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immune response and
gene function
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Since the leprosy cases have fallen dramatically, the incidence of leprosy has

remained stable over the past years, indicating that multidrug therapy seems

unable to eradicate leprosy. More seriously, the emergence of rifampicin-

resistant strains also affects the effectiveness of treatment. Immunoprophylaxis

was mainly carried out through vaccination with the BCG but also included

vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection

and pathogenesis largely depend on the host’s genetic background and

immunity, with the onset of the disease being genetically regulated. The

immune process heavily influences the clinical course of the disease. However,

the impact of immune processes and genetic regulation of leprosy on

pathogenesis and immunological levels is largely unknown. Therefore, we

summarize the latest research progress in leprosy treatment, prevention,

immunity and gene function. The comprehensive research in these areas will

help elucidate the pathogenesis of leprosy and provide a basis for developing

leprosy elimination strategies.
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1 Introduction

It has been reported that the risk of leprosy infection is associated with factors such as

spatial distance between patients, genetics, disease type and age. The prevention of leprosy

has become a hot issue in recent years, especially among people chronically exposed to

Mycobacterium leprae (M.leprae), such as household close contacts (HHC) (1). Experts

point out that early diagnosis, reduction of infection rates and cutting off transmission

routes contribute to disease control. Therefore, the World Health Organisation (WHO)

proposed early detection of cases and screening of high-risk populations as key strategic

objectives in the “Global Leprosy Strategy 2016-2020” (2).
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The patients display a wide range of clinical manifestations due

to the distinct immune responses specific to each individual. Ridley-

Jopling classification system classifies patients into five categories:

Tuberculoid (TT), Lepromatous (LL), Borderline Lepromatous

(BL), Borderline Borderline (BB), and Borderline Tuberculoid

(BT). The TT type exhibits few skin lesions, well-developed

granulomas, and a lower bacterial load. On the other hand, the

LL type shows abundant bacteria in the affected areas but fewer

lymphocytes and granuloma formation. Most patients belonged to

intermediate phenotypes, including BL, BB, and BT (3).

Additionally, the WHO classifies patients into Multibacillary

(MB) and Paucibacillary (PB) types based on skin patch results,

where those with more than five skin lesions are considered MB,

and those with fewer lesions as PB (4). Therefore, leprosy was

considered an ideal disease to study the immune interrelationship

between the pathogen and the host at the time of infection.

However, the pathogenesis of leprosy remains obscure due to the

lack of an ideal animal model that accurately replicates vital features

of leprosy observed in humans.

The disease has long been recognized as a familial aggregation

disease, with host genetics being the main factor influencing

pathogenesis. With technological advances, genome-wide linkage

and analyses have provided evidence of genetic function.

Comprehensive analyses of susceptibility genes revealed a

complex network of interactions between related genes, and more

than 30 susceptibility genes were known to be associated with

leprosy (5, 6). In addition, there is a shared genetic background

between leprosy and certain inflammatory and autoimmune

diseases such as Parkinson’s (PD) and Crohn’s (CD) (7, 8).
2 Drug regimen and
preventive measures

2.1 Transition from monotherapy with
dapsone to multidrug therapy

Chaulmoogra oil was first used in leprosy, but its effectiveness

was controversial (9). Since 1940, dapsone has been considered the

most effective antibiotic in treatment. However, the patients

required lifelong medication, and the prevalence remained high.

In 1964, Shepard et al. identified the first dapsone-resistant strain

using the mouse footpad model. Consequently, the WHO

recommended MDT for leprosy treatment in 1981. The therapy

has made leprosy less of a significant public health problem. The

disability rate had fallen dramatically, and millions of patients were

no longer disabled. It is worth noting that dapsone resistance had

already exceeded 20% before MDT introduction (10). See more

details in Figure 1.

At the beginning of the 21st century, the World Health

Organization (WHO) evaluated two leprosy treatment regimens:

single-dose ROM (Rifampicin, Ofloxacin, and minocycline) and

conventional regimens (Rifampicin, Clofazimine, and Dapsone).

The ROM regimen was found to be the best option for treating

patients with PB, but it was not suitable for patients with MB or

leprosy with erythema nodosum leprosum (ENL) (11). As a result,
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the WHO explicitly recommended treating all types of patients with

the conventional regimen. The introduction of this program has

successfully eliminated leprosy as a significant public health

problem. However, despite the positive outcomes observed in

clinical trials, the primary criticisms and concerns surrounding

this harmonized regimen include the unnecessary inclusion of

clofazimine in PB patients and the associated risk of relapse in

MB patients. In summary, leprosy treatment faces three main

challenges. Firstly, the disease persists to varying degrees in

numerous countries and regions globally, with limited access to

quality healthcare, particularly in economically disadvantaged

areas. Next, there still needs to be an understanding of the

pathogenesis and immune interaction mechanisms contributing

to the continued spread of the bacteria. Finally, resistance to the

core drug rifampicin has emerged, potentially compromising the

effectiveness of multidrug therapy (MDT). Given the low prevalence

of leprosy, focusing on chemoprophylaxis and immunoprophylaxis

should be central to its control efforts.
2.2 Epidemiological impact of different
treatment options

Before clarifying the epidemiological impact of different

treatment options, it is crucial to emphasise two essential

indicators: the number of persons treated in a given period,

which can be seen as an approximation of the prevalence rate.

Second, the number of new cases detected annually in a specific

period can be seen as an approximation of the incidence rate.

Shortening the treatment duration was the pivotal factor in

achieving the elimination target set by WHO (12). After MDT

was introduced, the treatment duration for MB patients was

reduced from 24 to 12 months from 1990 to 1998. Reduced

treatment time has been a vital element in the efforts to eliminate

leprosy. In 1977, more than twelve million patients were under

treatment. However, these patients require treatment for up to 4-10

years, while others require lifelong treatment. The global count of

patients receiving treatment decreased from 5 to 3 million until

1991 (13).

After the endorsement for the widespread adoption of MDT, it

took approximately 15 years to achieve global coverage for all

registered leprosy patients. The number of individuals undergoing

treatment further declined to approximately 600,000 by 2000. After

WHO declared the goal of eradicating the disease, the number of

newly detected cases dropped to 260,000 nationwide in 2007 and

has remained stable ever since. Experts attributed this rapid decline

in case detection to a reduction in infection transmission resulting

from a decrease in the community load of M. leprae (14). It is

important to note that various factors beyond drug treatment

influence the spread of leprosy. Factors such as access to clean

water, improved education, and close contact between family

members and patients also play significant roles. In recent years,

the detection rate of new cases has decreased significantly: the global

number of leprosy cases in 2020 was 127,396, a decrease of 27.7%

compared to 2019 (202,185 cases). However, the latest report from

the WHO in 2023 stated that there were 174,087 new cases in 2022,
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a further 36.6% increase from 2020. New cases are concentrated in

Southeast Asia, with three countries - Brazil, India and Indonesia -

accounting for 78.1% (15). It is worth noting that many countries

still do not have adequate disease notification services, which can

lead to underreporting.
2.3 Emergence of drug resistance during
MDT application

The molecular mechanisms of drug resistance in leprosy remain

unclear. Horizontal gene transfer has been ruled out as irrelevant to

drug resistance, and no novel genetic elements have been identified

in the M. leprae genome (16). The gold standard for detecting drug

resistance involves assessing clinical symptoms and conducting

PCR tests to identify mutations in drug resistance-determining

(DRDR) regions. Dihydropteroate synthase, RNA polymerase,

and DNA gyrase, encoded by the Folp1, RpoB, and GyrA genes,

are known drug targets for dapsone, rifampicin, and ofloxacin.

However, there was limited knowledge of the resistance targets to

Clarithromycin, minocycline and clofazimine. It was known that

the drug target of Clarithromycin is 23SrRNA (10, 17–19). Drug-
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target interactions are controlled by atomic bonds between amino

acid residues. Mutations can severely affect these interactions,

leading to changes in protein stability and reducing the affinity

between target proteins and ligands, ultimately causing drug

resistance. Based on these insights, studies are systematically

screening potent compounds from large libraries against newly

hypothesized disease-causing protein structures for the

development of novel anti-leprosy drugs or vaccines, such as the

MabA and LipU proteins (20, 21).

Disease surveillance was necessary in endemic regions all the

time till its eradication. In 2008, the WHO International Leprosy

Elimination Program established a multi-country surveillance

network. The first monitoring results revealed that out of 1,932

patients, 154 cases showed drug-resistant strains (8%), with

resistance rates of 3.8% for dapsone, 4.5% for clofazimine, and

1.10% for ofloxacin. Multi-drug Resistance (MDR) was observed in

1.24% of cases in 19 countries that participated in the sentinel

surveillance network, with resistant strains reported in six endemic

countries (India, Brazil, Japan, Indonesia, Philippines, Colombia

and China). Among them, Brazil (32 cases), India(18 cases), and

Colombia(9 cases) have reported the most Rifampicin-resistant

strains, and it has been observed that tranexamic acid and
FIGURE 1

History of leprosy treatment and MDT protocol. The chart shows that leprosy was largely eliminated till 2000, and the first dapsone-resistant strain
was confirmed in 1963. The right side of the chart shows the WHO’s guidelines for adults and children and the protocols following Rifampicin or
Ofloxacin resistance.
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rifampicin resistance are prevalent among relapsed patients (22). In

addition, relapsing patients are more likely to develop resistance to

dapsone and rifampicin. These findings indicate that, except for

specific highly endemic areas, drug resistance rates are relatively low

in most regions. Ofloxacin is the preferred drug for treating drug-

resistant cases, and it exhibits relatively low resistance rates.

However, in some rural areas, the inappropriate use of the drug

to treat tuberculosis has increased drug resistance (23). Clinically,

bacteria still maintain a relatively high sensitivity to clofazimine,

which could be attributed to several factors (24). In conclusion,

current efforts to combat drug resistance should focus on careful

post-treatment follow-up of treated individuals, rapid identification

of strains that may develop secondary resistance, and more

resistance surveys in endemic areas, focusing on relapse cases.
2.4 Chemoprophylaxis strategies
for leprosy

Dapsone and acedapsone were the first chemical drugs used for

leprosy prophylaxis. It was reported that Acedapsone is given

weekly for 2-3 years, while dapsone is administered every 10

weeks for 7 months (25, 26). Initial trials of acedapsone were

conducted in school-age patients, with subsequent findings

showing protection ability in close contact (27, 28). However, the

results of a meta-analysis showed that dapsone was protective for

household contacts, but the number of treatments needed to

prevent new cases was also higher (29). Meanwhile, the

protect ion rate of acedapsone was only 56.7% (30) .

Simultaneously, the enthusiasm for chemoprophylaxis diminished

following the introduction of short-term MDT and the initiation of

the leprosy elimination strategy. Consequently, these two drugs

were withdrawn from the programme. In 1988, single-dose

rifampicin (SDR) was introduced to address drug resistance and

other concerns for leprosy chemoprophylaxis (31–33). The

Bangladesh Randomised Controlled Trial (COLEP) demonstrated

an overall efficacy of around 60% within the first two years of SDR.

However, the level of protection varied based on exposure, with up

to 70% protection observed for unrelated individuals and only

about 25% for blood relatives (parents or children) (34, 35). The

limited effect of chemoprophylaxis might be attributed to earlier

infection with M.leprae or the drug’s shorter half-life. Nevertheless,

SDR as a post-exposure prophylaxis (PEP) for contacts of leprosy-

affected individuals can reduce the risk of developing leprosy by up

to 60% (36, 37). In 2018, SDR-PEP was formally included in the

WHO Guidelines for diagnosing, treating and preventing Leprosy

(38). It has proven highly cost-effective when integrated into routine

leprosy control with established contact tracing.

In recent years, a groundbreaking study by Wang et al. involved

7450 household contacts divided into three groups: rifapentine,

rifampicin, and control groups. The study found that the

cumulative incidence rate in the rifapentine group was 92% lower

than that in the control group for household contacts with more

than four years of exposure (39). The effect of single-dose

rifapentine surpassed SDR. Consequently, single-dose rifapentine

and SDR were included in China’s national leprosy elimination
Frontiers in Immunology 04
program. Despite the success of chemoprophylaxis, it cannot

provide lasting protection, and long-term dependence may lead to

the development of drug resistance. As a result, future efforts will

focus on developing durable immune responses induced

by vaccines.
2.5 Immunoprophylactic strategies
against leprosy

An effective vaccine should induce solid and long-lasting

cellular immunity to bacterial antigens. The Bacillus Calmette-

Guérin (BCG) vaccine, primarily used to prevent neonatal

tuberculosis, can potentially protect against leprosy. As a result,

the WHO recommends maintaining BCG vaccination in all high-

burden leprosy areas (40). In Brazil, the Ministry of Health initially

recommended routine BCG vaccination for household contacts of

newly diagnosed patients, and the practice was later extended to

include two doses. However, the available evidence does not

support revaccination, as studies have found a high likelihood of

PB patients after revaccination (37, 41). The mechanism may

involve the activation of specific T cells and the overexpression of

innate immune cells. The protective effect of BCG in childhood is

around 60% (37, 41). Lwin et al. concluded that BCG alone is

unlikely to be the ultimate solution for leprosy control (42).

Schuring et al. demonstrated an 80% protective effect of SDR

when the exposed person had received the BCG vaccine as part of

a childhood vaccination program, compared to 58% without BCG

vaccination (43). In the MALTALEP trial, SDR after BCG

vaccination reduced the incidence of PB leprosy in exposed

persons by 42%. At the same time, this reduction was not

statistically significant due to the limited number of cases

following SDR vaccination. In addition, it remains difficult to

determine the extent to which SDR suppressed cases of leprosy

following BCG vaccination, as many of the cases arose prior to the

SDR intervention. Consequently, it is still recommended that

contacts of new cases of leprosy should be investigated and then

SDR should be carried out. Additionally, potential vaccine

candidates have been considered (Mip/LepVax) (44–46). MIP is a

whole-cell vaccine modified from BCG, while LepVax is a

multivalent recombinant protein vaccine that safely induces T-cell

responses. It has been suggested that LepVax may be preferred as a

therapeutic vaccine rather than for prophylactic immunization. In

summary, immunoprophylactic strategies have shown promise

future in combating leprosy. However, further research is needed

to develop more effective long-term solutions.
3 Nerve damage and immune
response in leprosy

3.1 Leprosy reaction

Pathological immune reactions, i.e., Reversal Reaction (RR),

Erythema Nodosum (ENL), occur in about 30% or more leprosy

patients. Among them, RR is the most common cause of nerve
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injury, appearing at the beginning of treatment or up to 2 months

before its initiation. It is accompanied by generalized skin lesions

and polar neuroinflammation (47). ENL patients are characterized

by the sudden onset of generalized erythema and painful nodules,

primarily in patients with BL/LL type, and thalidomide is often

recommended for treating strategy (48). Immune complex

deposition and complement cascade reactions formed by ENL

could also cause hypersensitivity or vasculitis (49). In recent

years, the Lucio phenomenon is known as diffuse leprosy and is

characterized by extensive violet plaques and maculopapular

infiltrates, but this group of patients is relatively rare (50). As for

Lucio’s Phenomenon, even though some articles cite it as a form of

leprosy reaction (Type 3 Reaction, T3R), but it remains

controversial whether it is a specific type of leprosy reaction. In

addition, Covid-19 or smallpox vaccination may cause leprosy

reactions in patients (51, 52).
3.2 The function of innate immune cells in
the pathogenesis of leprosy

3.2.1 Dendritic cells
Skin tissue is the first line of defense against M.leprae infection

and DCs play an essential role in immune activation. Langerhans

cells (LCs), a specific type of DCs in the epidermis, closely interact

with keratinocytes and mediate antiviral activity by presenting

antigens through CD1a and langerin protein (CD207). LCs have a

higher antigen presentation efficiency than other DCs. The

mechanism is described by Hunger et al (53, 54). LCs may

capture specific antigens by expressing CD207, and at least some

of these antigens can be presented to CD1a-restricted T cells for

clone. Notably, CD1a antigens were also involved in the

presentation of lipids and glycolipids, and they were more

expressed in RR patients. LCs may induce autophagic response

through IFN-g co-localization, promoting the differentiation of

CD8 T cells into cytotoxic T cells for bactericidal effects. While

LCs have been studied more extensively than dermal DCs,

granulomas and skin lesions are predominantly associated with

dermal DCs (55). Identifying whether CD207+ cells in the diseased

dermis are migrating LCs from the epidermis or another type of

resident dermal DCs remains challenging. CD123 and FXIIIa are

biomarkers for plasma cell-like DCs (Pd) and dermal DCs (Dd),

respectively. Pd can be rapidly recruited to infection or

inflammation sites, while Dd plays a role in tissue healing (56).

CD209 (DC-SIGN), a C-type lectin receptor expressed on DC

surfaces, is involved in bacterial recognition and antigen

presentation, with higher expression in LL than other types.

Dermal DCs also show similar expression patterns in TT patients.

Additionally, dermal DCs are linked to matrix metalloproteinase

(MMP-12) as part of a tissue remodelling network contributing to

granuloma formation among TT patients (57–59). In addition, DCs

have been reported to have the potential to induce anti-microbial

immunity as a vaccine candidate against experimental

leishmaniasis. In this study, mice inoculated with soluble

leishmaniasis antigen-peptidoglycan-DC showed an increase in

the expression of proinflammatory cytokines such as IL-12 and
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IL-17 and an attenuated effect of Leishmania protozoa-induced

expression of IL-10, which suggests that the immune response is

more proinflammatory (60). However, the exploration of DC

application against M. leprae has not been investigated.

Therefore, future studies could explore a combination of

approaches, such as utilizing DCs as vaccine candidates or

employing antimicrobial and anti-inflammatory strategies.

3.2.2 Keratinocytes
The interaction between keratinocytes and DCs is facilitated by

the intercellular adhesion molecule-1 (ICAM-1). ICAM-1 appears

more abundant in TT patients than in LL. Lyrio et al. demonstrated

that M. leprae interacts with keratinocytes through binding to

receptors on the basal layer of the epidermis (LN-5) and the

surface of keratinocytes, enhancing the expression of Cathelicidin

and TNF-a (61). This provides new insights for leprosy treatment.

Notably, keratinocytes were vital in two different leprosy reactions

(RR/ENL), and thalidomide treatment could down-regulated the

expression of ICAM-1 and HLA-DR antigens in keratinocytes.

However, the increased of keratinocyte amount does not control

bacterial load. The reason may be that granulocyte-macrophage

colony-stimulating factor (GM-CSF) to induce an increase in

keratinocytes in the skin of leprosy patients did not alter the total

number of bacteria (62). Interestingly, keratinocytes may involved

in the NO pathway for bacterial killing. High expression of iNOS

has been observed in keratinocytes within LL granulomas compared

to normal skin tissue. Furthermore, keratinocytes may upregulate

HBD2 and HBD3 under leprosy stimulation, contributing to

antibacterial activities (63). Wound-resident mesenchymal

stromal cells can be directly reprogrammed into keratin-forming

cells, offering a promising approach for treating skin damage in

leprosy (64). However, rigorous studies and clinical trials are

necessary to ensure safety and efficacy. Additionally, the

versatility of keratinocytes, which can be reprogrammed into

various cell types, highlights their potential in regenerative

medicine. For instance, hair follicle stem cells (HFSCs) are

keratin-forming cells in a relatively undifferentiated state. Studies

have shown that transplantation of HFSCs between severed tibial

nerve fragments promotes the recovery of walking ability and

axonal growth in mice by forming chevron cells (65). Further

exploration and analysis are crucial for realizing the clinical

benefits of keratinocyte-based therapies.

3.2.3 Macrophage
The cells were crucial in mediating the interactions between the

host and M. leprae, with M1 and M2 types being the predominant

subtypes (66). Stimulation of endothelial cells by IFN-g or certain
drugs can trigger the differentiation of monocytes into M1

macrophages through the Jagged-1 (JAG1)-dependent

mechanism. In turn, it promotes the expression of TNF and IL-1,

IL-6 and IL-12, leading to enhanced antimicrobial capabilities, pro-

inflammatory responses, and antigen presentation (67). M2

differentiates from unstimulated endothelial cells activated by IL-

4/IL-13 and exerts anti-inflammatory, fibrotic, and tissue repair

effects (68–70). In TT patients, granuloma formation is dominated

by M1, whereas in LL leprosy patients, M2 is predominant. Sousa
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et al. found that monocytes differentiate to function as M4 under

the regulation of CXCL4, and the number of M4 macrophages is

significantly higher in LL than in TT. In contrast, the special

macrophage may be less effective in controlling M.leprae

replication. In addition, IL-6, TNF-a, MRP8, MMP7 and CD68

are elevated due to M4 in TT type patients (71). Despite

macrophages were known to be the primary cells involved in the

host immune response to infection, the behaviour of the new

subtype and its potential impact on the development of an in situ

immune response remains unknown (72).

There are currently several bactericidal pathways in which

macrophages are involved (73). To begin with, autophagy and

phagocytosis are critical mechanisms for killing bacteria (74).

IFN-g induces the cytokine levels are higher in TT patients

compared to LL (75). In human monocytes, the phagocytosis of

M.leprae is mediated by complement receptors CR3 (76).

Interaction of PGL-I with CR3 promotes bacterial invasion of

macrophages (67). Second, the vitamin D-dependent bactericidal

pathway also involves macrophage participation. Studies have

shown that decreased gene expression of the Vitamin D Receptor

gene (VDR) and Cathelicidin Antimicrobial Peptide (CAMP) gene

impacts serum levels of vitamin D, cytokines, and the antimicrobial

peptide Cathelicidin, thereby affecting immune pathways (77). It

was reported that VDR and CAMP gene expression maintains the

inflammatory response against M. leprae infection in MB and PB,

even six months after MDT. Consequently, it is advisable to initiate

vitamin D supplementation for leprosy patients as a transcription

factor to enhance the expression of the VDR and CAMP genes (78).

The study showed that in LL patients, Has-mir-21 is a mammalian

micro-RNA encoded by the MIR21 gene that downregulates Toll-

like receptor 2/1 heterodimer (TLR2/1) and increases IL-10 to

inhibit the expression of vitamin D-dependent antimicrobial

peptide (Cathelicidin) (79). At last, the iNOS-induced NO

bactericidal path has gained significant attention (80). De Sousa

demonstrates a positive correlation between iNOS level and cell

factors like CD68, IL-22, and STAT3. RR patients show higher

iNOS expression levels than patients without reaction (81).

Zebrafish experiments also showed that PGL-1 induces iNOS

expression, which may disrupt mitochondria, leading to

demyelination, which kill leprosy bacilli and causes nerve damage

(82). In addition, the mRNA and protein encoded by the S100A12

gene are induced by TLR2/1 and IFN-g, which could directly kills

bacteria. Bacteria will improve bacterial survival by up-regulating

CD163 and TfR1 expression, increasing iron storage and down-

regulating transporter proteins (83).

An essential concern during M. leprae infection is lipid

homeostasis. There is evidence that M. leprae can induce the

formation of lipid droplets (LDs) in infected macrophages, and

cholesterol (Cho) is one of the host lipid molecules that accumulate

in macrophages (84). Therefore, inhibition of LD formation in

infected macrophages reduces bacterial survival. It was shown that

M. leprae inhibits lipid degradation by suppressing hormone-

sensitive lipase (HSL) expression, thereby contributing to lipid

accumulation in infected macrophages (85).Clofazimine exerts its

bactericidal activity on the basis of a reduction in LDL in

macrophages (86). Notably, disrupting Cho metabolism by
Frontiers in Immunology 06
inhibiting Cho synthesis or depleting exogenous Cho with statins

significantly reduced intracellular bacterial survival (87). These

findings emphasise the importance of metabolic interactions

between the host and the bacteria and provide a basis for

identifying new pharmacological targets. These targets could

control Mycobacterium infections by controlling vital metabolic

pathways influencing bacterial survival.

3.2.4 Schwann cells
SCs were affected by infected macrophages, which secrete TNF

and its ligands or cause damage to SCs through pro-inflammatory

cytokines. M.leprae binds to the alpha-2 chain of laminin-2 (LN-2)

in the G domain of SCs’ basal layer through the alpha-dystroglycan

(DG) protein, a process mediated by surface molecules on the cell

membrane (88). The interaction activates the phosphoinositide 3-

kinase (PI3K) signalling pathway, leading to the internalization of

bacteria into SCs (89). Research indicates that internalization is

primarily due to PGL-1 activating the Stimulator Interferon Genes

(STING) cytosolic sensing pathway, recruiting infected bacteria-

carrying CCR2+ monocytes to the infection site. That is why SCs

exhibit a foamy phenotype after infection (82). Thus, disrupting the

PGL pathway may become an essential strategy for leprosy

prevention. Upon invasion of the host, M.leprae accumulates in

neuroepidermal blood vessels and lymphatics and reaches

neuroendothelial cells via the vascular route to infect Schwann

cells (SCs). While the host expresses pro-inflammatory cytokines to

destroy pathogens, T cells kill SCs in vivo and cause a demyelination

response and inflammation (90). Studies have shown that SCs can

be reprogrammed to become progenitor/stem cell-like cells (pSLC)

and will promote infection into other tissues (e.g., muscle), which

may also be the cause of deformities in patients (91). Inside SCs,

bacteria promote their proliferation by upregulating glucose uptake

and lipid synthesis while downregulating oxidative stress, apoptosis,

and autophagy, similar to macrophages. Infected cells induce

abnormal metabolism in SCs, leading to the accumulation of LDs.

LDs are formed by the interference of CD206 and peroxisome

proliferator-activated receptor-gamma (PPAR-g) activated by

peroxisome proliferator-activated receptor (PPAR) agonists,

which also induces demyelination and neuroinflammatory

processes (92). In addition, the presence of M. leprae in SCs

seems to enhance the oxidative phases of cellular reducing power

sources, including malic enzyme and the pentose phosphate

pathway, through an increase in glucose uptake. Concurrently, it

disrupts host metabolic processes by suppressing mitochondrial

activity and significantly diminishing lactate production in infected

cells (93). This finding provides a new perspective for future host-

targeted therapeutic strategies against leprosy.

3.2.5 Neutrophils
The role of neutrophils in leprosy has been overshadowed by

numerous studies that predominantly focus on macrophages/

Schwann cells in response to M. leprae. The cells could be

considered the biomarker for ENL and often exhibit intense cell

infiltration. It has been reported that ENL lesions exhibit a notable

neutrophilic infiltrate predominantly situated within the deep layers

of the dermis and subcutaneous tissue, superimposed on a
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background of chronic MB type. Therefore, neutrophils can be

considered to some extent as markers of ENL (94, 95). However,

little is known about the direct role of neutrophils in leprosy/ENL.

The cells are crucial in host defence against bacteria and promote

inflammation, but they are not automatically activated in TT/BL/

ENL patients (96). Compared to BL/LL patients, neutrophil

apoptosis is higher during the ENL (49).CD64 is expressed in

patients’ neutrophil cell surface, while not in healthy individuals

or non-patients. Schmitz et al. found that the severity of ENL is

closely correlated with CD64 expression (97). After thalidomide

treatment, CD64 expression is downregulated in neutrophils and

ENL. Studies suggest that neutrophil extracellular traps (NETs) are

a major source of endogenous DNA, consisting of DNA scaffolds

decorated with various proteins. Excessive NETs can trigger the

activation and amplification of immune-inflammatory pathways,

which may be the primary pathogenic mechanism of ENL (98). In

conclusion, in-depth research is needed before neutrophils can be

used as a valid prognostic marker or target for ENL. In addition, we

can focus on designing novel therapeutic agents, especially targeting

neutrophil migration and mobilisation, to achieve precise

modulation of the inflammatory process while avoiding triggering

full-blown immunosuppression. This line of research is expected to

provide new strategies to improve patient symptoms and optimise

treatment outcomes.
3.3 The role of adaptive immune cells in
the pathogenesis of leprosy

3.3.1 Helper T cells
T helper cells are polarized into two main types (Th1/Th2).

Activation of Th1 induces a shift of macrophages to an M1-polar

state, and production of IFN-g/IL-2/IL-15/TNF enhances

macrophage activity in patients, predominantly TT patients. In

contrast, when IL-4- and IL-10-producing Th2 are activated, they

may inhibit the microbicidal function of macrophages, with patients

predominantly of the LL type. It has been reported that these

subsets are considered the contributors to delayed-type

hypersensitivity (DTH) reactions (99). The majority of PBMCs

after stimulation with M. leprae antigens showed a non-specific Th0

response, but there were also lepromatous form patients responses

that showed a Th2 response, whereas tuberculoid form patients

showed a Th1 cytokine response. In addition, Patients with LL have

been reported to have a relative lack of CD4+ T cells in their lesions

compared to TT, but a large number of CD8 T cells and

macrophages are heavily infected with mycobacteria with a

characteristic foamy appearance. Interestingly, in the studies from

India and Brazil, Th1/Th2 cells coexist, suggesting potential

bidirectional conversion between Th1/Th2 (100). Furthermore,

the Notch1 signalling pathway has been found to promote

lymphocyte proliferation, leading to Th cell activation and

differentiation (101).

Apart from the classical Th1/Th2 subsets, other Th cell

subgroups have been discovered. Compared to LL patients, TT

patients exhibit higher levels of IL-9 secreted by Th9 cells (102).
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Studies have shown that IL-9 induces macrophage bactericidal

activity in TT-type patients through collaborative responses with

IFN-g, IL-6, and IL-12. Conversely, in LL-type patients, IL-9 inhibits

the production of IL-4, IFN-g, and TNF-a (103). Th17 cells secrete

cytokines that promote tissue inflammation, macrophage activation,

neutrophil recruitment, and enhance Th1 response (104). Th17 cells

produce signature cytokine IL-17 and transcription factors RORC

and STAT3, but only tuberculoid patients have shown

phosphorylated STAT3 (104). STAT3 was essential in Th cell

differentiation and induction of immune memory. Th22 cells are

also involved in leprosy pathogenesis, mainly secreting the fibroblast

growth factor (FGF) family cytokine and cytokines such as IL-22/26.

It has been reported that lepromatous form patients exhibit increased

expression of FGF b, IL-13, and IL-22, while tuberculoid form

patients show a more pronounced increase in TNF-a (105). Th22

has chemokine receptors such as CCR4, CCR6 and CCR10 that

undergo differentiation in the presence of TNF-aand IL-6. In the

lepromatous form of the disease, the Th22 response is crucial in situ,

as FGF b can modulate various cellular functions affecting wound

migration, healing, cell division, and angiogenesis process Etc. (101).

In addition, IL-22 induces the production of STAT3 and iNOS to kill

bacilli directly, but this is detrimental to the development of a

macrophage response.

3.3.2 Regulatory T cell
The Tregs are essential for maintaining host immune tolerance,

limiting autoimmunity, and preventing inflammatory diseases. It is

reported that Tregs can be categorized into two main subgroups:

natural (CD4+ CD25+) and inducible Treg cells (106). It has been

found that Treg can achieve its inhibitory effects through cytokines,

with cytokines such as IL-10, IL-35, and TGF-b being of interest.

Studies have shown a significant increase in the frequency of CD4+

CD25+ Tregs producing IL-35 in leprosy patients (107). The

infiltration of specific cell subsets in the pathological sites is a

crucial determinant of local immune response and influences the

clinical presentation of the disease. Specific subgroups, including

FoxP3+ Tregs, can modulate the immune response at leprosy

pathological sites. Kumar et al. found that high levels of TGF-b
induce the expression of FoxP3, thereby achieving immune

regulation in peripheral blood (106). Analysis of IL-10-producing

FoxP3+ Tregs in different polar forms and healthy controls revealed

that the number of Tregs in patients was twice that of healthy

contacts, and leprosy LL/BL patients also exhibited significantly

higher Treg numbers. However, TGF-b in FoxP3+ Tregs might

downregulate T cell responses, leading to antigen-specific

hypersensitivity associated with LL. Studies have suggested that

the quantity of Tregs is higher in RR patients’ PBMCs and skin

lesions compared to non-reactional patients (108, 109). In LL

patients, Th2/Treg polarisation appears vital for disease

progression, whereas Th1/Th17 cellular immunity is essential for

TT patients. Recent research suggests that levels of Tregs contribute

to Th17 immune unresponsiveness in lepromatous patients. In this

context, the ideal treatment for patients with LL appears to require

modulation of T lymphocyte subsets to expand Th17 lymphocytes

and control Treg cells, favouring the cellular immune response.
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Therefore, shifting the cellular immune response to Th1/Th17 may

lead to better outcomes in leprosy treatment (110).

3.3.3 NKT/B/gd T cells
There is limited research on these cells in leprosy. Evidence

suggests that B-cell-mediated humoral immunity plays a weaker

role in the pathogenesis, as leprosy bacilli have been detected in LL

patients. In patients with a high bacterial load, there have been

significant changes in the proportion of B-cell subsets (109). Studies

have shown that the number of B cells is higher in ENL patients

compared to non-reactional leprosy patients. Additionally, IL-10

and IL-35 expression levels are higher in Bregs, and the production

of IL-10 in B-cell subsets is also higher in PBMCs (111). gd T cells, a

subset of lymphocytes, constitute a small proportion of all types of T

cells. The number of gd T cells significantly increases in leprosy

granulomas, and they produce significant amounts of IL-17 and

IFN-g, which are crucial for leprosy reactions (112). Reports

indicate that gd T cells in RR/ENL patients are higher than in

general patients, and they have a particular inhibitory effect on

immune responses (113). NKT cells are a unique subset of mature T

cells known for their rapid production of immunoregulatory

cytokines upon activation. CD1d is an antigen-presenting

molecule of the CD1 family. Upon recognition of antigens

presented by CD1d, NKT cells quickly produce Th1/Th2

cytokines to facilitate bactericidal functions. CD1b limits the

recognition of lipoarabinomannan (LAM), a purified antigen of

M.leprae, thereby blocking T cell secretion of IFN-g (69). TT

patients exhibit more robust expression of the CD1 family

molecules compared to LL patients. Research suggests that

cytokines from NKT cells control the response of effector T cells

upon LAM activation, thereby influencing overall T cell

responses and clinical manifestations (114). In addition,

Cytokine immunomodulation of immunological processes by

Mycobacterium leprae is shown in Figure 2.
4 Leprosy is under precise regulation
by genetic factors

4.1 Discovery of genetic
predisposition genes

Evidence of the genetic susceptibility to leprosy first emerged

from descriptive studies, complex segregation analysis (CSA), and

twin studies related to heritability. Descriptive studies revealed

familial solid clustering of leprosy cases, while CSA identified

significant genetic effects controlling susceptibility and the mode

of inheritance in different genetic backgrounds. Twin studies in

leprosy showed higher concordance inozygotic twins than dizygotic

(6). Subsequently, family-based linkage studies and association

analyses were applied in leprosy research. Genome-wide linkage

studies identified certain chromosomal regions (e.g., 10p13, 6q25-

27) as candidate locations harbouring leprosy susceptibility genes

(115). In contrast, association analysis primarily evaluated whether
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polymorphisms in candidate genes were associated with leprosy. In

2009, China first integrated genome-wide association studies

(GWAS) with leprosy research, identifying numerous leprosy

susceptibility loci (116). However, SNP-level causal associations

may arise from linkage disequilibrium (LD) with adjacent alleles in

the studied candidate genes. Therefore, independent replication and

validation in different populations are important. Additionally,

candidate gene approaches can be linked with functional studies

to determine whether a gene is involved in the biological

mechanisms underlying disease onset. In summary, applying

these molecular strategies has identified many genes associated

with leprosy, as shown in Table 1.
4.2 Functionality study of susceptibility
genes in leprosy immune response

4.2.1 Protective defense
Loss-of-function (LoF) mutations in the FLG gene can lead to

filaggrin deficiency, severely impairing the skin’s protective

function. Liu Hong et al., through a whole-genome analysis of

protein-coding variations, discovered an association between the

functional loss mutation rs146466242 in FLG and leprosy

susceptibility in Chinese (120). The study also found that

individuals with post-traumatic injuries, such as tattoos or

injuries caused by glass bangles, are more susceptible to leprosy.

Another study identified an association between the SNP site

Q1790X in FLG and disease susceptibility (169). Filaggrin

deficiency can cause immune dysregulation, such as reduced IFN-

g expression in keratinocytes and increased CD11C expression in

LCs. However, these mechanisms still require animal models or

human skin tissue validation.

4.2.2 Bacteria identification
Innate immunity is activated by recognizing pathogen-associated

molecular patterns (PAMPs) and their corresponding receptors. At

this stage, genetic variations can either enhance or hinder the

recognition of mycobacteria, leading to varying levels of natural

resistance in the host. Studies have shown genetic associations

between several SNPs in TLR genes and leprosy susceptibility. For

instance, the rs5433095 (N248S) variant in the TLR1 gene has been

found to inhibit TLR1 signalling, contributing to disease protection,

while TLR2 mutations are mainly observed in TT-type patients.

However, the evidence regarding the association of SNP

polymorphisms in TLR4 with susceptibility requires further

investigation (170). NOD2 is also known for leprosy susceptibility

among the Chinese population. The gene recognizes leprosy cell wall

dipeptide (MDP), leading to the upregulation of IL-32 expression and

facilitating the differentiation of monocytes into CD1b+ DCs (171).

This particular pattern is more prevalent in TT patients compared to

LL patients (166). Additionally, the gene MRC1 is involved in

recognizing mannose residues on leprosy, and its susceptibility-

related SNP rs1926736 has been validated in studies conducted in

China, India, Vietnam, and Brazil (153, 154, 172). Nonetheless,

further research is necessary to elucidate its functional implications.
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4.2.3 Antigen processing and presentation
Human Leukocyte Antigen (HLA) plays a pivotal role in the

adaptive immune response and is essential for antigen presentation

to T cells. Enhancing disease diagnosis and treatment requires

pinpointing the most clinically significant HLA variants.

However, genetic diversity within and between populations poses

a challenge for HLA genomics to become a standard component of

health care. Improving the diagnosis of human diseases and

treatment options requires the identification of the HLA variants

that are most clinically relevant. However, genetic diversity within

and between populations poses a challenge to the realization of this

idea. The class I and II genes have already been demonstrated as the

leprosy susceptibility genes. It was found that the class I gene HLA-

A28 was notably linked to a heightened risk of leprosy among

Mexican Mestizos. Carriers of this SNP demonstrated 2.12 and 2.74

times greater likelihood of developing leprosy and lepromatous

subtypes (173). HLA-C12, HLA-B15, HLA-C05 was associated with

Brazilian patients (139, 174). HLA-A, HLA-C and HLA-Cw may

associated with the Indian population (140). It has been reported

that leprosy-associated class II HLA genes include HLA-DRB1 in

Vietnamese (143, 175), HLA-DQA1/HLA-DPB1 in Brazilian, HLA-

DQB1 in Mestizo (173), HLA-DRB1 in Argentinean (144), HLA-
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DRB1/HLA-DR-DQ in Chinese (116, 142, 176), and HLA-DQA1/

HLA-DRB1 in Indian (128). These susceptibility genes of HLA are

also associated with leprosy complications. Notably, screening of

HLA-B13:01-positive patients has shown that the discontinuation

of dapsone intake can significantly eliminate dapsone

hypersensitivity syndrome (DHS), and this result has also been

validated in Thai patients (175). The interaction between HLA-

B13:01 and T cell activation stands out as a crucial element in the

initiation of DHS. The identification of individuals at risk for DHS

becomes feasible through testing for the presence of HLA-B13:01

and TCR clones. In addition, the methods allow for a more precise

and effective screening process, enabling timely interventions and

personalized medical strategies for those susceptible to DHS (119).

Moreover, five amino acid variants in HLA-DRB1 are also closely

related to the DHS in Chinese patients. Recent research indicates

that the four amino acid polymorphisms in HLA-DRB1, HLA-B,

and HLA-A were recently identified as key factors in the association

of leprosy with HLA in Vietnamese cases. This discovery paves the

way for focused protein-HLA peptide binding studies and reduces

the interference of linkage disequilibrium (LD) with the

associations (175). A meta-analysis also showed that variants in

HLA-DRB1, DQA1, and HLA-C were associated with the Chinese
FIGURE 2

The secretion of cytokines during the immune response of leprosy infection. In this figure, dashed lines represent the primary secreted cytokines of
the immune cells. Solid lines with a arrow indicate the impact of these factors on specific cells, while a solid line ending with a vertical line denotes
an inhibitory effect.
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TABLE 1 The susceptibility genes of leprosy that have been replicated or functionally validated.

Chromosome
position

Gene Name Population

1q31.3 CFH Complement factor H Chinese3 (117)

1p22.3 BCL10 B cell lymphoma 10 Chinese3 (118)/Brazilian3 (119)

1p31.3 IL23R Interleukin 23 receptor Chinese1,2 (120, 121)/Brazilian3 (122)/Indian3 (123)

1q21.3 FLG Filaggrin Chinese2 (120)

1q32.1 IL-10 Interleukin-10 Brazilian3 (124, 125)/Indian (126)3

2q12.1 IL18RAP/IL18R1
Interleukin 18 receptor accessory protein/interleukin 18

receptor 1
Chinese3 (127)/Vietnam (119)

3p21.31 NCKIPSD NCK interacting protein with SH3 domain Chinese2 (120)

4p14 TLR1 Toll-like receptor 1 India1 (128)/Brazilian3 (129–131)/Colombian3 (132)

4q31.3 TLR2 Toll-like receptor 2 Ethiopian3 (133)/Brazilian3 (85, 130)/Colombian3 (132)

5p14.3 CDH18 Cadherin-18 Chinese3 (134)

5q33.3 IL-12B Interleukin 12B Chinese1 (7)/Vietnam1 (135)/Indian3 (123, 136)

6p21.32 HLA-DR-DQ MHC, class-II. HLA
Chinese1 (116)/Inida4 (128)/Vietnam3 (137)/Malawi,

Mali1 (138)

6p21.33 HLA-C Human Leukocyte Antigen-C Brazilian3 (139)/Inida4 (140, 141)/Vietnam4 (141)

6p22.1 HLA-A Major histocompatibility complex, class I, A India3 (140)

6p21.32 HLA-DRB1
Major histocompatibility complex,

class II, DR beta 1
India3 (128)/Chinese1 (142)/Brazilian,
Vietnamese3 (143)/Argentina3 (144)

6p21.33 LTA Lymphotoxin alpha Vietnam,Brazilian,Indian5 (145)

6p21.33 TNFA Tumor Necrosis Factor Alpha Brazilian3 (146)

6q24.3 RAB32 RAB32, member RAS oncogene family Chinese1 (120, 121)

8q21.3 RIPK2 Receptor-interacting serine/threonine kinase 2 Chinese1 (116)/Vietnam3 (137)

9q32-q33.1
TNFSF15/
TNFSF8

Tumor necrosis factor (Ligand) Superfamily, Member
15, 8

Chinese1 (116)/Brazilian,Vietnamese3 (147)

9q34.3 CARD9 Caspase recruitment domain family member 9 Chinese2 (120)

9q34.3 FCN2 Ficolin-2 Chinese3 (148)/Brazilian3 (149, 150)

6q26 PARK2 Parkin RBR E3 Ubiquitin Protein Ligase Vietnam,Brazilian5 (151)/Indian3 (152)

10p12.33 MRC1 Mannose receptor C-type 1 Chinese3 (153)/Brazilian,Vietnam3 (154)

10q21.1 MBL2 Manner-Binding Lectin, MBL 2 Brizilian3 (155, 156)/Chinese3 (153)/Colombia3 (157)

10q22.1 SLC29A3 Solute carrier family 29 member 3 Chinese2 (120)/Malawi, Mali1 (138)

12q12 LRRK2 Leucine rich repeat kinase 2/Dardarin Chinese1 (116)/Inida3 (158)/Vietnam3 (159)

12q13.11 VDR Vitamin D Receptor Brizilian (78, 160)/India3 (161)

12q15 IFNG Interferon-gamma Chinese1 (153)/Brazil3 (162)

13q14.11
LACC1

—CCDC122
Laccase domain containing—coiled-coil domain

containing 122
Chinese1 (116, 163)/Brazilian, Vietnam3 (164)/

Malawi, Mali (138)

14q23.2 HIF1A Hypoxia-Inducible Factor 1 Alpha Chinese2 (134, 165)

16p12.1-p11.2 IL-27 Interleukin 27 Chinese1 (120)

16q12.1 NOD2 Nucleotide-binding oligomerization domain containing 2 Chinese1 (116)/Brazilian3 (166)/Vietnam3 (137)

19p13.2 TYK2 Tyrosine kinase 2 Chinese2 (120)

19q13.4 KIR(2DS1-3) Killer immunoglobulin-like receptor Brazil3 (167, 168)
F
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The way in which susceptibility genes were first discovered: 1: GWAS, Genome-wide association study; 2: GWAS (protein-coding variants); 3. Candidate gene analysis; 4. Association scan; 5.
Genome-wide linkage analysis.
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population (176). In addition, HLA-G, MICA, or TAP1 have also

been suggested to be possibly associated with antigen presentation,

but their roles need to be further investigated (177–179).

4.2.4 Autophagy and phagocytosis
Several susceptibility genes related to autophagy and

phagocytosis have been identified, including RAB32, LRRK2, and

PARK2. In addition to their association with leprosy, RAB32

susceptibility has also been linked to PD and CD. RAB32

regulates autophagy, phagocytosis, and mitochondrial functions

in PD, suggesting a similar role in leprosy. LRRK2 was first

discovered in a GWAS of the Chinese population and

subsequently replicated in Indian, Brazilian, and Vietnamese

populations (158, 180). Cellular experiments confirmed the

contribution of NOD2 in the immune response in leprosy.

Mutations in LRRK2 and NOD2 genes result in abnormal

interactions affecting host antimicrobial responses, inhibiting

NOD2 signal transduction and causing ROS accumulation.

Interestingly, PD patients with overexpressed constitutively active

Rab32 may exhibit decreased mitochondrial LRRK2 content. The

SNP in LRRK2 is also closely related to RR. It has been hypothesised

that the R1628P-LRRK2 kinase mutation may prevent RR by

reducing apoptosis and releasing anti-inflammatory mediators,

thereby reducing apoptotic debris production (181, 182).

Therefore, drug development against LRRK2 as a therapeutic

target is potentially possible. The association of the PARK2 gene

with leprosy susceptibility was discovered through positional

cloning and is linked to polymorphisms in the upstream

regulatory region of PACRG (180). Loss-of-function mutations in

PARK2 impair the interaction between the protein and E2 ligase

and its protein substrates. However, this association has yet to be

found in the Chinese population. Furthermore, the research group

has identified SLC29A3 as a susceptibility gene for leprosy, which

encodes equilibrative nucleoside transporter 3 (ENT3). Studies have

shown that the lack of ENT3 leads to enlargement and disruption of

lysosomal compartments, accumulating residual mitochondria,

increased intracellular ROS, and DNA damage in T cells (138).

The IRGM gene, which regulates autophagy, has also been

confirmed to be associated with leprosy susceptibility; it was

demonstrated that only rs13361189 TC and CC genotypes are

significantly associated with leprosy (75).

4.2.5 Cytotoxic genes
Several susceptibility genes related to microbial killing have

been identified. As previously mentioned, the VDR gene mediates

the transcription of various antimicrobial peptides to achieve

bactericidal effects. Functional SNPs in the gene can influence the

balance of the vitamin D pathway, including FokI (rs2228570), TaqI

(rs731236), ApaI (rs7975232), and Bsm I (rs1544410) (183). The

amount of NO synthesized by macrophages depends on L-arginine

availability, which is closely related to enhanced mRNA expression

of SLC7A2, the gene encoding the transport activation of L-

arginine. Recent research suggests that the OPA1 gene may also

be involved in the host’s mitochondrial antibacterial mechanisms.

Two SNPs (rs9838374 and rs9838374) of the gene have been linked
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to leprosy susceptibility in China (116). The polymorphism of

LACC1 (C13orf31) influences the production of mitochondria

and NADPH oxidase-dependent ROS in macrophages, affecting

bactericidal activity and inflammasome activation (116).

Additionally, genes encoding bactericidal proteins, such as

cathepsin B (CTSB), beta-defensin 1 (DEFB1), and interferon-

gamma (IFNG), have also been confirmed. Furthermore, The

activation of KIR (KIR2DS1, 2DS2, and 3DS1) and their

associations with HLA ligands are related to leprosy in the

Brazilian population (184). In summary, further research is still

required on these genes.

4.2.6 Functional genes in the
complement system

The complement system plays a crucial role in the host’s innate

immune processes, as it activates and regulates protein hydrolysis

cascades and pro-inflammatory responses. Several genes involved in

the complement system have been confirmed to be associated with

leprosy susceptibility. These genes include Mannose-Binding Lectin

(MBL), Ficolins (FCN), Complement Receptor 1 (CR1/CD35), and

Complement Factor H (CFH) (149). MBL2 binds with bacteria,

enhancing the phagocytosis of M.leprae by macrophages in vitro.

Research has shown that polymorphisms in the exons and promoter

region of the MBL2 gene confer susceptibility to leprosy in Brazil

(149, 185). Another GWAS study has confirmed the association of

complement genes FCN2, MBL2, and CFH with leprosy

susceptibility (148). FCN2 is a soluble pattern recognition

molecule that can bind to different pathogen-associated PAMPs,

triggering phagocytosis and activating the complement pathway

through the MBL pathway (186). Haplotypes and genotypes with

MBL deficiencies can prevent the progression of leprosy to

lepromatous leprosy (187). Based on this, relevant therapeutic

and prevention strategies may include enhancing the activity of

FCN2 to improve the recognition and clearance of leprosy

pathogens. Additionally, interventions addressing MBL

deficiencies could be explored to prevent leprosy from advancing

to a more severe form. Moreover, Complement Receptor 1 (CR1)

can mediate the entry of M. leprae into phagocytic cells, and its

association with leprosy susceptibility has been confirmed in

populations from Malawi and Brazil. However, unfortunately, this

association has not been found in the Chinese population.
4.3 Genes associated with cytokines

Cytokines have been the focus of genetic and immunological

research. The association of IL-10 (rs1800871) with leprosy has

been firmly established. Studies in Brazil have revealed significant

associations between leprosy susceptibility and the SNPs rs1800872/

rs1800896 (188). The widely studied TNF variant rs1800629 has

been validated in different populations. Interestingly, a meta-

analysis showed an association between rs1800629 and leprosy in

Latin American populations but not in Asian populations. The

understanding of Lymphotoxin-alpha (LTA-a) remains limited.

Initial studies using linkage disequilibrium mapping identified a
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significant association between the LTA+80 A variant

polymorphism and leprosy (145). A systematic scan of the BAT1-

LTA-TNF-BTNL2 region also found a connection between LTA/

TNF and leprosy, with results verified in populations from India,

Vietnam, and Brazil (189). These two cytokines and IFNG are

associated with leprosy granuloma formation. IFNG, responsible

for secreting interferon-gamma (IFN-g), activates innate immune

cells. The rs2430561 was linked to elevated serum IFN-g levels in
healthy individuals and TT leprosy patients. Nevertheless, gene

expression profiling of leprosy skin lesions has revealed that IL-27

inhibits IFN-g activity, consequently dampening the antimicrobial

response of the host (190). Therefore, blocking IL-27 could inhibit

the immunosuppressive pathway induced by IFN-b while

preserving its immunostimulatory function. Notably, focusing on

IL-27 as a therapeutic target could be utilized as a complementary

approach alongside conventional antibiotic therapy.
4.4 Genes associated with
leprosy reactions

Susceptibility genes can control the clinical manifestations of

patients and are strongly associated with the development of leprosy

reactions. One study examined the correlation between the

TNFSF15/TNFSF8 locus and RR in ENL and found that only

TNFSF8 was genetically correlated with RR. Among them,

TNFSF15 mediates the transition from Th1 to Th2 phenotype. In

the Vietnamese population, the TNFSF15/TNFSF8 variants

rs6478108 and rs7863183 were associated with RR, which was not

observed in Brazilian patients. After excluding age, the study found

that rs3181348 was also a risk factor for RR (191). Thus, TNFSF8

may mediate excessive inflammation, and transcript levels are age-

related. rs6807915 near SYN2 was identified as a susceptibility locus

for leprosy by Liu et al. (192). It was hypothesized that the

autophosphorylated proteins encoded by SYN2 might be a risk

factor for nerve damage. In this study, BBS9, MED20, and CTSB

were also identified as leprosy susceptibility genes. However, their

role in leprosy remains unknown. In addition, several genes

associated with susceptibility to leprosy reactions have been

identified. For example, HLA genes (e.g., HLA-B15) are

associated with RR, and aldo-keto reductase family 1 member

B10 (AKR1B10) is also expressed in patients with ENL and may

be a potential marker or target of the leprosy response. Recent

studies suggest that the drugs that inhibit AKR1B10 may effectively

prevent the onset of ENL and reduce the intensity and frequency.

This suggests that the development of anti-AKR1B10 drugs could

help mitigate the side effects of traditional drugs such as

thalidomide (Glaucoma, diabetes, obesity, etc.) (193).

Polymorphisms in IL-8 and IL-17A were associated with RR

responses in a southern Brazilian population (194). In Brazil, the

274 C/T polymorphism of the NRAMP1 gene may be helpful in

determining susceptibility to type II reactions in leprosy patients. At

the same time, it has also been suggested that the gene may be

associated with drug resistance. Furthermore, elevated levels of IL-6

during ENL have been documented (109, 195, 196). In summary,
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limited by the specificity of M.lepare, more studies on the genetic

mechanisms of the leprosy response are needed.

It is noteworthing that many genes expressed in cells and tissues

from leprosy lesions have been identified (197–199). Their role in

disease susceptibility and progression remains largely unknown.

Many of these genes are associated with the regulation of the

immune system in leprosy. On the other hand, many of these

genes are also differentially expressed in numerous other diseases,

particularly autoimmune and neoplastic diseases. Some authors

have warned that the progression of leprosy presents strategies

similar to those observed in neoplasms. This is a practically

unexplored field in leprosy and perhaps many drugs developed to

combat these deregulated genes in neoplasms could also be used in

leprosy. As an example, AKR1B10 is a gene overexpressed in

different neoplasms, with special importance in pancreatic duct

carcinoma, but also expressed in leprosy reactions.
4.5 Susceptibility genes associated with
cellular stress and inflammation

Specific susceptibility genes also play a role in host oxidative

stress, lipid metabolism, and ubiquitin-mediated processes have

been observed. Studies have found that the oxidative stress genes

HIF1A and SOD2 are associated with susceptibility. The protein

encoded by SOD2 regulates reactive oxygen species (ROS) levels to

maintain oxidative balance and alleviate damage (200). The

polymorphic site rs295340 has been confirmed as a susceptibility

locus in Brazilian patients. HIF1A, which encodes hypoxia-

inducible factor 1-alpha (HIF1-a) protein, is essential in oxygen

homeostasis in cellular environments. The variant rs142179458 of

HIF1A is associated with leprosy susceptibility in the Chinese

population. Recently, the mitochondrial ribosomal protein

MRPS5 gene (rs200730619) has also been found to be associated

with leprosy susceptibility (165). As previously mentioned, the

accumulation of lipids within macrophages may favour bacterial

survival. Studies have identified APOE and ALDH2 genes related to

lipid formation and susceptibility genes for leprosy. The locus

rs405509/rs7412 on ApoE and rs671 on ALDH2 show higher

associations in the Chinese population (201).
5 Discussion

In recent years, conducting large-scale macroscopic studies of

leprosy has become extremely difficult. Priority should be directed

to genetics and immunology studies in the future. The

comprehensive studies not only aid in pinpointing potential

therapeutic targets but also facilitate the development of more

precise strategies to enable early diagnosis and prevention.

Based on the current knowledge, the innate immune plays a

more critical role in initiating neurological damage and influences

the initial manifestations of leprosy. However, this hypothesis needs

to be further tested, especially among HHCs. The potential of innate

immune cells as therapeutic targets is widely recognised but also
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needs to be further explored by new technologies, such as single-cell

sequencing and spatial transcriptomes. Macrophages in tissues have

been extensively studied, but the phenotype, functional

characteristics, and interactions with the cutaneous sensory

nervous system of macrophages in the skin still need to be

clarified. Notably, M. leprae primarily exploits vulnerabilities in

the immune response to achieve an escape process, especially the

macrophage and VDR pathways. Proteins or genes in these

pathways are the most promising targets for immunoprophylaxis

and drug development. Furthermore, emerging evidence suggests

the role of epigenetic modifications in M. leprae-infected host cells

as potential contributors to disease susceptibility. Evaluating the

epigenetic landscape of SCs and macrophages in response to M.

leprae allows us to establish connections between genetic variation,

genomics, and the environment. For instance, alterations in DNA

methylation can either bolster the host’s protective immunity to

eliminate the pathogen or assist the pathogen in evading the host’s

immune response and persisting within the host (202). Regarding

adaptive immunity, Treg, NKT, and Th17 cells will be vital in

achieving disease control. Other adaptive immune cell subsets, such

as B, Th9, and gd T cells, have also been identified in patients, but

the exact role has not been determined to date. Further

investigations could therefore be centred around the areas

mentioned above that have not yet been fully explored. In

summary, DCs, Keratinocytes, Macrophages, and SCs can be

parasitized by M leprae and have their functions modified by the

M. leprae. In BL and LL patients, parasitism of these cells is

common. Parasitism by M. leprae in lymphocytes and neutrophils

has not been observed. Furthermore, adipocytes, fibroblasts,

smooth muscle cells, and endothelium are also parasitized by

M. leprae.

There is an urgent need to develop reliable and accurate

diagnostic tools for all leprosy patients. More cost-effective,

reliable and rapid diagnostic tests should be prioritized. However,

achieving large-scale genetic testing for leprosy still needs to be

improved. There are several reasons for this. Firstly, although

previous GWAS studies have identified many genetic variants

associated with leprosy, their impact on disease risk tends to be

minor, explaining only a tiny fraction of the phenotypic variation.

Moreover, there needs to be more investigation into genomic

variations beyond SNP exploration in leprosy. Structural variants,

such as extended deletions or duplications, could contribute to

leprosy susceptibility through gene dosage effects. Future studies

with large samples are crucial to improve the statistical power of

variant association analyses. Secondly, there may be heterogeneity

in genetic effects across racial populations. For example, genetic

variants in SNPs in the PARK2 and PACRG genes were associated

with patients from Vietnam and Brazil. However, these associations

were not observed in Chinese and Indian patients. This may be due

to differences in polymorphisms or genes contributing to disease

risk in different ethnic groups, variability in epistatic interactions or

permeability, and cascading imbalances in specific populations.

Thirdly, population stratification between cases and controls was

not considered. At the same time, extensive characterization of

cases will be needed to reduce phenotypic heterogeneity. Factors

such as polarity type and gender may improve the success of rare
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variant analyses. For instance, the higher incidence of male patients

than females suggests a broader influence of behavioural and social

factors. However, the studies of genetic variants’ impact on

chromosomes in this context remain relatively unexplored. Lastly,

there may be differences in the categorization of leprosy cases, and

these factors need to be carefully considered in study design

and analyses.

In summary, prevention and early diagnosis are the most

effective strategies for eliminating leprosy. Investing in vaccine

research (LepVax/MiP. et al.) and strengthening coordination

between tuberculosis and leprosy are essential. In addition,

developing a leprosy-specific vaccine that promotes a durable T-

cell response is also a research goal. However, the BCG vaccine

remains the sole available option. The inability to culture M. leprae

in vitro hinders the exploration process, including studying drug

resistance mechanisms. Fortunately, rifapentine based on SDR-PEP

has a very high protective efficacy as a chemoprophylactic agent and

should be further promoted in leprosy-endemic countries.

Moreover, current diagnosis primarily relies on the recognition of

signs and symptoms, and delays in diagnosis are common,

increasing the risk of severe disability. Combining humoral

markers for capturing MB patients and cellular markers for

detecting PB patients has significantly improved detection rates.

Therefore, the ongoing focus on identifying potential markers

remains crucial for advancing early diagnosis efforts.
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