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The role of aryl hydrocarbon
receptor in vitiligo: a review
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Xingyu Mei1 and Zhouwei Wu1*

1Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2Department of Dermatology, Minhang Hospital, Fudan University,
Shanghai, China
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin

depigmentation, causing significant psychological distress to the patients.

Genetic susceptibility, environmental triggers, oxidative stress, and

autoimmunity contribute to melanocyte destruction in vitiligo. Due to the

diversity and complexity of pathogenesis, the combination of inhibiting

melanocyte destruction and stimulating melanogenesis gives the best results

in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated

transcription factor that can regulate the expression of various downstream

genes and play roles in cell differentiation, immune response, and physiological

homeostasis maintenance. Recent studies suggested that AhR signaling

pathway was downregulated in vitiligo. Activation of AhR pathway helps to

activate antioxidant pathways, inhibit abnormal immunity response, and

upregulate the melanogenesis gene, thereby protecting melanocytes from

oxidative stress damage, controlling disease progression, and promoting

lesion repigmentation. Here, we review the relevant literature and summarize

the possible roles of the AhR signaling pathway in vitiligo pathogenesis and

treatment, to further understand the links between the AhR and vitiligo, and

provide new potential therapeutic strategies.
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1 Introduction

Vitiligo is a common depigmentation disease characterized by white macules and

patches with distinct margins (1). It was reported that approximately 0.5-2% of the

population worldwide is affected, and more than half of the patients develop the disease

between the ages of 10 and 30 years (2). Although genetic susceptibility, environmental

triggers, oxidative stress, autoimmunity, and neural hypothesis are recognized as the

pathogenic factors (3), the pathogenesis of vitiligo is incompletely clarified and there is no

satisfactory therapy available right now.

Aryl hydrocarbon receptor (AhR) is a nuclear transcription factor activated by

exogenous and endogenous ligands. In the canonical pathway, cytoplasmic AhR binds
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ligands and translocates into the nucleus, subsequently combining

with the aryl hydrocarbon receptor nuclear translocator (ARNT).

The AhR/ARNT complex recognizes xenobiotic regulative elements

(XREs) and mediates numerous toxicological or biological effects by

modulating the transcription of various downstream genes (4).

Besides, AhR can also regulate the gene expression through non-

canonical signaling pathways, such as nuclear factor-kB (NF- kB),
Krüppel-like factor 6 (KLF6), and the estrogen receptor (ESR) (5–

7). Accumulating evidence has evinced that AhR is highly expressed

in the skin and plays important roles in regulating epidermal barrier

differentiation, cellular homeostasis, pigment synthesis, and skin

immunity (8–10). In recent years, the role of AhR in the

pathogenesis of various skin diseases such as non-melanoma skin

cancer, melanoma, psoriasis, atopic dermatitis, acne, and

hidradenitis suppurativa has been reported (11–16). The AhR

agonist tapinarof has been used to treat psoriasis and atopic

dermatitis (17–20).

Recent studies identified abnormal AhR expression in vitiligo

(21–23). Rekik et al. found decreased AhR transcription in the

lesional skin of vitiligo (21). Wang et al. showed that decreased

AhR expression in peripheral blood mononuclear cells of vitiligo

patients was closely associated with the disease severity (22). In

addition, the relation between AhR gene functional mutations and

vitiligo susceptibility has been suggested (23). Current opinions reveal

that AhR signaling pathway is essential for vitiligo treatment through

antioxidant, immune modulation, and melanogenesis effects (24–26).

Activation of AhR signaling conduces to progression control and

repigmentation, showing great potential in vitiligo treatment. Here,

we review the relevant literature, summarize the possible roles of AhR

pathway in vitiligo pathogenesis, and conclude the current AhR

agonists and antagonists studied in vitiligo, to advance our

knowledge and provide new insight into potential therapy.
2 AhR protects melanocytes from
oxidative stress damage

Oxidative stress is recognized as the critical triggering factor in

melanocyte death and the initial event of autoimmune response in

vitiligo (27). The excessive reactive oxygen species (ROS) induced

by exogenous or endogenous stimuli cause DNA damage,

mitochondrial dysfunction, lipid peroxidation, and endoplasmic

reticulum stress, ultimately leading to melanocyte death and

autoantigen production which can activate adaptive immunity

and enhance the attacks on melanocytes (28, 29).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription

factor and makes a significant contribution to redox homeostasis (30).

When the Nrf2 is activated, the Keap1-Nrf2 complex breaks down, and

the released Nrf2 binds to antioxidant-response elements (AREs),

transcribing and upregulating the expression of several antioxidant

enzymes (31). Recent opinions suggest that the Nrf2-ARE signal

transduction is disordered in vitiligo melanocytes, causing

antioxidant incapacity and melanocyte damage (32). Aspirin,

simvastatin, and ginsenoside Rk1 can activate Nrf2 and protect

melanocytes against oxidative stress damage, suggesting the Nrf2-

ARE pathway could be a significant target for vitiligo therapy (33–35).
Frontiers in Immunology 02
AhR has been recognized as a master switch for antioxidation. It

has been reported that the inhibition of the AhR pathway enhanced

H2O2-induced oxidative stress damage and apoptosis in melanocytes

(36). It has also been verified that AhR signaling pathway activation

can protect cells from oxidative damage via Nrf2-dependent

antioxidant system (30, 37). Nrf2 can be either directly activated by

ROS or other pathways such as AhR. In fact, Nrf2 has been identified

as one of the target genes of AhR. AhR activation directly modulates

the Nrf2 pathway and upregulates the expression of antioxidative

enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone

oxidoreductase 1 (NQO1), which are key molecules in maintaining

the redox homeostasis of melanocytes (38). Whether AhR activation

could trigger the Nrf2 pathway may depend on the ligand and cell

type. The ligand, such as ketoconazole, has been proven to

differentially activate the AhR/Nrf2 pathway, which inhibited BaP-

induced ROS in keratinocytes (39). Besides, AhR signaling pathway is

also involved in repairing mitochondrial oxidative damage, which

plays a key role in mediating melanocyte apoptosis and death. AhR

can upregulate Nrf1 and its downstream TFAM expression to

promote mitochondrial biogenesis and avoid oxidative damage in

mitochondria and melanocytes (36). In addition, AhR signaling

probably crosstalk with PI3K/Akt and Wnt/b-catenin pathway as

well, which are related to reducing oxidative stress-induced

melanocyte destruction (35, 40, 41). AhR can upregulate the

pathways of PI3K/Akt and Wnt/b-catenin, and activate their

downstream signal Nrf2, thereby reducing oxidative stress (Figure 1).
3 AhR signaling is involved in
autoimmune response regulation

The involvement of autoimmunity is crucial in the development of

vitiligo (42, 43). Endogenous and exogenous stress signals stimulate

melanocytes to release heat shock protein 70 (HSP70). HSP70

stimulates the secretion of IFN-a by dendritic cells, which induces

keratinocytes to produce chemokines CXCL9 and CXCL10 and

recruits CD8+T cells expressing CXCR3 receptor, ultimately leading

to the targeted autoimmune destruction of melanocytes (44). Recently,

multiple cytokine subsets along with regulatory T (Treg) cell imbalance

were found in vitiligo. Czarnowicki et al. found that the levels of T-

helper (Th) 1, Th2, Th9, Th17, and Th22 cells were significantly

increased in the peripheral blood of vitiligo patients, along with Treg

cell counts decreased, suggesting multidimensional immune disorders

in vitiligo (45). AhR signaling plays important roles in modulating T

cell differentiation and function, which is likely to be an appealing

target to combat abnormal autoimmune in vitiligo (46) (Figure 2).
3.1 AhR inhibits the function of CD8+

T cells

CD8+ T cells are vital to melanocyte destruction and disease

progression. It is well known that IFN-g-CXCL9/10-CXCR3-CD8+ T

cell axis is crucial in the destruction of melanocytes (47, 48). CD8+ T

cells secrete IFN-g, activating the Janus kinase (JAK) 1/2 dimer and

inducing the production of CXCL9 and CXCL10 from surrounding
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1291556
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1291556
keratinocytes to further recruit additional T cells to the epidermis

through a positive-feedback loop (48). Targeting these molecules in this

pathway, including IFN-g, the IFN-g receptor, JAK1 and JAK2, signal

transducer and activator of transcription (STAT)1, CXCL10, and

CXCR3, may be appealing therapy in vitiligo (49, 50). Increasing

evidence has shown that oral and topical JAK inhibitors are efficacious

and safe for vitiligo and other dermatosis (51–54). The JAK1/2

inhibitor ruxolitinib cream has been approved by FDA for treating

non-segmental vitiligo patients over 12 years old (55). Other emerging

JAK inhibitors, including ritlecitinib and baricitinib, are under the

clinical trial stage (53, 56). Besides, it has been proved that CD8+ T cells

could mediate melanocyte apoptosis by secreting perforin or

granzymes and Fas-FasL mechanisms (57, 58).

AhR plays an important role in the regulation of CD8+ T cell

responses (59). Lawrence et al. showed that TCDD-mediated AhR

activation indirectly inhibited the primary CD8+ T cell response to the

influenza virus by modulating the dendritic cell function (60).

Similarly, CD8+ T cells exposed to AhR agonist TCDD during

development showed a reduced response to influenza virus infection

in later life (61). In addition, Liu et al. demonstrated that kynurenine

(Kyn) could activate AhR and upregulate the expression of PD-1 as

well as SLC7A8 and PAT4. The latter two molecules are the main Kyn

transporters in CD8+ T cells, thereby forming a positive feedback loop

and leading to CD8+ T cell inhibition (62). Furthermore, they also

found that IL-2 could activate STAT5-5-HTP-AhR axis and induce

tumor-reactive CD8+T cell exhaustion (63). All the evidence indicates

that AhR could probably inhibit the function of CD8+ T cells, thus
Frontiers in Immunology 03
regulating abnormal autoimmunity. Besides, recent literature has

shown the crosstalk between AhR and JAK-STAT pathway. Furue

showed that IL-13/IL-4‒JAK‒STAT6/STAT3 axis inhibited the

transcription of FLG, LOR, and IVL mediated by AhR (64). Cai

et al. revealed that Benvitimod could activate AhR and inhibit the

JAK/STAT3 pathway in keratinocytes (65).
3.2 AhR promotes the differentiation of
Treg cells

Treg cells facilitate immune homeostasis by inhibiting immune

activation and maintaining peripheral self‐tolerance (66). It has been

reported that Treg cells suppressed autoreactive CD8+ T cells by

inhibiting proliferation and cytokine secretion (67). Accumulating

evidence has shown that decreased numbers and suppressive

function of Treg cells resulted in an unrestricted autoimmune

response and melanocyte damage in vitiligo (68–70). Chen et al.

found the conversion of normal Tregs to Th1-like Tregs in the

peripheral blood and lesional skin of vitiligo patients indicating the

impaired suppression on CD8+ T cell proliferation and activation (71).

Replenishing peripheral skin Treg cells was proved to interfere with

depigmentation and normalize off-balance immune responses (72, 73).

AhR activation can mediate the differentiation of Treg cells by

various mechanisms including transcription regulation and

epigenetic modification (74–76). To be concrete, AhR induces

CD39 and IL-10 in Treg cells, as well as leading to epigenetic

changes in the forkhead box P3 (FoxP3) locus and upregulating the

expression of Aiolos and Smad 1, which control the expression of

FoxP3 and repress IL-2 transcription, and ultimately promoting

Treg cell differentiation and combating autoreactive CD8+ T cells.
3.3 AhR regulates the differentiation of
Th17 cells

Previous research suggested that elevated Th17 cells and IL-17

levels might be correlated to the duration, extent, and activity of vitiligo

(77). Il-17 produces the chemokine CCL20, attracting CD8+ T cells and

killing the melanocytes (77, 78). In addition, IL-17 stimulates the

endothelial expression of E- and P-selectins as well as the adhesion

molecules ICAM-1 and VCAM-1, then enhancing the migration of

neutrophils, which results in ROS production and subsequent

autophagic cell apoptosis in vitiligo (77, 79, 80). Inhibition of IL-17

expression has been proved to improve vitiligo lesions (81).

AhR is highly expressed in Th17 cells and promotes the early

differentiation of Th17 cells through multiple mechanisms (82, 83).

AhR cooperates with STAT3 to promote Th17 cell generation by

inducing the Aiolos expression and suppressing IL-2 expression (84).

AhR also inhibits the activation of STAT1 and STAT5, which are

inhibitory factors during Th17 cell differentiation (85). Meanwhile,

AhR can regulate the expression of IL-17 by binding to the Il17 gene

locus (86). It has been certificated that IL-6, TGF-b1 promotes

regulatory/non-pathogenic Th17 cell differentiation, whereas IL-23,

IL-6, TGF-b3 induced pathogenic Th17 cell differentiation and IL-17
FIGURE 1

The protective effects of AhR signaling in melanocytes under
oxidative stress. AhR activation upregulates Nrf2/ARE pathway and
increases the expression of antioxidative enzymes. Meanwhile, AhR
upregulates Nrf1 expression and promotes mitochondrial
biogenesis, ultimately reducing oxidative stress-induced
mitochondria and melanocyte destruction. AhR, aryl hydrocarbon
receptor; Hsp90, heat shock protein 90; XAP2, hepatitis B virus X-
associated protein 2; p23: co-chaperone protein; ARNT, aryl
hydrocarbon receptor nuclear translocator; XRE, xenobiotic
regulative element; ROS, reactive oxygen species; Nrf2, nuclear
factor erythroid 2-related factor 2; Keap1, Kelch-like ECH-
associated protein 1; ARE, antioxidant response element; HO-1,
heme oxygenase-1; NQO1, NAD(P)H:quinone oxidoreductase 1;
Nrf1, nuclear respiratory factor 1; ↑, upregulation.
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secretion (87–89). Interestingly, TGF-b1 and IL-6 induce the

expression of AhR and c-Maf, transactivating IL-10 production in

non-pathogenic Th17 cells. While in pathogenic Th17 cells, AhR

expression was significantly downregulated (89). It seems that AhR is

involved in the differentiation of pathogenic/non-pathogenic Th17

cells, though the specific mechanism is not clarified.
3.4 AhR regulates tissue-resident memory
T cells

CD8+ TRM cells expressing the characteristic markers CD103,

CD69, and CD49a have been identified in the lesion of vitiligo

patients and mouse models (90–92). TRM cells develop and persist

in the skin, produce IFN-g, perforins, and granzyme B, and destroy

melanocytes, causing the recurrence of depigmentation in the same

area after treatment stops (93). Targeting the IL-15, such as anti-
Frontiers in Immunology 04
CD122 antibodies may be a potentially effective treatment approach

to prevent recurrence (94). Recent research indicated that AhR is

involved in modulating the differentiation and function of CD8+

TRM cells (95, 96). AhR facilitates the persistence of TRM cells in the

epidermis by regulating the downstream target Blimp1, which

contributes to tissue residency (95–97). Dean et al. found that

AhR promotes TRM cell differentiation while suppressing TCM cells

in intestinal tissue (96). Besides, AhR also regulates CD4+ TRM cell

differentiation and function, which may conduce to immune

protection, and tissue remodeling in vitiligo (98).
3.5 AhR and other T cells

AhR signaling also regulates other T cell responses such as Th22

and Th9 cells. Th22 cells are a kind of CD4+ T cell subset that produces

IL-22 in the absence of IL-17, showing a dual role in mucosal defense,
FIGURE 2

Roles of AhR signaling in adaptive immune modulation. AhR induces PD-1 expression in CD8+T cells by the activation of Kyn-AhR and STAT5-5-
HTP-AhR pathways and simultaneously promotes Treg cell differentiation, together inhibiting abnormal CD8+T cell activation in vitiligo. In addition,
AhR is also involved in the differentiation of Th9, Th17, Th22, and TRM cells. Kyn, kynurenine; AhR, aryl hydrocarbon receptor; PD-1, programmed cell
death protein-1; STAT, signal transducer and activator of transcription; 5-HTP, 5-hydroxytryptophan; IL, interleukin; FoxP3, forkhead box P3; Smad1,
decapentaplegic homolog 1; c-maf, musculoaponeurotic fibrosarcoma; CD39, cluster of differentiation 39; Treg, regulatory T; RORgt, RAR-related
orphan receptor gt; Th, T helper; Blimp1, B lymphocyte induced maturation protein 1; BATF, Basic Leucine Zipper ATF-Like Transcription Factor.
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tissue repair as well as inflammation and pathological change (99).

Previous studies have shown that IL-22 was elevated in vitiligo and

related to disease extent and activity (100, 101). AhR is the critical

transcription factor for Th22 cell development (99). AhR activation

enhanced IL-22 release in CD4+ T cells of vitiligo patients (102). AhR is

also essential for Th9 cell development. Takami et al. indicated that

exposure to AhR ligands could increase BATF expression and promote

the differentiation of Th9 cells (103). Kumar et al. demonstrated the

increased frequency of Th9 cells and elevated levels of IL-9 in active

vitiligo patients, which contribute to reducing the IFNg-induced
oxidative stress in melanocytes (104). Thus, AhR activation may

protect epidermal melanocytes from IFN-g-induced damage by

elevating the levels of IL-9.

4 AhR promotes melanogenesis
and repigmentation

Apart from controlling disease progression through anti-

oxidative stress and immunity modulation, AhR signaling

pathway activation could result in the upregulation of

melanogenesis-related gene expression, and melanin content

production, thus promoting melanogenesis (Figure 3).

4.1 AhR directly upregulates TYR, TRP-1,
TRP-2, and MITF expression

Melanin biosynthesis occurs in melanosomes of melanocytes,

and its synthesis is regulated by the expression and activity of three

melanogenic enzymes, tyrosinase (TYR), tyrosinase-related protein
Frontiers in Immunology 05
(TRP)-1, and TRP-2 (105). It has been documented that

microphthalmia-associated transcription factor (MITF) is an

important transcriptional regulator of pigmentation that can

activate TYR, TRP-1, and TRP-2 expression (106).

Previous studies have shown that exposure to BA or TCDD can

activate AhR and significantly increase TYR activity, melanin

synthesis, as well as TRP-1, TRP-2, and MITF expression (38,

107). Luecke et al. suggested that the AhR signal may play a

potential role in the melanogenesis of human melanocytes. They

found that there were multiple XREs in the promoter regions,

introns, and 3′ noncoding regions of TYR and TRPs, implicating

they were the transcriptional targets of AhR (26). Studies on human

populations also demonstrated that the skin hyperpigmentation

rate is related to the blood level of AhR ligand polychlorinated

biphenyls (108). Thus, AhR might be involved in melanogenesis

and pigmentation by upregulating the TYR activity.
4.2 AhR regulates the SCF/c-Kit/
MAPK pathway

Stem cell factor (SCF) and its receptor (c‐Kit) play vital roles in

the survival, migration, proliferation, and differentiation of

melanoblast (109). It has been confirmed that the expression of

SCF, c‐Kit, and its downstream effector MITF significantly declined

in vitiligo lesional and perilesional skin (110). Defects in SCF/c-Kit

pathway may be related to melanocyte apoptosis in vitiligo.

Furthermore, modulating SCF or c‐Kit expression, including

narrow-band ultraviolet (UV) B radiation, psoralen, tacrolimus
FIGURE 3

The possible mechanisms of AhR signaling in melanogenesis. AhR activation directly upregulates the expression of TYR, TRPs, and MITF. AhR
crosstalks with SCF/c-Kit/MAPK, Wnt/b-catenin, a-MSH/cAMP/PKA, and FAK/Src pathways, mediating melanoblast migration, maturation, and
melanin synthesis. Wnt, wingless/integrated; Akt, protein kinase B; P, phosphorylation; GSK-3b, glycogen synthase kinase 3b; SCF, stem cell factor;
MAPK, mitogen-activated protein kinase; a-MSH, a–melanocyte-stimulating hormone; MC1R, melanocortin 1 receptor; c-AMP, cyclic adenosine
monophosphate; PKA, c-AMP dependent protein kinase A; CREB, c-AMP response element binding protein; AhR, aromatic hydrocarbon receptor;
Hsp90, heat shock protein 90; XAP-2, hepatitis B virus X-associated protein 2; p23, co-chaperone protein; FAK, focal adhesion kinase; MITF,
microphthalmia-associated transcription factor; TYR, tyrosinase; TRP-1, tyrosinase-related protein 1; TRP-2, tyrosinase-related protein 2.
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ointment, and geniposide, is the common treatment for vitiligo,

which further indicates the involvement of abnormal SCF/c‐Kit

signaling pathway in vitiligo (111, 112).

Jux et al. showed that UVB-induced TYR activity and melanocyte

density are prominently diminished in AhR-deficient mice, which are

associated with reduced SCF and c‐Kit expression in melanocytes

(113). It is widely known that the promoter of c-Kit gene contains

functional XREs which are addressed by AhR, suggesting that AhR

signaling contributes to melanocyte homeostasis and differentiation by

controlling SCF/c-Kit expression (114). Besides, AhR signaling also

crosstalks with mitogen-activated protein kinase (MAPK) pathway,

which is the downstream signaling of SCF/c-kit. Shi et al. revealed that

PM2.5 significantly increases the phosphorylation level of MAPK

proteins in an AhR-dependent manner and thereby promotes

pigmentation (115). Thus, AhR signaling can upregulate the SCF/c-

Kit/MAPK pathway and promote pigment synthesis.
4.3 AhR regulates the Wnt/b-
catenin pathway

TheWnt signaling pathway also makes significant contributions to

melanocyte development and melanogenesis. Wnt1 and Wnt3a

facilitate the differentiation of neural crest cells into melanocytes

(116). b-catenin binds with the lymphoid enhancer-binding factor 1

(LEF1) and synergistically upregulates MITF expression and promotes

melanogenesis. Accumulating evidence has shown an alteration of the

Wnt/b-catenin pathway in vitiligo lesions (117). Regazzetti et al. have

demonstrated the suppression of the Wnt/b-catenin pathway in

melanocytes and keratinocytes under oxidative stress. It was found

that the expression of Wnt pathway components such as LEF1, CDH2,

and CDH3 was downregulated in the lesional skin of vitiligo (118). In

addition, it was found that the expression ofWnt pathway components

such as LEF1, CDH2, and CDH3 was downregulated in the lesional

skin of vitiligo (118). One study showed that narrow-band UVB could

activate the Wnt/b-catenin pathway and strongly promote vitiligo

repigmentation (119). Moreover, the Wnt pathway also has

significant effects in regulating immunity and protecting melanocytes

from oxidative stress, indicating that Wnt/b-catenin signaling is likely

to be a valuable target to treat vitiligo (40).

The crosstalk between AhR and Wnt/b-catenin pathway has

been studied. A previous study reported that b-catenin expression

was significantly increased in melanocytes treated with AhR ligands

(120). The b-catenin can physically interact with AhR in DNA-

binding sites (121). Our study found that the activation of AhR-

dependent AKT/GSK-3b/b-catenin pathway can further upregulate

MITF transcription and enhance the expression of TYR, TRP-1,

and TRP-2, ultimately promoting melanogenesis (122).
4.4 AhR is required for a-MSH-
induced melanogenesis

a–melanocyte-stimulating hormone (a-MSH) is a key regulatory

protein controlling melanocyte proliferation and melanin synthesis

through cAMP/PKA/CREB/MITF, MAPK-ERK, and the Wnt
Frontiers in Immunology 06
signaling pathway (123–126). Melanocortin system defects have been

discovered in vitiligo patients, including low a-MSH levels in serum,

plasma, and lesional skin (127–130). Related synthetic analogue, such

as Afamelanotide which can bind the melanocortin-1 receptor and

stimulate melanogenesis, has been used as an adjuvant to increase

therapeutic response to UVB phototherapy (131–133). The

involvement of AhR in a-MSH-induced melanogenesis was

reported. Bahraman’s study indicated that a-MSH increased melanin

synthesis by upregulating the transcriptional level of AhR, CTNNB1,

MITF, and TYR. Induction of a-MSH-stimulated melanogenesis may

require the concomitant presence of AhR (121).
4.5 AhR mediates the proliferation,
migration, and maturation of melanoblast

Repigmentation of vitiligo lesions hinges on melanoblast

proliferation and migration from hair follicles to the epidermis. UV

light therapy, including PUVA, NB-UVB, and excimer laser can

stimulate melanoblast proliferation and upward migration to the

epidermis, which promotes functional maturation of melanoblasts to

melanin-producing melanocytes (134). AhR can regulate the early

activation of focal adhesion kinase (FAK) and Src and mediate

melanoblast maturation. Tomkiewicz et al. demonstrated that

TCDD-mediated AhR activation resulted in the rapid activation of

integrin clustering and FAK/Src, which had prominent effects on cell

migration and integrin recycling (135). It suggested that AhR played a

regulatory role in the migration of melanoblasts via the FAK signaling

pathway. Moreover, AhR mediated the development and maturation

of melanoblasts as well (136, 137). Hence, the AhR signaling pathway

could promote melanin synthesis through multiple regulation

mechanisms and is of great significance in repigmentation.
5 Discussion

Vitiligo is a chronic autoimmune skin disease characterized by

melanocyte destruction and skin depigmentation. Due to the diversity

and complexity of pathogenesis, there is no definitive safe and

efficacious treatment for vitiligo. Current therapeutic strategies

mainly include topical and systemic medications, phototherapy, and

surgical grafting (138, 139). However, they are not universally effective

in all patients and provide only short-term benefits with a high

recurrence rate after discontinuing treatment. Thus, the search for

more effective, targeted therapies is necessary. Current opinions suggest

that the treatment of vitiligo requires a multimodal approach targeting

three different aspects at the same time. The minimization of oxidative

stress, immunomodulatory and immunosuppressant action, and

regeneration of melanocytes may control the excessive oxidative

damage and abnormal immune response so that prevent the

progress of active disease as well as promote repigmentation, giving

the best results in treating vitiligo.

Our review shows that AhR may be a potential target for vitiligo

treatment. Current AhR agonists and antagonists studied in vitiligo

are summarized in Table 1. In fact, narrow-band UVB, the most

widely used therapy for vitiligo, probably induces repigmentation
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by activating AhR signaling (113). AhR can protect melanocytes

from oxidate stress damage by activating the Nrf2-ARE pathway,

which is already recognized as an attractive target for vitiligo

treatment. More importantly, the activation of AhR signaling

inhibits abnormal immune response and drives melanogenesis by

upregulating the expression of melanogenic genes and transcription

factors, which contribute to disease control and repigmentation. In

addition, AhR also crosstalks with the JAK-STAT pathway, which is

recognized as a key new therapeutic target for vitiligo.

However, there are still some limitations. Firstly, the antioxidant

response mediated by the activation of AhR/Nrf2 pathway relies on

the type of AhR ligand. Ketoconazole and cynaropicrin activate the

AhR signaling pathway without ROS, while Dioxins, BaP, and other

polycyclic aromatic hydrocarbons induce extremely high CYP1A1

expression and ROS production. Selecting appropriate ligands or

inhibiting the activity of CYP1A1 may contribute to less oxidative

damage. Secondly, the function of AhR is complex. Overactivation of

AhR signaling has been detected in several cancer types, including

melanoma and cutaneous squamous cell carcinoma. Topical

treatment may be considered to reduce the risk of concurrent

cancer complications. Finally, AhR promotes the differentiation of

CD8+ TRM cells in the skin, which may lead to recurrence after

discontinuing treatment.

6 Conclusion

Our review summarizes recent topics on AhR and vitiligo. AhR

can activate antioxidant pathways, inhibit abnormal immunity
Frontiers in Immunology 07
response, and upregulate melanogenesis gene, thereby protecting

melanocytes from oxidative stress damage, controlling disease

progression, and promoting lesion repigmentation. Further in-

depth research and the development of related drugs may be

beneficial for vitiligo.
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