) Bar graphs showing the results of representative immune indicators in three clusters of sepsis patients. Data are presented as mean and
SD. *p < 0.05; **p < 0.01; ***p < 0.001. (D) The PCA showing the most important variables in discriminating among three clusters of sepsis patients.
PCA, principal component analysis.
FIGURE 5

Survival analysis of sepsis patients grouped by immune endotypes.
Kaplan–Meier survival curves showing the 30-day survival rates for
three clusters of sepsis patients. *p < 0.05 (log-rank test).
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error lower than 0.10. Hereafter, the OOB error estimate for the

model was 13.33%. Moreover, the built model on the original data

set from 90 patients with sepsis was used to predict cluster

membership from another cohort of 37 patients with sepsis. The

accuracy of the prediction model was 86.5% (95% CI: 71.2%,

95.5%), as shown in Table 3. We also attempted to build the

model with the top 30 important immune indicators based on the

mean decrease in accuracy, and the performance of the model is

shown in Supplementary Table S5. We evaluated the less complex

model using our validation cohort, which demonstrated decreased

accuracy (Supplementary Table S6).
Frontiers in Immunology 08
Discussion

Currently, sepsis has been defined as life-threatening organ

dysfunction caused by the dysregulated or dysfunctional host

immune response to infection (25–27). However, the nature and

mechanism of immune dysregulation in sepsis still remain

ambiguous. In this study, three distinct clusters representing different

immune status were identified in sepsis patients, which displayed

significantly different survival rates. “Effector type” and “potential

type” both signify a normally functioning immune state. In effector-

type sepsis patients, T cells exhibit heightened activation, and a larger

proportion actively perform their functions, indicating the patient’s

body is actively and effectively combating the infection. In potential-

type sepsis patients, the percentage of T cells is higher, with an increased

presence of natural T cells, suggesting the patient’s body is actively

generating immune cells from the bone marrow to combat the

infection. Conversely, the “dysregulation type” is characterized by the

simultaneous excessive release of inflammatory and anti-inflammatory

factors, coupled with a substantial presence of immunosuppressive cells.

This complete immune dysfunction results in a very poor prognosis for

the patient. The three immune endotypes we defined all exhibited

manifestations of immune dysregulation, with the “dysregulation type”

being the most severe and correlated with the highest mortality rate.

However, despite experts proposing a new definition of sepsis, a clear

definition and explanation of “dysregulation” were not provided (6).

The immune characteristics associated with the dysregulation type, as

proposed in this study, may serve as a manifestation and explanation of

immune response dysregulation within the latest definition. The results

of this study may, to some extent, reveal the cause of the heterogeneity

of sepsis, and the model we have established may aid clinicians in

identifying the potential endotype of sepsis before its onset in patients,

which allows for precisely selecting immune modulators for the

treatment of the disease.
A

B

FIGURE 6

Prediction model for classifying sepsis endotypes. (A) The random
forest approach was used to build a prediction model for classifying
sepsis endotypes (cluster 1, 2, or 3) based on 80 immune indicator
data from 90 patients with sepsis. The out-of-bag error estimate for
the model was 13.33%. (B) Cleveland dot plots showing the top 30
immune indicators sorted by importance for prediction based on
the mean decrease in accuracy.
TABLE 3 The accuracy of the predictive model based on data from
another cohort of 37 patients with sepsis.

Predicted cluster Original cluster

1 2 3

1 12 0 0

2 1 12 1

3 2 1 8
fro
The accuracy of the prediction model was 86.5% (95% CI: 71.2%, = 95.5%).
TABLE 2 The accuracy of the predictive model based on 80 immune
indicators measured in 90 patients with sepsis.

Predicted cluster Original cluster Class error

1 2 3

1 30 2 1 0.09

2 2 28 1 0.09

3 4 2 20 0.23
The out-of-bag error estimate for the model was 13.33%.
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1287415
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1287415
The concept of endotypes has been proposed relatively early in

sepsis, with genomics widely applied in defining these endotypes.

Brendon et al., utilizing the whole-genome expression profiles of

peripheral blood from ICU sepsis patients, employed a combination

of unsupervised clustering and machine-learning techniques to

categorize sepsis patients into four endotypes. Each endotype

corresponds to varying degrees of mortality risk, with new biomarkers

defined for each endotype (23). Similarly, Arjun et al., including sepsis

patients from both emergency departments and ICUs, conducted

transcriptomic sequencing and data mining analysis to classify sepsis

patients into five distinct endotypes. They comprehensively

characterized the immunological features and mortality risks of these

five different endotypes of sepsis patients from an RNAperspective (21).

In contrast, our study on sepsis endotypes is based on the protein level.

Compared to genomics, protein expression can more accurately reflect

the patient’s status, and protein detection is more stable. Our approach

serves as a complement to endotype research in sepsis.

The complexity of immune cells involved, concurrent

hyperinflammation and immune suppression, and heterogeneity of

patients are three major challenges to understanding the

immunopathology of sepsis. Many immunologic risk factors are

involved in the development of sepsis, among them an increase in a

variety of inflammatory cytokines, fewer lymphocytes, and an increase

in inhibitory cells such as MDSCs and Treg cells, which are prominent

characteristics with a poor prognosis (28–30). Consistent with this

notion, we found that immune indicators including proinflammatory

cells (monocytes, NK cells, DCs, Th1, Th17, and Tfh cells, as well as

CD4+ and CD8+ T cells), anti-inflammatory cells (MDSCs, Treg cells,

and Th2 cells), and inflammatory cytokines were markedly altered in

sepsis. Of note, due to patient heterogeneity, some indicators without

significant differences between patient groups may also have the

potential to classify the disease. For instance, although the activation

marker HLA-DR expression on T cells did not show a significant

difference between sepsis and bacteremia patients, it could be an

important marker for identifying sepsis cluster 1 in this study. Thus,

the indicators with no obvious change in sepsis could be meaningful for

the classification of different endotypes of the disease.

Regarding immune suppression in sepsis, despite the increase of

inhibitory cells, including Treg and MDSCs, as previously mentioned

(14, 30, 31), we observed that some anti-inflammatory cytokines such

as IL-1ra, PD-L1, and IL-10 were the key mediators in negative

regulation of sepsis. In particular, we observed that IL-1ra was one of

the most important variables in clusters of patients with immune

suppression, indicating the superior role of IL-1ra in reflecting

immune suppression than other anti-inflammatory cytokines.

Moreover, given that the most prominent immune characteristic of

sepsis is the dysregulated immune response (11, 12, 32), our results

are in line with previous reports showing that the concurrent

hyperinflammation and immunosuppression (cluster 3) was the

most important sepsis endotype with the lowest survival rate.

Several issues deserve mention. First, the interpretation of our

findings might be limited by the sample size and specific bacterial

organisms. Further validation with a large clinical cohort is necessary;

stratified analysis based on the specific pathogen type is necessary;

and the results of this study may not extrapolate to patients with

virus- or fungus-related sepsis. Second, the longitudinal analysis of
Frontiers in Immunology 09
patients with sepsis is difficult due to the broad heterogeneity of

patients. The endotypes of patients could also be switched. Third,

given that blood samples were collected from study participants at the

time of notification of a positive blood culture, the previous empirical

antibiotic treatment might impact the results of immune indicators.

Fourth, we did compare neutrophils among the three groups.

However, the performance of neutrophils was found to be inferior

to that of PMN-MDSCs. Furthermore, there is a strong correlation

between neutrophils and PMN-MDSCs (Supplementary Figure S9).

We opted for a ready-made reagent kit for cytokine analysis, which

led to the omission of several well-recognized cytokines associated

with sepsis progression, such as CXCL-1, IL-18, IL-26, and IL-27.

Taken together, we have described the immune landscape of

sepsis patients by systemically analyzing immune cells and their

mediators. This study has not only classified sepsis patients into

three immune endotypes with different outcomes but also

established a prediction model enabling the stratification of

patients into different endotypes, which is of potential value in

selecting immune modulators for sepsis treatment.
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