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Major histocompatibility complex Class II (MHCII) proteins initiate and regulate

immune responses by presentation of antigenic peptides to CD4+ T-cells and

self-restriction. The interactions between MHCII and peptides determine the

specificity of the immune response and are crucial in immunotherapy and cancer

vaccine design. With the ever-increasing amount of MHCII-peptide binding data

available, many computational approaches have been developed for MHCII-

peptide interaction prediction over the last decade. There is thus an urgent need

to provide an up-to-date overview and assessment of these newly developed

computational methods. To benchmark the prediction performance of these

methods, we constructed an independent dataset containing binding and non-

binding peptides to 20 human MHCII protein allotypes from the Immune Epitope

Database, covering DP, DR and DQ alleles. After collecting 11 known predictors

up to January 2022, we evaluated those available through a webserver or

standalone packages on this independent dataset. The benchmarking results

show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance

among all predictors. In general, newly developed methods perform better than

older ones due to the rapid expansion of data on which they are trained and the

development of deep learning algorithms. Our manuscript not only draws a full

picture of the state-of-art of MHCII-peptide binding prediction, but also guides

researchers in the choice among the different predictors. More importantly, it will

inspire biomedical researchers in both academia and industry for the future

developments in this field.
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1 Introduction

MHCIImolecules are transmembrane glycoprotein heterodimers,

which capture exogenous antigenic peptides through their peptide

binding region and present them to CD4+ T cells to initiate the

immune response (1–3). The binding between MHCII proteins and

antigenic peptides is the key step for T-cells to recognize non-self or

tumor-associated antigens and thus to initiate humoral and cellular

immunity (4–7). The peptide binding region of MHCII is situated at

the interface between the two chainsa and b ofMHCII, unlikeMHCI

proteins where it is found in the a chain (8, 9). The binding groove is

open at both ends which allows binding peptides of various lengths.

Moreover, the high polymorphism of MHCII genes resulting from a

variety of different alleles at each locus (i.e., HLA-DR, -DP and -DQ)

make MHCII-peptide binding prediction even more complicated (2,

9, 10). Other factors such as the flanking sequences of the peptides

and the diversity of peptide binding cores also affect theMHC-peptide

binding prediction (11, 12). Thus, the binding specificity of MHCII

alleles is really challenging to predict.

Great efforts have been devoted to the experimental

identification of peptides binding to MHC molecules (13, 14)

through a variety of approaches such as competitive binding

assays (15, 16) and ELISPOT assays (17), as well as mass

spectrometry methods (18–20). These approaches usually evaluate

the MHC-peptide interactions experimentally by quantifying their

binding affinity and/or immunogenicity (14, 21). Moreover,

considering the importance of MHCII proteins in selecting

peptides for antigen presentation and the coordination of

immune responses, high-throughput experiments have also been

developed for identifying the correct MHC-peptide interactions at

peptidomic or genomic scale (19, 22). However, despite continuous

improvements over the last decade, the expensive and time-

consuming experimental techniques for large-scale determination

of MHC-binding peptides are not yet able to provide

comprehensive coverage of such interactions (23).

In parallel, many computational methods have been developed

to facilitate MHCII-peptide identification. They are becoming

increasingly important in large-scale scanning of neoantigens,

tumor vaccine development and drug design (24–29). There are

in general three types of computational approaches to predict the

likelihood of MHC-peptide binding: scoring functions, machine-

learning based methods and consensus approaches (30–33). In

recent years, predictors based on extensive MHC ligand and

binding data (34), such as NetMHCIIpan-4.1 (23) and

MixMHC2pred (35), have reached very high prediction accuracy

with area under the receiver operating characteristic (ROC) curve

(AUC) above 0.9 (23, 35).

It is an interesting task to review the MHCII prediction

approaches and compare their performance, since many novel

methods have recently been developed. Although there are several

nice reviews and assessments on MHCI-peptide binding (36), the

most recent review about MHCII-peptide binding prediction

dates back several years (37–40). There is thus an urgent need

for a comprehensive review and a complete assessment of these

predictors. In this paper, we first provide an overview of 11

peptide-MHCII binding predictors, including a description of
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their algorithms, features, availability and performance. More

importantly, we constructed a new independent dataset

consisting of positive (binding) and negative (non-binding)

peptides for HLA-DP, -DQ and -DR alleles by collecting the

most recent MHCII-peptide binding data from the Immune

Epitope Database (IEDB) (34) and filtering out the sequences

included in the training sets of the evaluated predictors. The

performance of each method on our independent benchmark

dataset shows that different predictors are best at predicting

different alleles, which can guide the use of certain predictors

for specific alleles. This review and assessment of the state-of-the-

art MHCII-peptide binding methods will be useful for researchers

in the field and contribute to boost the development of

personalized vaccine and immunotherapy.
2 Materials and methods

2.1 Construction of validation data set

The predictive performance of data-driven computational

models greatly depends on the amount and quality of the

validation datasets. In this work, we thus carefully curated a new

benchmark dataset by a thorough process to avoid possible overlap

between our benchmark dataset and the training datasets of the

evaluated methods.

We started by downloading peptide sequences from IEDB (34),

which is the largest public resource for MHC ligands and T-cell

epitopes. In order to avoid redundancies, we selected IEDB data

deposited after 2020, named Dsetini, since most of the predictors

used for their training the NetMHCIIpan3.2 (41) dataset that is

basically constructed from IEDB before 2020. Next, we removed the

peptides that were 100% identical to those appearing in IEDB before

2020 (Dsetb2020). From the resulting dataset we retained the top 20

HLA allotypes with the highest amount of data. This led to the final

positive dataset Dsetpos which contains in total 67,061 peptides that

vary in length between 11 and 19 residues, and bind with the 20

different HLA allotypes (9 DR, 1 DQ and 10 DP allotypes).

To avoid bias and imbalance issues when comparing the

methods, we also generated an equal number of MHCII non-

binding peptides. After obtaining the full sequence of the antigen

proteins for each binding peptide in the positive dataset, we mapped

all binding peptides to each antigen. For each group of peptides of a

given length interacting with the same MHCII protein, we

randomly generated an equal number of peptides from the non-

binding sequence regions of the antigen proteins. During the

construction of the negative dataset, we filtered out the peptides

that occur in the IEDB as well as in the training sets of other

predictors to make the dataset as clean as possible. In this way we

generated a negative dataset that contains 67,163 peptides in total,

with a length ranging from 11 to 19 residues. The final benchmark

dataset Dsetbench includes both positive and negative binding

peptides. Its construction is schematically shown in Figure 1.

The Dsetbench and Dsetini both contain HLA-DP, HLA-DR and

HLA-DQ alleles but with different proportions. Indeed, the DP, DR

and DQ fractions in Dsetini are equal to 36% (93,777), 57%
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(150,734), and 7% (15,929), respectively, whereas they are equal to

65% (43,463), 31% (21,103) and 4% (2,495) in Dsetbench. DR data

thus constitutes the majority of Dsetini, as in the full IEDB. The

removal of redundant entries in Dsetini leads to proportionally more

DPs and less DRs in our benchmark Dsetbench. In order to evaluate

the prediction methods on the different alleles separately, we

splitted Dsetbench into DRsetbench, DPsetbench and DQsetbench,

with each subset containing only DR, DP, and DQ allele

peptides, respectively.

It is important to note that there might be some ‘negative’

peptides that are incorrectly classified, as we cannot totally exclude

that they still bind to MHCII proteins. However, this is the

maximum precision that we can achieve with the available data

and, moreover, the comparison between the predictors remains fair

even if there are some misclassifications. Also note that the vast

majority of peptides in the different datasets were identified using

mass spectrometry experiments, which are less accurate than

standard biochemical assays. Indeed, mass spectrometry-based

peptide identification typically suffers from about 1% false

discovery rate (42). However, it can be argued that the fraction of

false peptides in Dsetbench is higher. Indeed, peptides found twice in

two independent experiments are more likely to be correct.

Therefore, assuming the worst case scenario, filtering of the

Dsetini dataset for redundancy using Dsetb2020 removes exclusively

true HLA binding peptides. In this hypothesis, the fraction of false

peptides for DP, DR and DQ alleles in Dsetbench is of about 2%, 7%

and 6%, respectively. Despite these slightly higher experimental

errors, their potential impact on the benchmark results remain
Frontiers in Immunology 03
limited, especially for the ranking of the different predictors for

each allele.

Our curation process led to an independent, balanced and

unbiased dataset, which is important to rigorously benchmark

prediction methods. This benchmark dataset constitutes a new

reference dataset and is available in Supplementary Data S1.
2.2 Performance evaluation strategy

We tested all the predictors using the independent dataset

described above. The prediction scores given by the tested

predictors, used to rank the MHCII-peptide interactions, varies

between IC50 binding values in nM, eluted ligand likelihood

prediction scores (EL-score), and binding affinity prediction

scores (BA-score). When the predictors output multiple scores,

we selected the score that gives the best prediction performance.

The evaluation of performance is quantified as follows:

True positives (TP) are correct predictions of HLA-peptide

interactions; false positives (FP) are peptides that are incorrectly

predicted to bind with HLA, true negatives (TN) are non-binding

peptides that were correctly recognized; and false negatives (FN) are

interacting peptides which were wrongly predicted as non-

interacting. We chose the AUC as a measure of predictors

performance. The plotting of the ROC curve and the calculation

of AUC were all carried out with the ROCR package for R (43).

Not all the methods set a cut-off for the binary, binding or non-

binding, prediction. We also evaluated the F1 and BACC (Balanced

accuracy) to search for the best cut-off for each method. The

equations of F1 and BACC are defined as follows:

Precision  =  TP=(TP + FP)

Sensitivity  =  TP=(TP + FN)

Specificity  = TN=(TN + FP)

BACC  =  (Sensitivity + Specificity)=2

F1  =  2� Precision� Sensitivity=(Precision + Sensitivity)
2.3 Peptide alignment

To perform the conservation analysis in our datasets, we

collected the peptides binding with the same allele ignoring their

length. MAFFT (for multiple alignment using fast Fourier

transform) (44) was used to align the binding peptides for each of

the 20 HLAII proteins. The open gap penalty was set to 4 to avoid

adding gaps in the peptides. After aligning the peptides binding to a

given allele, we counted the number of gaps at each position of the

alignment and selected only the contiguous positions with less than

10 percent gaps in the center regions of the MSA (Multiple

Sequence Alignment). From this MSA, we selected the peptides

that are aligned without gaps in the 9-residue regions as our starting
FIGURE 1

Overall workflow of the construction of the benchmark dataset: we
first collected all peptides from IEDB and selected data after 2020
(2020-2022) as our starting dataset Dsetini. We removed the overlap
between Dsetini and the IEDB dataset entries before 2020 to make
the positive Dsetpos dataset containing 67061 binding peptides of 11
to 19 amino acids; they span 20 allotypes. We used the non-bound
regions of the host proteins to generate non-binding peptides of
the same length as the binding ones. After that, we removed the
non-binding peptides that appear in IEDB. The remaining peptides
constitute the negative Dsetneg dataset of 67163 non-binding
peptides. The union of Dsetpos and Dsetneg is the final benchmark
dataset Dsetbench.
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alignments. We then realigned all remaining peptides that have

gaps to the previous alignment using the MAFFT program. The

final alignment included the 9-residue binding cores without gaps.

A few sequences were dropped since they still contained gaps after

two alignment iteration rounds.
2.4 Existing peptide-binding
prediction tools

The currently available tools are divided into three main

categories based on the algorithms they used: scoring functions,

machine learning and consensus methods. The general workflows

of these three types of methods are schematically illustrated in
Frontiers in Immunology 04
Figure 2. Table 1 shows a summary of existing MHCII-peptide

binding predictors. In the following, we briefly describe the 11

selected predictors, emphasizing their main characteristics in terms

of algorithms, features, training datasets and availability

(see Table 1).

2.4.1 Scoring functions
Scoring functions are widely used to assess MHCII-peptide

binding properties (36, 45). Most of these methods include only

sequence information. They are based on position-specific scoring

matrices (PSSM) which represent the frequency of each amino acid

at each position in the ensemble of peptides binding to a given

MHCII allele. Only a few methods integrate 3-dimensional (3D)

structure information. Here, we review one PSSM-based method,
FIGURE 2

Overview of the computational approaches for MHCII-peptide interaction prediction. There are three types of predictors: scoring functions,
machine-learning based tools, and consensus approaches. For each type of method, there are generally five steps to build a reliable predictor: data
acquisition and preprocessing, feature generation and selection, model construction and optimization, performance evaluation, and the construction
of a web server or independent software.
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i.e. SMM-align (46, 47) and one structure-based method, i.e.

MHCII3D (48).

SMM-align (46, 47) predicts quantitative peptide-MHCII

binding affinity values. It proceeds by generating a PSSM for a

given MHCII allele and optimizing a weight matrix which, when

multiplied with the PSSM, reproduces the experimental IC50 values

of the binding peptides. Two approaches were used to encode the

residues of the peptide sequences: 20 vectors using ‘one hot

encoding’, and the substitution score from the Blosum50 matrix.

The weight matrix optimization was performed using a Metropolis

Monte Carlo procedure (49–51) with the root mean square

deviation (RMSD) between predicted and experimental IC50

values of the peptides as cost function. After the training stage,

the score of a given 9-residue peptide is obtained by multiplying the

weight matrix with the encoded peptide; if for peptides longer than

9 residues, all 9-residue fragments are considered and the highest

affinity value is selected.

MHCII3D (48) is the only structure-based predictor that we

evaluated. It uses homology modeling to generate scaffold

complexes for each distinct MHCII allotype sequence and

ensembles of alternative peptide structures that replace the

peptide placeholder in the models. The obtained structures of

MHCII-peptide complexes , in a s impl ified backbone

representation, were scored using a series of statistical potentials.

MHCII3D achieves an AUC of 0.81 which is comparable to

sequence-based approaches on a common testing dataset.

2.4.2 Machine-learning based methods
The most successful HLA-peptide interaction prediction

methods are based on supervised machine learning (ML)

approaches by integrating features extracted from both peptide and

MHCII protein sequences. Machine learning algorithms commonly

used in these methods are support vector machine (SVM), decision

trees (DT) and neural network (NN). Among them, NN is the most

widely used and achieves superior performance compared to other

algorithms in many HLA-peptide binding prediction studies. In

general, the workflow of machine-learning based approaches

includes four steps: (1) Construction of training and testing data

sets, in which the binding between peptides and MHCII has been

verified by experiments; (2) Extraction and selection of features from

antigenic peptides, full antigens, MHCII protein sequences and

structures; (3) Selection of a suitable ML algorithm and training of

the ML prediction model; (4) Optimization of the ML model and

evaluation of its performance on an independent dataset. In the

following, we list widely used ML-based methods for MHCII-peptide

interaction prediction.

In 2019, there were two back-to-back papers published for

MHC II-peptide interaction prediction which both combined

binding peptide data derived from mass spectrometry (MS) and

binding affinity measurement (35, 52). Indeed, the recent

developments in MHC II peptidomics allow the identification of

MHC II-peptide interactions at a large scale.

MixMHC2pred (35) is one of these two methods that

disentangles MS data by a motif deconvolution algorithm

(MoDec) for MHCII-peptides prediction (7, 35). MoDec, the core
T
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algorithm of MixMHC2pred, is a fully probabilistic framework that

does not require the peptide alignment as input and is able to learn

multiple motifs at arbitrary positions in the peptide sequences and

predict their respective weights as well as binding core position

offsets preference. Once MoDec has identified a series of motifs

binding with specific alleles using an iterative approach (35), the full

predictor then integrates information from allele specific binding

motifs, allele-independent peptide N-/C-terminal motifs, peptide

length and binding core offset preferences into its final model. It is

trained on a MS peptide dataset containing peptides binding with

HLA-DR, HLA-DQ and HLA-DP proteins. In the latest version of

MixMHC2pred (53), HLAII phosphopeptidome data was used to

build a predictor for phosphorylated HLAII ligands.

MARIA (52) is another predictor that uses a multimodal deep

neural network to predict the probability of a peptide binding with a

specific HLAII protein. The multimodal architecture enables the

integration of sequential, categorical, and continuous data into a

single deep neural network. Different types of data used for training

includes peptide-HLA class II binding pairs derived from liquid

chromatography-mass spectrometry (LC-MS) experiments, peptide

gene expression data, and in-vitro binding affinity. The multimodal

deep neural network consists of two major subcomponents: an

LSTM recurrent neural network to handle the input peptide

sequence of variable length, and a dense neural network to

combine the normalized peptide gene expression values (i.e

Transcripts Per Million, TPM), a peptide cleavage score and a

peptide-HLA class II binding affinity predicted from two pre-

trained neural networks. The outer layers of the two major

subcomponents are connected through a merge layer that finally

computes the probability of the peptide binding to the specified

HLA class II allele. MARIA was validated on multiple independent

datasets, reaching an area under the curve of 0.89-0.92.

The NetMHCII and NetMHCIIpan predictors (23, 41, 47, 54–

61) is a family of predictors that have been developed and upgraded

over the past two decades. NetMHCII-1.0 (47), the first version

released, is a weight matrix based method that predicts the binding

affinity between a peptide sequence and a specific HLA class II

allele. It is based on SMM-align which is able to determine the 9-

mer core binding motif of a given peptide without the need of

sequence alignment and instead simply extracts the 9-mer with the

highest predicted binding affinity both during training and

inference. SMM-align was trained on ∼ 5.000 peptide-HLA

(pHLA) quantitative binding affinity values across 17 different

HLA alleles. The allele-specific weight matrices were optimized to

reproduce the corresponding experimental IC50 values by a Monte

Caro search.

One of the limitations of NetMHCII-1.0 was that users could

only select among the HLA class II alleles that were available in

the training dataset. To overcome this limitation, it was replaced

by a neural network-based pan HLA-DR predictor named

NetMHCIIpan-1.0 (55). To enable the prediction of HLA-DR

alleles that are not part of the training dataset, the authors

developed the “HLA Pseudo-Sequence”, which is a sequence of 21

residues that represents the binding groove of MHCII receptors and

was determined after a careful analysis of 15 peptide-MHCII 3D

protein structures. The peptide and HLA pseudo-sequence residues
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are encoded using one-hot encoding and BLOSUM50 substitution

matrix encoding, respectively, meaning each residue requires 20

input neurons. In total, the neural network has 658 input neurons.

The model was trained on ∼ 14.600 pHLA binding affinity data

points across 14 human HLA-DR alleles.

NetMHCII-2.0 (56), which was published soon after as an

update of NetMHCII-1.0, is largely inspired by the neural

network approach used in NetMHCIIpan-1.0 described above. As

a result, SMM-align was replaced by NN-align, which essentially

expands on the SMM-align method but replaces the weight matrices

with a neural network. As in SMM-align, NN-align determines the

9–mer core binding motif of a peptide by identifying the one with

the best binding affinity both during training of the neural network

and inference.

NetMHCIIpan-2.0 (57) was released shortly after. It essentially

updated the previous version by replacing SMM-align with NN-

align and also updated the training dataset to ∼ 34.000 pHLA

binding affinity data points covering 24 HLA-DR alleles. The neural

network architecture and input features remain exactly the same as

in NetMHCIIpan-1.0. On a number of different benchmarks, the

method reached an average AUC across different HLA-DR alleles of

between 0.78 and 0.85.

Three years later, NetMHCIIpan-3.0 was released (58), which is

the first truly pan specific method as, in addition to HLA-DR alleles,

it is capable of predicting pHLA binding affinity for any HLA-DP

and HLA-DQ alleles. This was achieved by generalizing the concept

of the HLA pseudo-sequence to all three HLA allele isotypes, which

resulted in a new definition of the HLA pseudo-sequence that

includes 34 binding residues instead of 21. The training dataset was

also updated to ∼ 52.000 pHLA binding affinity data points.

In 2018, NetMHCII-2.3 (41) and NetMHCIIpan-3.2 (41) were

released following the update of the training datasets of both

methods with a new training dataset containing ∼ 134.000 pHLA

binding affinity data points. This update slightly increased the

performance of the methods, with an average AUC-ROC across

all alleles of 0.76 - 0.86 for NetMHCII-2.3 and 0.78 - 0.86 for

NetMHCIIpan-3.2.

A major update of NN-align was published in 2019 (60) which

enabled the method to be able to deal both with pHLA binding

affinity data as well as LC-MS data. LC-MS data is inherently poly-

specific, which means it returns a set of multiple HLA alleles and

peptides that bind to them, but the exact pairing of each pHLA is

unknown. To deconvolute this data and obtain pHLA pairs, they

developed NN-align MA (Multi Allele). Briefly, NN-align was

adapted by first training the neural network for a number of

iterations on Single Allele (SA) data (i.e binding affinity pHLA

data and some SA LC-MS experimental data) and the resulting

model was used to annotate and thus deconvolute the MA LC-MS

data. All the data is then combined and used to train the neural

network. The latest pan allelic method, NetMHCIIpan-4.1 (61) used

the newly developed NN align MA algorithm and a training dataset

of > 500.000 binding affinity and LC-MS pHLA data, reaching a

median ROC-AUC of 0.98 in cross-validation.

BERTMHC (62) uses a bidirectional encoder representation

from transformers (BERT, Devlin et al., 2019) (63) to predict the

binding affinity (real values) and binding probability (binary) of a
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given peptide and HLA class II allele. The method encodes each

amino acid as a 768-dimensional vector using the protein language

model TAPE (64) which was pre-trained using over 31 million

protein sequences from the Pfam database. The input sequence was

learned by 12 self-attention layers and the outputs of each layer

were concatenated to give final vectors. Two BERT models were

trained, one for binding affinity and one binary binding prediction,

respectively. For the binary predictor, deconvolution was performed

using Multiple Instance Learning (MIL) on the LS-MS data in

which one peptide could bind with several HLA proteins (65). The

authors performed multiple evaluation tests reaching AUC values >

0.95 for binding prediction and of 0.72 for binding affinity

prediction (Pearson correlation = 0.39).

MHCnuggets (66) is an allele-specific peptide-HLA binding

predictor that uses an LSTM recurrent neural network to predict the

binding probability for peptide-HLAI interactions and binding

affinity for peptide-HLAII proteins. In order to handle the

sequence length variability, padding is added to the peptide

sequences so that they all reach a size of 15 or 30, respectively for

HLA class I and II. In total, 136 HLA class II predictors were

trained, one for each allele. To improve the performance of the

predictors with limited training data available, a transfer learning

approach was used. Briefly, the HLAII alleles with the most

abundant data were trained first, and the resulting weights were

used to initialize the other allele-specific predictors. The method

reaches an average AUC of 0.85 in cross-validation.

2.4.3 Consensus methods
Consensus-based MHC-peptide predictionmethods integrate the

outputs of several prediction tools throughweighting schemeswith the

aim of obtaining better predictions than any individual method. The

most commonly used consensus method is IEDB Consensus (37, 67),

which is the tool recommended by the IEDB platform and combines

NN-align, SMM-align and CombLib (67, 68).
2.5 Webserver/software functionality

We checked the availability of all methods listed in Table 1.

Eleven methods could be run by webserver and/or a standalone

package which were selected for further evaluation of prediction

performance. These predictors are: MHCnuggets, MARIA,

MixMHC2pred, BERTMHC, NetMHCIIpan-4.1, NetMHCIIpan-

4.0, NetMHCII-2.3, NetMHCIIpan-3.2, NetMHCII, MHCII3D and

IEDB consensus. Most of the methods are based on NN (we already

introduced earlier) except NetMHCII and MHCII3D, which

employ scoring function approaches, and IEDB consensus

methods. One should note that not all the methods can

predict peptides for any lengths and MHCII alleles. Indeed, some

methods are limited to identify peptides with specific lengths and

certain MHCII alleles. Out of all eleven approaches, only

NetMHCIIpan-3.2, NetMHCIIpan4.0, NetMHCIIpan-4.1 and

MHCnuggets could predict the probability score for all the

peptides in our benchmark dataset. Software availability details

are shown in Table 1.
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3 Results and discussion

3.1 Conservation analysis of sequence
motifs of the MHCII binding peptides

To analyze to what extent the peptides that bind to a specific

HLAII allele have similar sequences, we aligned these peptides

without considering their length as described in Methods section

2.3. We identified from these alignments the 9-mer regions of the

peptides as those that have the least percentage of gaps.

We then analyzed the position-dependent amino acid

preferences of peptides and generated allele-specific plots using

the seqlogo program of WebLogo (69). In Figure 3, we show

examples of the conservation logo of peptides binding with six

different HLAII alleles. The plots for other alleles are available in

Supplementary Data S5. In general, aligned peptides show a

conserved pattern characterized by anchors at positions P1, P4,

P6, and P9, and sometimes also P7, except HLA-DPA1*02:02

DPB1*05:01 which shows conservation only in P4 and P9.

HLA-DPA1*01:03_DPB1*04:01 has the largest number of

binding peptides in our benchmark dataset (Figure 3A). We

observed that the binding peptides show a preference for Phe (F)

or other aromatic or hydrophobic amino acids such as Leu (L) at

positions P1 and P6, which is consistent with earlier observations

(70). Moreover, there is a preference for Glu (E) at position P4 and

Leu (L) at P9. These four positions constitute the anchor residues of

this HLA protein. Similar patterns were found for HLA-

DPA1 * 0 1 : 0 3 _DPB1 * 0 2 : 0 1 ( F i g u r e 3C ) a n d HLA -

DPA1*01:03_DPB1*04:02 (Figure 3E) except that in the former

the preference for Glu at P4 is replaced by a preference in Lys (K) at

position P4. Position P7 also slightly differs.

Peptides binding to HLA-DPA1*02:01_DPB1*14:01 show a

preference for the positively charged residues Lys (K) and Arg (R)

at position P1, Glu (E) and Ser (S) at P4, Ala (A) and Val (V) at P6

and Leu (L) and Val (V) at the position P9. In contrast, the peptides

that bind to HLA-DPA1*02:02_DPB1*05:01 have essentially two

conserved positions only: Leu/Val (L/V) at position P4 and Lys (K)

at position P9.

For a recent comprehensive investigation of the MHCII binding

motif preferences for about 600k peptides identified by MS and

bound to more than eighty MHCII alleles in human, mouse, cattle

and chicken, see (71).
3.2 Performance evaluation of peptide-
MHCII binding predictors

We assessed the performance of the eleven available predictors

on our independent test dataset. For all peptides with a certain

length that binds to a specific MHCII allele, we computed the

predictions with the different methods and plotted the ROC curves

of each predictor. Figures 4, 5 show examples of ROC curves for the

predictions of MHC-peptide binding for the tested methods. Here

we selected the subsets of MHCII-peptide interactions containing

the largest numbers of peptides. All prediction outputs of each
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method can be seen in Supplementary Data S2 and all AUCs

calculated are in Supplementary Data S3.

As can be seen in the figures, most of the methods tested

perform well in predicting MHCII-peptide binding. In general, ML-

based methods achieved better performances across almost all 20

allotypes than scoring-based and consensus approaches. Among

them, MixMHC2pred and NetMHCIIpan-4.1 performed the best,

with the highest ROC-AUC scores. Moreover, NetMHCIIpan-4.1 is

able to predict peptides with a wider length range (10-19 amino

acids) and covers more allotypes (Supplementary Data S3).

Interestingly, IEDB consensus methods perform rather well on

several MHCII-peptide subsets, especially on HLA-DRB isoforms.

The average AUC reaches 0.84 ± 0.12. The two best methods,

MixMHC2pred and NetMHCIIpan-4.1, are able to predict

most peptide-MHCII interactions with good accuracy and we

observe some complementarity between them. For example,

NetMHCIIpan-4.1 is able to predict 11-residue long peptides

(AUC equal to 0.876 ± 0.104), while MixMHC2pred outputs
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no results. In contrast, MixMHC2pred achieved better

performances on 12-residue peptides binding to HLA-DPA1_02_

01_DPB1_01_01 than NetMHCIIpan-4.1, with an AUC of

0.985 and 0.820, respectively. One can thus expect that a

consensus approach combining these two predictors will achieve

better accuracy.

Based on the performance on our independent datasets, we see

a step-by-step improvement of the NetMHCII predictor family

from the older to the newer versions. Indeed, the average AUC of

NetMHCIIpan-3.2 reaches 0.793± 0.121 and that of NetMHCII2.3,

0.844 ± 0.124. NetMHCIIpan-4.0 increases the score up to 0.932 ±

0.06 and NetMHCIIpan-4.1, to 0.936 ± 0.06. NetMHCIIpan-3.2 is

able to cover peptides with a wider length range and more MHCII

alleles than NetMHCII-2.3, but the latter obtained a better

performance than NetMHCIIpan-3.2. NetMHCIIpan-4.1 and

NetMHCIIpan-4.0 achieve significantly superior performance

than most methods on all HLA alleles. This is probably enabled

by the use of a larger training set composed of the MHC
B C

D E F

A

FIGURE 3

Analysis of the amino acid positional preferences for allotype-specific peptide ligands in specific HLAII allotypes: (A) HLA-DPA1*01:03 - DPB1*04:01,
(B) HLA-DPA1*02:01-DPB1*14:01, (C) HLA-DPA1*01:03-DPB1*02:01, (D) HLA-DPA1*01:03-DPB1*03:01, (E) HLA-DPA1*01:03-DPB1*04:02, (F) HLA-
DPA1*02:02-DPB1*05:01. The motifs are aligned with respect to the center of the 9-mer binding core. The overall height of letters indicates the
sequence conservation at that position, while the height of each amino acid represents the relative frequency of that residue.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1293706
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1293706
ligands eluted by MS and binding affinity datasets from IEDB.

Another key point is the implementation of a more complex

machine learning framework to extract features from peptide

sequences and MHC proteins and also the deconvolution of the

multi allele LC-MS data in NetMHCIIpan-4.1. Similarly to

NetMHCIIpan-4.1, the other best approach, MixMHC2pred, also

took the MS ligand and binding affinity datasets as training sets and

used the MoDec framework to perform motif deconvolution. Both

strategies significantly boost the performance of MHCII-peptide

interaction prediction.

The PSSM-based method SMM-align, developed over fifteen years

ago, performs surprisingly well for MHC class II binding prediction

(AUC 0.828 ± 0.114). However, it only works for a small number of

HLA-DR and DP genes which greatly limit its clinical applications due

to the shortage of algorithms coping with variable length of peptides.

Furthermore, we calculated the maximum BACC scores for

each method for the whole dataset and each subset of given peptide

length and HLA allotype by optimizing the cut-offs of the binary

prediction (Supplementary Table S1). For the full dataset,

MixMHC2pred obtained the best maximum BACC score (0.906),
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while NetMHCIIpan4.0 and NetMHCIIpan4.1 also achieved nice

results (0.858 and 0.850, respectively). We compared these best

BACC scores with the scores calculated using the default cut-offs

provided by the webserver or local programs. All the optimal BACC

scores are slightly higher than the default ones (average difference of

0.033 ± 0.014). However, for certain HLA allotypes or peptide

lengths, the optimized BACC is substantially higher than the default

one, which suggests that the default cut-offs are in some cases sub-

optimal. Our BACC score and cut-off analyses will facilitate the

choice of the adequate predictor for given peptide length binding

with given HLAII protein. The best BACC scores, cut-offs and types

of prediction scores used for each method are also listed in

Supplementary Data S4 which also contains the best F1 score as

an additional metric.

In conclusion, our results show that the most recent predictors

are in general better than methods developed a long time ago, which

may be due to the larger amount of training data and more

advanced machine learning architectures. Also, we showed that

the default thresholds suggested by the methods work well for most

alleles, but are suboptimal for a subset of alleles, which suggests the
B

C

A

FIGURE 4

Performance of eleven MHC class II prediction methods assessed by their ROC curves and AUC values. The curves were generated by plotting the
true positive rate (y-axis) against the false positive rate (x-axis). ROC curves for peptides binding to HLAII molecules specific for (A) HLA-
DPA1*01:03-DPB1*02:01 (15mer), (B) HLA-DPA1*01:03-DPB1*04:01 (15mer) and (C) HLA-DPA1*02:01-DPB1*14:01 (15mer). AUC values for each
prediction method are provided between parentheses in the subfigure legends. For prediction results on other HLA classes and peptide lengths see
Supplementary Figure S1 and Data S4.
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need for method developers to provide allele-specific thresholds

instead of a single threshold for all alleles.
3.3 DR, DP and DQ alleles

The IEDB database contains HLA-DP, HLA-DQ, and HLA-DR

data but it is dominated by the latter allele. HLA-DRs have been

widely investigated given their prominent role in the immune

system. Our benchmark dataset is characterized by a higher

proportion of HLA-DP due to the redundancy removing process

during data preprocessing (see Methods section). Thanks to the

recent increase in the amount of available data, DP alleles have also

been found to be crucial for many diseases, such as primary

sclerosing cholangitis (72), ulcerative colitis (73), acute

lymphoblastic leukemia (74), hepatitis B virus infection (75) and

cervical cancer (76). Although HLA-DQ data are less abundant, this

allele is nonetheless important in some autoimmune disorders such
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as celiac disease (77). It is thus important to have benchmark

datasets such as ours to comprehensively assess MHCII-peptide

binding predictors on all three HLA alleles separately.

Furthermore, whereas some predictors are only able to predict

peptide binding to DR allele, the majority of the methods, among

which the pan-allele predictors NetMHCIIpan-4.1 and

MixMHC2pred, have been developed to cope with DP, DQ, and

DR alleles, as shown in Table 1.

For these reasons, we evaluated the method performances

separately on DRsetbench, DPsetbench and DQsetbench and show the

results in Table 2 and Supplementary Table S2. It is noteworthy that

predictors perform a little bit better on DR alleles than on DP and

DQ. This is probably due to the fact that DR data is more abundant

in their training datasets than other types of alleles. Top methods

are in any case able to achieve very good performances on the three

alleles, with MixMHC2pred performing best on DP and DQ

alleles, whereas NetMHCIIpan-4.0, NetMHCIIpan-4.1 and

MixMHC2pred all obtained AUC scores of about 0.96 on DR data.
B

C D

A

FIGURE 5

Performance of MHC class II prediction methods for HLA-DR genes assessed by their ROC curves and AUC values. ROC curves for peptides binding
to HLAII molecules specific for (A) HLA-DRB1*03:01 (15mer), (B) HLA-DRB1*04:01 (15mer), (C) HLA-DRB1*15:01(15mer), (D) HLA-DRB5*01:01
(15mer). AUROC values for each prediction method are provided between parentheses in the subfigure legends. For prediction results on other HLA
classes and peptide lengths see Supplementary Figure S1 and Data S4.
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3.4 Current methods and
prospective strategies

In the past decade, computational approaches predicting

peptides binding to MHCII molecules have witnessed a rapid

development and are becoming increasingly attractive and useful

for biomedical research. In particular, newer methods such as

MARIA, MixMHC2pred and NetMHCIIpan-4.1 have been

developed since 2019 and now integrate data from MS, which has

significantly boosted their predictive accuracy for peptide binding

prediction. However, predicting MHCII-peptide binding is still a

challenging problem. Firstly, the datasets used to train and test these

approaches only cover a very small fraction of all MHCII proteins

coupled with variations of MHCII allele. Although our benchmark

dataset includes all five types of HLA-DRA proteins, there are over

2500 HLA-DRB and 1400 HLA-DQB proteins according to IMGT’s

database (78). In IEDB, which is the largest binding peptide

database, most studies still focus on a limited number of MHCII

proteins. This might bias these predictors towards accurately

predicting peptides binding with certain types of MHCII proteins

only. Secondly, every patient is highly personalized, in particular in

the context of cancer patients. Adding personalized characteristics,

disease details and quantitative information of MHC-peptide

binding could not only improve the predictors but also help in

the development of personalized cancer vaccines and immunotherapy.

With more data available as a result of high-throughput experimental

methods and the availability of detailed patient-specific medical

information, one could expect these computational approaches to

get closer to solving these problems.Thirdly,mostmethods are trained

on human peptides, but in the near future, new MHCII-peptide

binding predictors able to interpret non-human peptides such as

microbiome could provide new immunotherapeutic options for

infectious diseases.
Frontiers in Immunology 12
The majority of current approaches are sequence-based and

neglect the structural properties of MHC proteins and peptides.

Structural features such as the stability of HLA-peptide complexes,

structural details of binding grooves and the structural contacts

between MHC protein and peptides have proved to be crucial for

protein-peptide recognition and peptide drug development.

Moreover, the recent development of protein structure prediction

approaches, such as AlphaFold2, has greatly improved the accuracy

of protein 3D structure prediction (79). In the near future, machine-

learning approaches integrating structural features with sequence

properties could further improve the predictive power of these

methods and more importantly, deepen the understanding of the

complex binding mechanism of MHC-peptide complex.
4 Conclusions

In this paper, we have reviewed eleven available tools for

predicting peptides binding with MHCII molecules. By

constructing an independent and well curated dataset covering all

three HLA alleles, we evaluated state-of-the-art MHCII-peptide

binding predictors and underlined their strengths and

weaknesses. Our study provides a useful guide for researchers

interested in using the best predictor for their use case as well as

in improving existing methods and developing new ones. Moreover,

it will be helpful to academic and industrial researchers working on

tumor vaccine development and drug design.
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