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Hengyang, China
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of

C. trachomatis relies primarily on specific cellular immunity. It is currently considered

that CD4+ Th1 cytokine responses are the major protective immunity against C.

trachomatis infection and reinfection rather than CD8+ T cells. The non-specific

immunity (innate immunity) also plays an important role in the infection process. To

survive inside the cells, the first process that C. trachomatis faces is the innate

immune response. As the “sentry” of the body, mast cells attempt to engulf and

remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the

“commanders” (T cells) through MHC-I and MHC-II. IFN-g produced by activated T

cells and natural killer cells (NK) further activatesmacrophages. They form the body’s

“combat troops” and produce immunity against C. trachomatis in the tissues and

blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs),

natural killer T (NKT) cells, gdT cells and B-1 cells should not be underestimated in the

infection ofC. trachomatis. The protective role of innate immunity is insufficient, and

sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be

insidious and recalcitrant. As a consequence,C. trachomatis has developed a unique

evasion mechanism that triggers inflammatory immunopathology and acts as a

bridge to protective to pathological adaptive immunity. This review focuses on the

recent advances in how C. trachomatis evades various innate immune cells, which

contributes to vaccine development and our understanding of the pathophysiologic

consequences of C. trachomatis infection.
KEYWORDS
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1 Introduction

C. trachomatis, a specific intracellular pathogen, is closely associated with human

epidemic diseases. According to the World Health Organization, in 2020, an estimated 129

million people would be infected with C. trachomatis (1). There are 19 serovars of C.

trachomatis. In addition to trachoma, inclusion conjunctivitis, and infantile pneumonia
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(serovars A to C), it also causes more serious genitourinary tract

infections(serovars D to K) and lymphogranuloma venereum

(serovars L). The former is highly curable and can be treated with

large-scale azithromycin (2), while the latter is insidious and chronic

both in men and women (3). Although sensitive to antibiotics, their

therapeutic benefit is limited mainly because of silent (asymptomatic)

and recurrent infections attributable to immune evasion and the

development of partial immunity from these infections. In the long

term, these recurrent infections are thought to be contributing to the

development of pelvic inflammatory disease (4), tubal infertility (5),

cervical cancer (6), adverse pregnancy, miscarriage (7) in women,

urethritis, epididymitis, orchitis, prostatitis, proctitis (8) or reactive

arthritis (9) in men. These outcomes are thought to be culminating

either alone or as a complex combination of Chlamydial

pathogenesis, deficient or inferior immunological memory-

immune escape and immunopathology. Chlamydia lives in

membrane-coated vacuoles, called inclusion, which protect it from

the humoral immune response. It has been found that Chlamydia

obtains nutrients (amino acids, lipids (10), iron (11)) mainly from the

host cell, and acquires ATP (12) entirely from the host. Chlamydia

takes self-serving measures to deal with nutritional crisis, one of

which is to limit the detection of innate immunity (13). NF-kB plays

an important role in the inflammatory response. Surprisingly, no

obvious signs of NF-kB activation were detected in Chlamydia-

infected cells (14). C. trachomatis blocks NF-kB signaling through

effector ChlaDUB1 reversal of IkB-a ubiquitination (15) and CPAF-

mediated p65/RelA degradation (16). However, the in vivo role of

CPAF in NF-kB signaling has not been proven. Inflammatory

damage caused by chlamydial infection is largely due to both

innate and adaptive immunity. Chlamydial infection stimulates

host cells to produce interleukins, interferons, and tumor necrosis

factor, which play a dual role in infection (17, 18). Consequent to

infection of the upper genital tract, infiltration of neutrophils and

monocytes that are responsible for potentially deleterious

inflammation along with the bystander T cells both with the

potential to cause immunopathology (19). Highly potent antibodies

may also cause corresponding immunopathology through

mechanisms such as activation of complement (20), ADCC

(antibody-dependent cellular cytotoxicity) (21), and the emergence

of a type IV hypersensitivity reaction (22). In addition, immune

escape of Chlamydia is also an important reason for chronic recurrent

infections, which will be described primarily in this review.

Recent studies indicate that C. trachomatis uses effector

molecules like GarD that helps it to escape immune surveillance

via avoiding ubiquitination and proteosomal degradation (23, 24).

Recent findings indicate that Chlamydial lipopolysaccharide (LPS)

(25) and lipooligosaccharide (LOS) (26) do not readily trigger

innate inflammatory pathways, thus avoiding early innate

recognition and promoting its survival and multiplication.

In summary, the key to maintaining the intracellular survival

and persistence of C. trachomatis is to escape from the host’s innate

immune cells. In recent years, it has been found that properly

functioning immune cells have the potential to treat disease, and

immune responses are often associated with the course of disease.

When the body is in the midst of a persistent infection or the

immune cells are not functioning properly, the ability of the
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immune system to clear the infection is declining. Then a critical

point is reached where the immune cells are unable to clear the

infected cells, and the disease occurs. The development of a novel

vaccine against C. trachomatis infection benefits greatly from

research on cancer immunotherapy (27) and experimental

vaccinations against intracellular diseases. In fact, after H Su et al.

immunized mice intravenously with bone marrow-derived

dendritic cells stimulated in vitro by dead chlamydia, DC was able

to efficiently perform its functions of bacterial phagocytosis and

antigen presentation. The results showed that this method of

immunization produced protective immunity against Chlamydia

infection in the female genital tract comparable to that following in

vivo infection (28). Karunakaran et al. have employed DCs pulsed

with chlamydial immunopeptides in immunizations by adoptive

transfer. Immunized mice developed Th1 protective immunity and

partially resisted chlamydial lung and genital infections (29).

However, there is a long way to go in the development of

immune cell-targeted biologics in chlamydial immunity and

immunopathology for prevention or treatment (30, 31).
2 Pathogenesis and immunity

Unlike other bacteria, C. trachomatis has a unique biphasic

developmental cycle. In the initial step, non-replicating elementary

bodies (EBs) bind to the host acetyl heparan sulfate proteoglycan

(HSPG) and primarily the receptor tyrosine kinase (RTK), injecting

various effector proteins called C. trachomatis secretory proteins

(CtSPs) into the cytoplasm via the type III secretion system (T3SS)

or other secretory mechanisms (32, 33). After entry, they

differentiate into non-infectious replicating reticulate bodies (RBs)

within parietal vesicles called inclusions, and RB-secreted inclusions

membrane proteins (Incs) are incorporated into the membranes of

the compartment (34). The interaction of C. trachomatis proteins

with host proteins involves altering vesicular transport in

extracellular vesicles, regulating cell survival pathways, and

suppressing the innate host immune response. The Chlamydial

effector proteins interfere with the host’s innate immune response,

such as INCs, TepP (35), CPAF, Pgp3 (36), Pgp4 (37) and 60 other

proteins (38), which promote intracellular survival of Chlamydia

and limit the host response to infection. RBs continue to

differentiate in inclusions and, at later stages, asynchronously

undergo secondary differentiation to create new EBs. Studies have

shown that C. trachomatis divides by a polarized budding

mechanism, rather than binary fission (39). In the final process,

intracellular EBs are release by two pathways described so far: lysis

cell destruction or exit by extrusion formation. The particular form

of cyclic propagation from EB to RB to EB occurs repeatedly in

neighboring cells of the host, which takes approximately 36-48h to

complete a developmental cycle.

The first line of defense in the human immune system is the

skin and mucous membranes, and the second line is the phagocytes

and bactericidal substances in the body fluids, which together

constitute innate immunity. C. trachomatis genital serovars have a

tropism for columnar epithelial cells located on mucosal surfaces

(40, 41). On the one hand, host epithelial cells recognize the
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invasion of C. trachomatis antigens by surface receptors, endosomal

receptors, and innate immune factors. These antigens are first

blocked by the mucosal barrier and neutralized by mucosal

antibodies. Microbiota namely lactobacillus along with lactoferrin

confer an important mucosal defense in the cervicovaginal region

(42). Upon breach of this barrier, the infected cells release cytokines

and chemokines (43) that serve to recruit cells like neutrophils and

monocytes as well as others that serve to curtail the infection and

limit its spread (44). Macrophages engulf the bacteria and produce

pro-inflammatory factors (45); IFN-g secreted by NK cells not only

kills infected host cells but also induces an immune response to Th1

(46, 47); When infection leads to the development of antigen-

specific immunity, CD4+ T cells along with B cells produce

immunity where chlamydia-specific Th1 CD4+ T cells and

antibodies are considered protective (48, 49), whereas CD8+ T

cell response is considered non-essential or even pathogenic (50,

51). These cells interact and collaborate to clear C. trachomatis.

On the other hand, this infection stimulates the establishment

of immunogenicity is necessary to generate a good protective

immune response. Chlamydia has evolved to evade immunity as

well as actively subvert it by inhibiting the cytokines and

chemotactic proteins produced by epithelial cells (52, 53). It

interferes with the antigen-presenting function of antigen-

presenting cells (APCs) (downregulation of MHC class I and II

molecules) (54, 55), regulating specific cytokines with multiple

effects (IL-18, IFN-g, TNF-a), and anti-apoptosis (increased cell

survival signaling and CPAF release) (56–58). In addition, recent

studies have shown that intracellular RBs can enter uninfected

neighboring cells via tunneling nanotubes (TNT) (59). This allows

Chlamydia to remain unexposed to body fluids, thus evading to

some extent the pursuit of various cytokines in body fluids.
3 Evasion of classical innate
immune cells

3.1 Mj

Tissue macrophages (Mj) generally engulf bacteria early in the

infection when they are outside the host cells. It is known that C.
Frontiers in Immunology 03
trachomatis entry into the monocyte macrophages is less efficient

when compared to epithelial cells. Moreover, ROS-mediated

microbicidal activity is unable to kill the engulfed bacteria, and

only IFN-g stimulated, highly activated phagocytes with sufficient

effector molecules can effectively kill bacteria (17, 60) (Figure 1).

Experiments by Chen, et al. in 2017 showed that both LPS/ATP and

murine chlamydial infection of mouse bone marrow-derived

macrophages (BMDM) could lead to caspase-1 cleavage and IL-

1b released. However, unlike LPS/ATP, the inflammatory molecular

switch RIP3 was not involved in the activation of NLRP3

inflammatory vesicles in murine Chlamydia-stimulated BMDM,

suggesting that chlamydial infection leads to caspase-1 cleavage and

IL-1b release by a different mechanism than LPS/ATP (61). Two

years later, further experiments showed that lipopolysaccharide

(LPS) of C. trachomatis in BMDM, unlike other Gram-negative

bacteria, blocked downstream signaling of TRIF and MyD88

classical inflammatory pathways and failed to activate non-

classical inflammatory pathways mediated through caspase-11 to

evade innate immunity. This study explored the mechanism in

more depth: trachoma LPS, while effectively binding CD14, cannot

effectively induce TLR4/MD-2 complex dimerization or

endocytosis, implying that the classical pathway is blocked at its

source. It is speculated that this phenomenon may be related to the

fact that lipid A of chlamydial LPS is penta-acylated, rather than

hexa-acylated (25).

Macrophages are divided into two phenotypes, M1 and M2:

IFN-g/LPS-induced M1 and selectively activated, IL-4-induced M2.

M1 has a strong capacity to engulf and kill bacteria that triggers an

inflammatory response by releasing chemokines and pro-

inflammatory cytokines. And M2 cells inhibit inflammatory

responses or participate in tissue repair and fibrosis. Buchacher T

et al. showed that positive Chlamydia pneumoniae (Cpn)

lipopolysaccharide staining and quantification of 16 S rDNA were

significantly higher in M2 than in M1. A large number of intact

perinuclear inclusions were found in M2-type macrophages,

whereas rupture of inclusion bodies occurred in M1-type

macrophages (62). The Chlamydia muridarum and murine bone-

marrow derived macrophages showed that although M1 could

mediate IFN-g to control infection, it could not eliminate

intracellular chlamydia (63). This suggests that M2-type
FIGURE 1

Immune response of macrophages. TLR, toll-like receptor; ROIs, reactive oxygen intermediates; IFN-g, Interferon gamma; IL-1, interleukin-1.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1289644
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1289644
macrophages provide a better environment for Cpn to survive. It

has been shown that Nutlin-3 inhibits Chlamydia abortus growth

and affects TNF-a secretion in M1 in a dose-dependent manner

(64). In addition to improving the survival environment within

macrophages, another important escape mechanism is the

regulation of apoptosis. Utilizing CRISPR/Cas9 technology, Amy

T.Y. Yeung and his colleagues hypothesized that deletion of the IL-

10/IL-10R signaling pathway may resist macrophage apoptosis and

thus sustain chlamydial growth (65). In addition, Chlamydia is

expelled from the host cell by extrusion release, forming an

inclusion-like structure called extrusions. Extrusions retard

macrophage killing and eventually release infectious EB from

macrophages, which facilitates the spread of EB to more distant

sites. Extrusions are also able to survive longer in the extracellular

environment than free C. trachomatis EB (66). This chlamydia-

specific cell exit is likely a self-interested ability shaped by thousands

of years of host-pathogen interactions. In summary, chlamydial

survival in macrophages is suitable but limited. The restricted

growth pattern is often associated with lysosomal trafficking,

perforin-2 release, and nutrient starvation. Further work is

needed to investigate the mechanisms of chlamydia-macrophage

interactions, as well as to confirm them in vivo. This may, in some

ways, increase the clearance susceptibility of the macrophage and

decrease its ability to assist in chlamydial transmission.
3.2 NE

Neutrophil (NE) is the most abundant innate immune cells and

the first leukocytes recruited to infected tissues. Neutrophils kill

microorganisms primarily by phagocytosis and activation of the

NADPH oxidase machinery (67). When neutrophils encounter

pathogens, they activate their bactericidal reservoir to produce

reactive oxygen species (ROS) and neutrophil extracellular traps

(NETs). NETs are DNA structures decorated with cytoplasm,

granules and nucleoproteins, and they can capture microorganisms

including bacteria, viruses and 50 species of fungi. A variety of

microorganisms are known to activate neutrophils and induce the

formation of NETs. However, in order to evade or survive in

neutrophils, some pathogens (68), such as C. trachomatis, have

evolved mechanisms to degrade extracellular chromatin traps by

secreting effector nucleases and proteases. It has been shown that

chlamydial protease-like activating factor (CPAF) directly affects

PMN survival and that formyl peptide receptor 2 (FPR2) is a key

target of CPAF. In addition, C. trachomatis is able to reverse the

short-lived neutrophils and delay apoptosis by activating ERK1/2 and

PI3K/Akt survival signaling pathways (69); a key protein in human

intracellular defense against Chlamydia is the tryptophan-degrading

enzyme indoleamine 2,3-dioxygenase (IDO), but its activation does

not inhibit chlamydial survival in neutrophils (70).

In pelvic inflammatory disease caused by C. trachomatis,

interleukin1a(IL-1a) and type I interferon released upon the

death of infected inflammatory cells favored the pathogen over

the host. Persistent infection and chronic antigenic stimulation

impair the ability of T cells to produce IFN-g, thereby attenuating

the protective response of Th1 and Th2 (4). In addition, Chlamydia-
Frontiers in Immunology 04
infected neutrophils exhibit high levels of extracellular ATP, which

can act as a damage-associated molecular pattern (DAMP) to

activate submucosal macrophage NLRP3 inflammatory vesicles,

thereby driving damaging immunopathology (71). To some

extent, these immune evasion mechanisms suggest that C.

trachomatis infection can be overcome by the use of CPAF

inhibitors, vaccines with Th1-inducing adjuvants providing

antigens, etc.
3.3 DC

Classical dendritic cell (cDC) is the bridge between innate and

adaptive immunity, and it is currently recognized as the most

powerful specialized antigen-presenting cell in the body. From

immature DC (iDC) to mature DC, it becomes progressively less

capable of antigen uptake and processing (phagocytosis) and

progressively more capable of antigen presentation. DCs are the

sole initiators of initial T-cell activation (72). C. trachomatis, as an

exogenous antigen, is internalized and processed by the APC, then

processed by the proteasome in the cytoplasm, and finally activates

CD4+T lymphocytes mainly through MHC-II molecules on the

surface of DC. DC cells with the efficient presentation of cross-

antigens activate CD8+T lymphocytes via surface-expressed MHC

class I molecules in response to innate antigens in cells already

infected with C. trachomatis.Moreover, CD8a+ dendritic cells were

found to present antigen to CD8+T cells and induce Th1 production

in mice at a better level than CD8a- using the adoptive transfer

method (73). It has been shown that C. trachomatis hijacks the DC

endocytic recycling system by recruiting Rab proteins associated

with the recycling pathway around the inclusions, which leads to

adverse changes in MHC-I intracellular transport (54).

As previously described, Chlamydia exits infected host cells via

extrusion formation, which confers an infectious advantage to

Chlamydia and promotes its survival within macrophages (74). It

was found that the extrusion formation also prolonged bacterial

survival within dendritic cells and altered the initial innate immune

signaling of dendritic cells. Protective immunity against Chlamydia

is primarily driven by IFN-g producing T cells. Unlike

macrophages, phagocytosis of extrudates leads to rapid apoptosis

of DCs through a caspase 3/7-dependent mechanism, whereas

exposure to free Chlamydia does not undergo apoptosis, directly

preventing the initiation of adaptive immune responses (75). In

2017, Khamia Ryans et al. demonstrated that alpha enolase (ENO1)

deficiency affects DC survival, maturation, and antigen presentation

characteristics in vivo and in vitro experiments. Thus, modulation

of ENO1 facilitates the enhancement of DC function, which could

be used as an immunotherapeutic strategy to generate long-term

immunity against Chlamydia-induced tubal lesions (76). In fact,

using a combination of affinity chromatography and tandem mass

spectrometry, it has previously been shown that DCs transferred

with the chlamydial antigenic peptide Ags: PmpG125-500, RplF, or

PmpE/F-225-575 overtly induced significant protective immunity

against pulmonary and genital tract infections. Among them,

PmpG125-500 is the most immunoprotective and could be a

candidate for T cell protein-based subunit vaccines (77).
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3.4 Other granulocytes

In addition to neutrophils, granulocytes include eosinophils,

basophils and mast cells (Figure 2), which are rare in the study of C.

trachomatis now. Eosinophils have unique chemokine receptors on

their surface, and Vicetti Miguel et al. revealed in mouse

experiments that IL-4-producing eosinophils promoted

endometrial stromal cell (ESC) proliferation during primary

Chlamydia infection, thereby repairing endometrial tissue induced

by genital pathogens (78). In addition, a recent pathological study

on endometriosis and endometritis revealed a significant increase in

not only eosinophils but also basophils (79). And statistically,

histological analysis of sexually transmitted infections caused by

C. trachomatis in gay men presenting with proctitis revealed a

scarcity of eosinophils (80). Mast cells are less frequent in studies of

C. trachomatis infections and more frequent in allergic diseases. In a

recent study of Chlamydia pneumoniae (C. pneumoniae), Norika

Chiba et al. constructed mast cell-deficient mice (Wsh) and then

found that the lungs of Wsh mice were more efficient at clearing

Chlamydia pathology than those of WT mice. This suggests that the

presence of mast cells exacerbates the inflammatory response and

increases mortality, because it promotes the infiltration of immune

cells into the air and provides a more favorable environment for C.

pneumoniae to multiply (81).
4 Evasion of innate lymphoid
cells [ILCs]

4.1 NKs and ILCs

The predominant innate lymphoid-like cells are natural killer

cells (NKs), which do not have specific antigen recognition
Frontiers in Immunology 05
receptors like TCR and BCR or pattern recognition receptors like

Mj and DC. In the case of infection, killer activated receptors

(KAR) and killer inhibitory receptors (KIR) on the surface of NK

cells bind to target cell surface ligands (MHC-I), resulting in the

deletion or downregulation of MHC-I molecules and abnormal

expression or up-regulation of non-MHC-I molecules. At this

point, the inhibitory signal is absent and the activating signal

predominates, thereby initiating killing (82). MHC-I is down-

regulated, and MICA (MHC class I-related protein A) is up-

regulated on cells infected by C. trachomatis, which can be

recognized by NK cells. Moreover, specific combinations of

NKG2D (NK cell-activated receptor) and MICA alleles may

promote escape of C. trachomatis from NK cell-mediated

immune responses more effectively than others in different

individuals, which may be a factor contributing to individual

prognostic differences in female genital tract infections (83).

In addition to NK, other innate lymphoid cells that do not

express specific antigen receptors and whose activation does not

depend on recognition of antibodies are named ILCs, which are

classified as ILC-1, ILC-2, and ILC-3. ILCs have no direct killing

capacity, and their response depends on the activation of cytokines

released by other cells, as they have only cytokine receptors. Activated

ILCs also release corresponding cytokines to amplify the intensity of

the previous immune response to perform an immunological

function (84). Both ILC-1 and ILC-3 can secrete IFN-g. IFN-g
produced by a variety of cells is known to be effective in clearing

different sites or species of Chlamydia. IFN-g+ILC-3 plays an

important role in regulating colonization of the colon by

Chlamydia muridarum and inhibiting endometrial chlamydial

infection. IFN-g produced by circulating cells such as NK cells and

NKT cells prevents the spread of Chlamydia (85). Hong Xu and

colleagues demonstrated that mouse ILCs significantly promote

endometrial innate immunity in adaptive immunodeficient mice
FIGURE 2

Immune response of eosinophils, basophils and mast cells. CCL17, chemokine (C-C motif) ligand 17; PRR, pattern recognition receptor; FcR, Fc receptor;
CR, complement receptor; MBP, major basic protein; ECP, eosinophilic cationic protein; ECP, eosinophilic peroxidase; NGF, nerve growth factor.
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through interferon-dependent mechanisms, and that the role of ILC-

3 is more important (86) in mice with C. trachomatis inoculation.

In addition to the frequently studied models of reproductive

tract infection, gastrointestinal C. trachomatis is currently

considered a seed bank for recurrent reproductive tract infections.

Koprivsek et al. suggested in a murine model of Chlamydia

muridarum-induced gastrointestinal infection that Chlamydia

could evade IFN-g from ILC-3 but not NK and maintain its long-

term colonization in the colon (87). Furthermore, IFN-g induced

downregulation of c-Myc, a key regulator of host cell metabolism, in

a STAT1-dependent manner, suggesting that c-Myc expression

rescued the survival of C. trachomatis. IFN-g caused the

persistence of epithelial Chlamydia through infiltrative secretion

by T cells and NK cells, as found in a pathological study of trachoma

scarring (88, 89). Concerning therapy, it has been documented that

NK cells are potential therapeutic targets in inflammatory bowel

disease (IBD), atherosclerosis (AS), pulmonary arterial

hypertension (PAH), and other inflammatory diseases (31). “NK

therapies” are known to be widely used in cancer treatment. A

nanoparticles (NP) therapy against the C. trachomatis antigen:

Nanoparticles composed of poly (D,L-lactide-co-glycolide)

(PLGA) have attracted much attention because of their

biodegradability, biocompatibility and good colloidal stability. Co-

delivery of C. trachomatis MOMP and immunostimulant (IS) with

PLGA particles can prevent systemic adverse effects of immune

boosters and activate dendritic cells and natural killer cells, thus

enhancing the therapeutic effect of antigen-loaded PLGA

particles (90).
5 Evasion of innate-like
lymphocytes [ILLs]

5.1 NKT and gdT

Both Natural killer T cells (NKT cells) and gd T cells belong to

the atypical T cell family, and antigen recognition by these atypical

T cells is not restricted by MHC class I and class II molecules (91).

NKT cells are lymphocytes that express both the NK cell surface

marker CD56 (NK1.1 in mice) and the T cell surface marker

TCRab-CD3 complex. NKT cells are usually divided into type I

and type II. Type I NKT cells are called semi-invariant NKT cells

(iNKT) and recognize glycolipid and lipid antigens presented to

them by the CD1d molecule, which respond rapidly to danger

signals and pro-inflammatory cytokines (92). However, C.

trachomatis infection can downregulate the CD1d molecule in

human penile urothelial cells, which is associated with the CPAF

protein. Activated type I NKT can promote the maturation and

differentiation of DCs into CD8+/CD103+ DCs, which can further

activate T cell differentiation into functional Th1 or Tc1-like

peptide antigen-specific T cells. Activated antigen-specific

CD4+Th1 and CD8+Tc1 can suppress bacterial infection (93, 94).

However, CD1d-restricted NKT cells can regulate the immune

response to chlamydial infection and cause immunopathological

damage. Recent studies have shown that wild-type (WT) female

mice have a significantly higher chlamydial burden than CD1d-/-
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(NKT-deficient) mice, suggesting that NKT cells delay chlamydial

clearance and exacerbate immunopathology such as tubal effusion

and obstruction. In contrast, there is no significant difference in the

severity or incidence of tubal effusion in Ja18-/-(iNKT-deficient)
mice compared with WT controls. Thus, non-invariant NKT cells

have an immunopathogenic role in urogenital tract chlamydial

infection (95). This partly explains a seemingly contradictory

earlier study that NK T cells triggered pathological Th2 responses

during chlamydial infection (96). It has also been shown that the

activation of NKT triggers a pathology also associated with

disruption of the CXCL13-CXCR5 axis. In this process, activated

NKT cells increase chronic inflammation in the upper genital tract

of mice by secreting cytokines or chemokines to recruit neutrophils

and dendritic cells (97). These results suggest that NK T cells show

protective Th1 immunity and pathological Th2 immunity in their

role against Chlamydia.

gdT cells are known to bridge the gap between innate and

adaptive immunity. gdT cells represent a small proportion of the

population and are mainly distributed in mucosal tissues such as the

peritoneal cavity, intestine and lung. They are the first to be

recruited for mucosal infections. Experiments have shown that

IL-17A plays a protective role against Chlamydia pulmonary

infection, and it is produced rapidly but transiently by gdT cells

in the early stages and mainly by Th17 in the later stages. Although

the depletion of gdT cells led to a decrease in CD80 expression and

an increase in IL-10 production by DCs, it had little effect on IL-12

production. There was no effect on type 1 T-cell responses after gdT
cells depletion. In contrast, the decrease in IL-1a was more

pronounced, suggesting that gdT cells could play a supportive but

non-essential role in host defense against Chlamydia pulmonary

infection (98, 99).
5.2 B-1

B cells are divided into B-1 cells, which mediate the innate

immune response, and B-2 cells, which mediate the adaptive

immune response. Depending on the presence or absence of

surface CD5 molecules, B-1 cells can be further subdivided into

B-1a (CD5+) and B-1b (CD5-). B-1 is mainly found in the

peritoneal cavity, pleural cavity and lamina propria of the

intestine. Most of the B cells are restricted to B-1 cells, which can

be activated by TI-Ag (bacterial LPS, etc.) and produce antibodies

with low specificity and do not produce memory cells. Mouse B-1

cells are thought to be the primary producers of natural antibodies

to IgM (100, 101), which are independent of foreign antigen

stimulation and mediate mucosal immunity below the mucosal

lamina propria. Furthermore, in response to antigenic stimulation,

it is estimated that 50% of serum IgA and IgG3 are also derived

from B-1a cells (101). Lack of BCR diversity on the surface of B-1

cells and reconstitution of IgM-BCR complexes may explain the

antigen-specific responses of self-reactive B-1 cells in response to

infection by various pathogens, including bacteria, viruses, fungi

and parasites (102). At the onset of infection, B-1a cells also

spontaneously secrete IL-10 stimulated by lipopolysaccharide

(LPS), GM-CSF and IL-3 (103). These natural antibodies and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1289644
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1289644
cytokines can protect the host from infection or reduce bacterial

burden. In addition, B-1a cells are efficient antigen-presenting cells

that provide effective signals to T cells through the co-stimulatory

molecule CD80/CD86, which is constitutively expressed on B-1a

cells (104). B-1 cells play an important role in assisting M1-type

macrophages in the killing of Encephalitozoon cuniculi and in

reducing its immune escape mechanism (105). In conclusion, the

study of trends in B-1 cells and inflammation may lead to a

paradigm shift toward sustainable treatment of various

inflammatory diseases (101). C. trachomatis infection is an

inflammatory disease and it is known that Chlamydia can

colonize the gastrointestinal tract for long periods of time (106).

Although B-1 cells have been little studied in C. trachomatis, this

may, provide new ideas for C. trachomatis research.
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6 Conclusions and perspectives

Currently, the interaction between various innate immune cells

and C. trachomatis is still a challenging research topic, and both

compete and promote each other in the course of a long-term battle

(Figure 3). The complex set of mechanisms involved in the killing of

innate immune cells against Chlamydia infection and Chlamydia

immune escape from host cells can be broadly classified as follows:

Firstly, resisting the phagocytic bactericidal effect of the

phagocyte. C. trachomatis resists phagocytes through secreting

specific effector proteins that evade the capture of NETs and

prevent the activation of Mj. In addition, the ability of nascent

inclusions to evade fusion with phagocytic lysosomes is also related

to these effector proteins, for example, IncE disrupts retromer and
FIGURE 3

C. trachomatis evades the pursuit of innate immune cells. Pro-inflammatory cytokines secreted by C. trachomatis-infected cervical epithelial cells
attract innate immune cells to the site of infection. Chlamydia protease-like activating factor (CPAF), which targets the cleaved NE surface receptor
formyl peptide receptor 2 (FPR2), blocks the formation of neutrophil extracellular traps (NETs) and inhibits downstream reactive oxygen species
(ROS) production, which paralyzes murine polymorphonuclear neutrophil (PMNs) activation. Chlamydia-infected NE produces elevated levels of
extracellular ATP, adenosine triphosphate (ATP) that binds to P2X purinocreceptor 7 (P2X7R) and activates the NLRP3 inflammasome, thereby
contributing to macrophage-associated immunopathology. Chlamydia is released from epithelial cells by extrusion and then forms extrusions that
are taken up by Mj. Interferon-induced GTPases are known to promote inclusions ubiquitination, leading to premature inclusion lysis. Bacterial lipid
antigens are presented to iNKT cells via CD1d molecules on the surface of Mj and DC. Activated NKT and NK promote DC maturation through the
release of IFN-g and positive feedback from cell-to-cell interactions. Rab proteins involved in the DC endocytic cycle are recruited around the
inclusions and impede MHC-I intracellular trafficking. Notably, MICA upregulation occurs in parallel with MHC class I downregulation, affecting the
sensitivity of C. trachomatis-infected cells to NK cell activity.
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lysosome function by binding SNXs 5 and 6 (sorting nexin).

However, the mechanism is not clear (38).

Secondly, blocking the activation of the lymphocytes. The

persistent presence of C. trachomatis in innate immune cells may

due to the pressure exerted by T lymphocyte-mediated immunity,

which is the primary defense mechanism of the host against C.

trachomatis infection. This prompts C. trachomatis to interfere with

host antigen presentation by downregulating MHC molecules on

the surface of target cells, including downregulation of MHC class I

molecules that impede CD8+ CTL activation and downregulation of

IFN-g-induced MHC class II molecules that impede CD4+ T

lymphocyte activation.

Thirdly, reproducing in immune cells (anti-apoptosis). In vitro

experiments have shown that the surface structures of EB, like LPS

and certain proteins, promote endocytosis of Chlamydia by

susceptible cells (25). For example, the pore protein OmpA of the

C. trachomatis outer membrane and the plasmid-encoded Pgp3

respectively inhibit apoptosis by targeting the pro-apoptotic

proteins Bax and Bak (107), or block the activation of the

apoptotic signaling pathway (108), which facilitates the pathogen

to use the host cells for nutrition to multiply in and survival. In

addition, C. trachomatis converts from RBs to AB (aberrant body)

by changing the expression of HSP60, outer membrane proteins

and LPS when it enters a crypt-infected state under the influence of

external stresses (antibiotic use, iron deficiency or co-infection).

This process is convenient for C. trachomatis to escape the anti-

infective immune response of the host. ABs can be converted back

to RBs in an active state, then RBs transformed into infectious EBs

and released from the target cells when the external pressure is

reduced or removed. This release mechanism is associated with the

CPAF protein (32, 109).

Fourth, inducing the immune cells to apoptosis or directly

killing immune cells. Host exposure to Chlamydia infection is

known to exhibit high levels of metabolism, including sugar

metabolism, nucleotide metabolism, etc., which is attributed to

the reproduction-dependent nature of the bacteria. Moreover,

Chlamydia infection causes excessive production of reactive

oxygen species (ROS), causing oxidative DNA damage, resulting

in single-strand breaks and even double-strand breaks, which can

severely damage host cells. For example, Chlamydia not only causes

macrophage foam (110), but also stimulates macrophages to

produce TNF-a and induce apoptosis in neighboring T cells (111,

112). Hydrogen sulfide (H2S)-mammalian endogenous signaling

gas transmitter is reported to exert protective effects on various

innate immune cells against damage from ROS, immune or

inflammatory hyperactivation, and also to control differentiation,

maturation or polarization of immune cells (e.g. M2 polarization of

macrophages) (113).

Nowadays, there are more studies on the interaction between C.

trachomatis and classical innate immune cells, such as Mj, NE and
Frontiers in Immunology 08
DC, but few studies on ILCs and ILLs. And the detailed aspects of

how C. trachomatis evades innate immune cell pursuit need to be

explored in depth by further techniques. Cellular immunotherapies

have been reported to be emerging in the field of cancer (114), but

this has rarely been studied in pathogenic infections. Therefore, an

in-depth understanding of the interaction between Chlamydia and

innate immune cells will provide further therapeutic interventions

to combat this intractable epidemic.
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