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Introduction: Lupus nephritis (LN) is a severe manifestation of systemic lupus

erythematosus (SLE). This study aimed to identify LN specific-genes and potential

therapeutic targets.

Methods: We performed high-throughput transcriptome sequencing on

peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy

individuals and SLE patients without LN were used as controls. To validate the

sequencing results, qRT-PCR was performed for 5 upregulated and 5

downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug

IBI379 on patient plasma cells and B cells was evaluated by flow cytometry.

Results: Our analysis identified 1493 and 205 differential genes in the LN group

compared to the control and SLE without LN groups respectively, with 70 genes

common to both sets, marking them as LN-specific. These LN-specific genes

were significantly enriched in the ‘regulation of biological quality’ GO term and

the cell cycle pathway. Notably, several genes including TNFRSF17 were

significantly overexpressed in the kidneys of both LN patients and NZB/W

mice. TNFRSF17 levels correlated positively with urinary protein levels, and

negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-

targeting drug IBI379 effectively induced apoptosis in patient plasma cells

without significantly affecting B cells.

Discussion: Our findings suggest that TNFRSF17 could serve as a potential

therapeutic target for LN. Moreover, IBI379 is presented as a promising

treatment option for LN.
KEYWORDS

lupus nephritis, high-throughput sequencing analysis, microarray analysis,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1303611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1303611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1303611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1303611/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1303611/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1303611&domain=pdf&date_stamp=2024-02-19
mailto:xiaosongwang@jlu.edu.cn
https://doi.org/10.3389/fimmu.2024.1303611
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1303611
https://www.frontiersin.org/journals/immunology


Zou et al. 10.3389/fimmu.2024.1303611
1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that

manifests as a spectrum of clinical presentations due to defects at

various points in the immune cascade (1–3). Approximately 50% of

SLE patients experience kidney involvement, with lupus nephritis (LN)

being a significant risk factor for morbidity and mortality. Despite the

availability of anti-inflammatory and immunosuppressive treatments,

many patients still develop chronic kidney disease (CKD) or end-stage

renal disease (ESRD) (4, 5). Despite the rapid pace of new drug

discovery, most clinical trials of well-designed treatments failed in

LN due to poor efficacy or significant side effects. Consequently, there

exists an imperative necessity to comprehensively comprehend the

intricate immune processes that underlie LN.

One of the important advances in the treatment of LN in recent

years is the use of B-cell-targeted therapy. B-cell activating factor

(BAFF) and its homologue, a proliferation-inducing ligand (APRIL),

are TNF-like cytokines that support the survival and differentiation of

B cells at different stages of development. The BAFF family receptors

(BAFFR), transmembrane activator calcium modulator and

cyclophilin ligand interactor (TACI), and TNF receptor

superfamily member 17 (TNFRSF17), are three surface receptors

for BAFF and APRIL. The BAFF inhibitor, belimumab, is the first

biologic drug approved for SLE treatment (6–8), which improves

renal outcomes in active LN patients when used in combination with

standard therapy in a randomized controlled trial (RCT) study (9).

However, its efficacy was slow andmild, which is inadequate for acute

severe LN patients. Telitacicept, approved in China for active SLE

treatment, lacks sufficient evidence of action through APRIL, with

overexpression in mice showing mild immune abnormalities and

insufficient autoimmune disease features (10); its use in LN treatment

is linked with immunosuppression and increased infection risk (11).

Consequently, there is an urgent requirement for a treatment that is

both more efficacious and safer for LN.

Omic techniques, such as transcriptomic techniques, have become

essential tools for exploring the molecular processes involved in the

development of diverse diseases from an academic perspective (12).

Transcriptome studies were employed to identify key pathogenic

drivers and characterize the genetic pathways involved in LN (13,

14). However, the identification of effective therapeutic targets for LN

remains elusive. In this study, we hypothesized that the mRNA

expression profile of PBMCs in LN patients differs from that of SLE

without LN patients and healthy controls. To explore the unique

pathogenic genes associated with LN, we performed transcriptomic

sequencing on PBMCs from LN patients, SLE without LN patients, and

healthy controls. By comparing the microarray results of LN patient

kidneys, we identified key pathogenic genes for further investigation.
2 Methods

2.1 Participants

All samples from patients were obtained from the Department

of Rheumatology of the First Hospital of Jilin University

(Changchun, China). The SLE patients included in this study met
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at least four of the eleven criteria for SLE as revised by the American

College of Rheumatology (ACR) (15), and LN was defined as 24-

hour urinary protein of more than 0.5g. Patients with a current or

recent infection were excluded from the study. The severity of the

disease was assessed using the SLE disease activity index 2000

(SLEDAI-2K) (16). Healthy controls were recruited as volunteers

with no history of autoimmune disease or immunosuppressive

therapy, and were frequency-matched with the patients for age

and sex. All participants were of Han Chinese ethnicity. A total of

49 LN patients, 46 SLE patients without LN, and 38 healthy controls

were included in the study. Ten samples from each group were used

for sequencing, while the remaining samples were used for qRT-

PCR validation and cell culture. Peripheral blood mononuclear cells

(PBMCs) were isolated from whole blood using density gradient

centrifugation (Lymphopre, Axis-Shield, Scotland).
2.2 RNA isolation and sequencing

RNA isolation and sequencing were performed as previously

described by Yang et al. (17). Briefly, after cluster generation, library

preparations were sequenced on an Illumina HiSeq X Ten, and 150

bp paired-end reads were generated.
2.3 Sequencing data analysis

Sequencing data analysis were performed as previously

described by Yang et al. (17). Briefly, Raw sequencing data in

fastq format were initially processed using in-house perl scripts.

Ensembl database (Homo_sapiens. GRCh38.94) were used, and

paired-end clean reads were aligned to the reference genome using

HISAT2 v2.0.4 (18). The sequencing data analysis software used for

difference analysis is edgeR (3.0.8). The p-values were adjusted

using Benjamini and Hochberg’s approach to control the false

discovery rate (FDR), and genes with a corrected p-value < 0.05

were identified as differentially expressed (DE). GO enrichment

analysis and KEGG pathway analysis were performed as previously

described (19, 20). GO terms and KEGG pathways with p < 0.05

were considered significantly enriched.
2.4 Quantitative reverse transcription-
polymerase chain reaction

Total RNA was extracted from cells using the TRIzol reagent

(Invitrogen, Carlsbad, California, USA) and stored at -80°C (5 × 106

cells/mL). qRT-PCR was conducted as previously described (21).
2.5 Microarray analysis

Gene expression profiles were analyzed using microarray data

obtained from the GEO database (accession numbers: GSE32583 for

NZB/W mice kidney tissues and GSE32591 for human glomerular

and renal tubular tissues) (22). Kidney tissues were from the whole
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kidneys of NZB/W mice (accession number: GSE32583) or human

glomerular and renal tubular tissues (accession number: GSE32591).

Mice were grouped as previously described (23), and details can be

found on the GEOwebsite (https://www.ncbi.nlm.nih.gov/geo/geo2r/

?acc=GSE32583). Human kidney tissue samples were obtained from

renal biopsies (22), and grouping was performed as previously

described (23). Details are provided at the GEO website (https://

www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE32591). Differential gene

analysis was conducted using a p-value threshold of less than 0.05 and

a fold-change in expression of more than 1.2.
2.6 Immunohistochemistry staining

Immunohistochemistry staining was performed according to

previously described methods (24), using the percentage of

TNFRSF17+ area were determined using Image J software (25).

Kidney tissues were fixed in a 10% neutral formalin solution,

followed by embedding in paraffin and subsequent dewaxing and

slicing. An immunohistochemistry assay was then performed. Firstly,

the tissues were incubated with an oxidase blocking solution at room

temperature. Subsequently, animal serum was added, followed by

overnight incubation with a primary antibody against TNFRSF17

(ab199264; Abcam, USA). Visualization was achieved by adding a

secondary antibody and hematoxylin. The resulting IHC staining was

evaluated using ImageJ software (National Institutes of Health,

Bethesda, Maryland). TNFRSF17 immunoreactivity was quantified in

three randomly selected representative slide areas (×400 magnification)

using a light microscope. The percentage of TNFRSF17-positive area

out of the total area was calculated (23, 24, 26–28).
2.7 Cell culture and flow
cytometry analysis

RPMI 1640 (Corning, NY, USA) medium (containing 100 units/

mL of penicillin and 100 mg/mL of streptomycin) with 10% patients’

plasma were used to culture PBMCs in a 12-well plate. The wells were

divided into the IBI379 (0.1 mg/mL in 0.9% sodium chloride solution)

group and the control group (equal volume of 0.9% sodium chloride

solution). Three wells for each group. IBI379 was generously provided

by Innovent Company (Suzhou, Jiangsu, China). After 24 hours of

incubation, the cells were collected and stained with BD Horizon™

BV711 Mouse Anti-Human CD19 (563036, BD, USA), BD

Pharmingen™ PerCP-Cy™5.5 Mouse Anti-Human CD38 (551400,

BD, USA), and BD Pharmingen™ PE-Cy™7 Mouse Anti-Human

CD20 (560735, BD, USA). BD Horizon™ BV711 Mouse IgG1, k
Isotype Control (563044; BD, USA), BD Pharmingen™ PerCP-

Cy™5.5 Mouse IgG1 k Isotype Control (550795, BD, USA), and BD

Pharmingen™ PE-Cy™7 Mouse IgG2b, k Isotype Control (560542,

BD, USA) were used for the controls. The detection of apoptosis was

conducted using Annexin V-FITC/PI (CA1020, Solarbio, China), as

per the instructions provided by the manufacturer. The procedure

involved the addition of 5mL Annexin V-FITC to the cell tube, followed

by gentle mixing and incubation at room temperature for 10 minutes,

ensuring avoidance of light exposure. Subsequently, 5mL PI was added
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and the mixture was again incubated at room temperature, away from

light, for a duration of 5 minutes. The mixture was then supplemented

with 500mL of PBS, mixed gently, and subjected to flow cytometry. The

analysis of the flow cytometry data was carried out using a Fortessa

flow cytometer (BD, USA). 1×105 events were collected for

each sample.
2.8 Statistical analysis

GraphPad Prism 9.0 (GraphPad Software, San Diego CA, USA)

was used for statistical analysis and statistical graph rendering. An

unsupervised heatmap was generated using all data between the

maximum (red) and minimum (blue) values for each gene to

compare different matrices. The Wilcoxon signed-rank test for paired

samples and Mann-Whitney U test for unpaired samples were applied.

A p-value less than 0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics of the
sequencing subjects

To investigate the pathogenesis of LN, we performed second-

generation sequencing on 10 LN patients, 10 SLE without LN patients,

and 10 healthy individuals. Supplementary Table 1 summarizes the

basic features and clinical information of the sequencing subjects. The

median age of the sequencing LN patients was 39.5 years (range from

15 to 54), the median age of the SLE patients without LNwas 32.5 years

(range from 15 to 67), and the median age of the healthy controls was

31 years (range from 24 to 37). The SLEDAI score, anti-dsDNA

antibody titer, 24-hour urine protein quantification, white blood cells,

and neutrophils were significantly higher in the LN group than in the

SLE without LN group (p < 0.05), while there were no significant

differences in gender and age among the three groups. There were no

significant differences in complement C3, complement C4, blood urea

nitrogen, creatinine, and procalcitonin levels between the LN group

and the SLE without LN group.
3.2 Identification and classification of
differentially expressed genes

Principal component analysis (PCA) was employed to assess the

clustering properties of the sequencing samples between the control

group and the LN group (Figure 1A). In the PCA plot, each point

represents a sample, and the position of the point reflects the sample’s

scores on the principal components (29). We observed a clear

clustering trend in the distribution of samples along the first

principal component (PC1), second principal component (PC2), and

third principal component (PC3). This suggests significant differences

at the transcriptomic level between the control and LN groups, possibly

associated with the disease state. As shown in Figure 1B, the volcano

plot of genes differentially expressed between the LN group and the

control group revealed 1493 differentially expressed mRNAs, including
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1142 significantly upregulated genes and 351 significantly

downregulated genes. The heatmap analysis (Figure 1C) showed

significant differences in gene expression between the LN group and

the control group in each sample. The specific information of the top

20 upregulated and downregulated genes in the LN group is shown in

Supplementary Tables 2, 3, respectively.

PCA was also used to evaluate the clustering properties of the

sequencing samples between the LN group and the SLE without LN

group (Figure 1D). Although there was some overlap, the two groups

could be distinguished overall. There were 205 differentially expressed

genes (Figure 1E), including 116 significantly upregulated genes and 89

significantly downregulated genes. The heatmap analysis (Figure 1F)

showed significant differences in gene expression between the LN

group and the SLE without LN group in each sample. The specific

information of the top 20 upregulated and downregulated genes in the

LN group is shown in Supplementary Tables 4, 5, respectively.
3.3 Identification and classification of 70
genes specifically expressed in LN group

A Venn diagram analysis was performed to identify the

specifically expressed genes in the LN group. We found that 70

genes were commonly expressed in the 205 differentially expressed

genes between the LN group and the SLE without LN group, as well
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as the 1493 differentially expressed genes between the LN group and

the control group. Among these 70 genes, 39 were upregulated

(Figure 2A) and 31 were downregulated (Figure 2B). Heatmap

analysis revealed the expression patterns of the 39 upregulated

genes (Figure 2C) and the 31 downregulated genes (Figure 2D).
3.4 GO enrichment analysis

To further explore the biological functions of the differentially

expressed genes in the LN group, we performed GO analysis based on

the GO annotation terms. The enriched GO terms were classified into

biological process (BP), cellular component (CC), and molecular

function (MF) (Figure 3A). The ‘regulation of biological quality’ term

was significantly upregulated (p < 0.05). Biological quality refers to

measurable attributes of an organism or its parts, such as size, mass,

shape, color, etc. ‘Regulation of biological quality’ encompasses any

process that modulates a qualitative or quantitative trait of a

biological quality. Furthermore, the directed acyclic graph revealed

that the ‘regulation of biological quality’ term was under the

biological regulation term, which belong to the biological process

(Figure 3B). As shown in Figure 3C, 18 upregulated genes and 11

downregulated genes were enriched in the ‘regulation of biological

quality’ term. For example, upregulated HBB, TNFRSF17, and

SCARB2 are involved in this term.
B C

D E F

A

FIGURE 1

Evaluation of differentially expressed genes between groups. (A) Principal component analysis (PCA) plot of sequencing samples from the lupus
nephritis (LN) group and control group, showing contribution ratios. (B) Volcano plot of genes differentially expressed between the LN group and
control group, with each point representing a detectable gene in both groups. (C) Cluster of 1493 genes significantly different between the LN group
and control group. (D) PCA plot of samples from the LN group and systemic lupus erythematosus (SLE) without LN group, showing contribution
ratios. (E) Volcano plot of genes differentially expressed between the LN group and SLE without LN group, with each point representing a detectable
gene in both groups. (F) Cluster of 205 genes significantly different between the LN group and SLE without LN group. Corrected-p < 0.05.
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3.5 KEGG pathway enrichment analysis

We performed KEGG pathway enrichment analysis to investigate

the biological pathways associated with the differentially expressed

genes of the LN group (Figure 4). The analysis revealed that these genes

were highly enriched in several pathways, including Cell cycle

(SMAD4, BUB1, MCM4), Vitamin B6 metabolism (PSAT1),

Biosynthesis of amino acids (ENO1, PSAT1), Protein processing in

endoplasmic reticulum (HSP90AA1, PDIA6, OS9), mRNA

surveillance pathway (PPP2R2A, NCBP2), and Lysosome (SCARB2,

LIPA) among others.
3.6 Validation of 10 LN-specific mRNAs
using qRT-PCR

Supplementary Table 6 showed the clinical characteristics of the

qRT-PCR subjects (Seven LN samples among them were used for

cell culture). The LN group had significantly higher SLEDAI scores,

blood urea nitrogen, 24-hour urine protein quantification,

creatinine, and procalciton in compared to the SLE without LN
Frontiers in Immunology 05
group (p < 0.05). Additionally, the LN group had lower complement

C3 levels compared to the SLE without LN group (p < 0.05). There

were no significant differences in age or gender among the three

groups. There were also no differences in white blood cell count,

neutrophil count, or anti-dsDNA levels between the LN group and

the SLE without LN group.

To validate the sequencing results, we performed qRT-PCR on

5 upregulated genes (TNFRSF17, SCARB2, HDLBP, PSAT1, HBB)

and 5 downregulated genes (BUB1, ITGAV, RPL15, NCBP2,

SPOCK2) (see Supplementary Table 7 for primer information).

The qRT-PCR results were consistent with the high-throughput

sequencing results (Figure 5). Therefore, these sequencing results

were validated successfully.
3.7 Gene expression in the kidneys

To investigate the expression of the 70 LN-specific genes in the

kidney, we conducted an analysis of microarray data obtained from

kidney samples. Figure 6A illustrates the comparison of gene

expression levels between the LN group and the healthy control
B

C D

A

FIGURE 2

Differential genes specifically expressed in the LN group. (A) Venn diagram of upregulated genes. (B) Venn diagram of downregulated genes.
(C) Cluster of upregulated genes in the LN group. (D) Cluster of downregulated genes in the LN group. Corrected-p < 0.05.
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group. Our results revealed a significant upregulation of HBB,

RTN4, PDIA6, SCARB2, MCM4, and PPP2R2A in the glomeruli

of the LN group. Conversely, SPOCK2, RIOK3, NCAM1, and

FAM172A exhibited decreased expression in the glomeruli of the

LN group. Analysis of the renal tubules in LN patients and healthy

controls revealed significant differences in the upregulated genes

PMS1, ERCC5, SMAD4, GSN, HBB, TNFRSF17, PDIA6, and

SCARB2. Compared to healthy controls, LN patients had

decreased expression of PASK, HNRNPU, EPB41, BUB1 and

NCAM1 in the renal tubules (p < 0.05). These results provide

valuable insights into the differential expression patterns of LN-

specific genes in the kidney, elucidating potential molecular

pathways that may contribute to the etiology of LN.

We analized the expression of the 70 differentially expressed

genes in the kidney tissue of NZB/W mice (Figure 6B). Renal

changes occur and progress with the increasing age of the NZB/W

mice. Therefore, the 16-week mice serve as the normal control

group, the 23-week mice represent the early-stage group of

nephritis, and the 36-week mice represent the mid-late stage
Frontiers in Immunology 06
group of nephritis. The results indicate an increasing trend in the

expression level of TNFRSF17 during the early stage of the disease

and a significant upregulation in the mid-late stage group compared

to the control group. In addition, results showed significant

differences in the upregulated genes (Hbb and Tacc1) and the

downregulated gene Rpl15 between the 36-week LN group and

the control group. Therefore, TNFRSF17 and HBB were found to be

statistically significant factors in the analysis of human and mouse

kidney tissue.

To investigate the expression of these differentially expressed

genes in resident lymphocytes versus kidney cells, we performed an

analysis of single-cell RNA sequencing data obtained from human

kidney (Supplementary Figure 1) and mouse kidney

(Supplementary Figure 2). Our results revealed that HBB was

predominantly expressed in erythroid lineage cells, TNFRSF17

was mainly expressed in B cells, SCARB2 showed primary

expression in endothelial cells and macrophages, PPP2R2A

exhibited primary expression in endothelial cells, and BUB1 was

primarily expressed in proliferating B cells. To further confirm the
BA

FIGURE 4

Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses of the deferentially expressed genes specific to LN. (A) Top 20 enriched
pathways. The size of each circle represents the number of enriched genes, and different colors represent different q-values. (B) Detailed
information of the top 20 enriched pathways.
B CA

FIGURE 3

Gene Ontology (GO) enrichment analysis of differentially expressed genes specific to lupus nephritis (LN). (A) The top 30 GO terms were enriched as
biochemical processes (BP), cellular components (CC), or molecular function (MF). (B) Directed acyclic graph (DAG) of the GO terms related with
‘Regulation of biological quality’. (C) List of mRNA genes enriched in the ‘Regulation of biological quality’term. *p < 0.05.
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expression of these genes in lymphocytes, we analyzed single-cell

RNA sequencing data obtained from human peripheral blood

mononuclear cells (PBMCs) (Supplementary Figure 3). Our

findings demonstrated that HBB was mainly expressed in

erythroblasts, TNFRSF17 showed primary expression in class-

switched memory B cells, SCARB2 exhibited primary expression

in inflammatory macrophages, PPP2R2A was primarily expressed

in CD4+ T cells, and BUB1 showed primary expression

in megakaryocytes.
Frontiers in Immunology 07
3.8 The Expression of TNFRSF17 and
correlation analysis

The upregulation of the mRNA levels of TNFRSF17 was

confirmed by qRT-PCR analysis of PBMCs from LN patients

(Figure 5A). To further observe the protein levels of TNFRSF17 in

human kidney tissue, we performed immunohistochemical staining

and found that TNFRSF17 expression was significantly higher in LN

patients than in healthy controls (Figures 7A, B). The clinical
B

A

FIGURE 6

Expression levels of LN-specific genes in kidneys based on microarray analysis. (A) Histogram showing the microarray data in the kidneys from LN
patients and healthy controls (Ctrl n=15; LN n=32). Glomerulus (GLO), renal tubular (TUB). (B) Histogram showing the microarray data in the kidneys
from NZB/W mice (Ctrl n=8; LN_23w n=6; LN_36w n=10). The p-values are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001.
B C D E

F G H I

A

J

FIGURE 5

Validation of some differential expression genes specifically expressed in the LN group using quantitative real-time PCR (qRT-PCR). (A–E). qRT-PCR
validation of upregulated genes in the LN group compared to the control group or SLE without LN group. (F–J). qRT-PCR validation of
downregulated genes in the LN group compared to the control group or SLE without LN group (Ctrl n=28, SLE without LN n=36, LN n=32). *p <
0.05, **p < 0.01, and ***p < 0.001.
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information about the immunohistochemistry samples, inclusive of

pathological type (as per The 2003 ISN/RPS LN classification system

(30) and the National Institutes of Health LN activity/chronicity

scores (AI/CI), is enumerated in Supplementary Table 8. We

undertook an exploration into the potential correlation between

TNFRSF17 levels and the LN renal AI/CI score. However, as

depicted in Supplementary Figure 4, the current findings do not

provide evidence for a positive correlation between TNFRSF17 levels

and the LN renal AI/CI score.

C3, C4, and related complement proteins are activated in SLE

patients and deposited in inflammatory tissues, leading to a

decrease in circulating complement levels that are negatively

correlated with disease activity (31, 32). Treatment can increase

complement levels, while complement activation during disease

relapse can lead to a decrease in circulating complement levels again

(33). Urinary protein quantification is an important indicator for

monitoring the activity of kidney disease in LN patients (34).

Correlation analysis between the mRNA levels of TNFRSF17 and

clinical indicators in the LN group showed a positive correlation

between TNFRSF17 and 24-hour urine protein quantification and a

negative correlation with complement C3 and C4, which were

statistically significant (Figures 7C–E). However, there was no
Frontiers in Immunology 08
statistically significant correlation between TNFRSF17 and

SLEDAI, anti-dsDNA antibody titer, IgA, IgM, or IgG

(Figures 7F–J).
3.9 Efficacy study of IBI379 in killing
TNFRSF17+ plasma cells

We found that TNFRSF17 was highly expressed in both PBMCs

and kidney tissue, but the effectiveness of TNFRSF17 as a

therapeutic target remained unclear. As shown in Figure 8A,

IBI379 is a construct consisting of three chains: a standard anti-

TNFRSF17 heavy chain, a standard anti-TNFRSF17 light chain, and

an anti-CD3-ScFv-Fc fusion chain (35). CD3 molecules deliver the

first activation signal to T cells, and previous studies showed that

IBI379 can effectively target TNFRSF17 and CD3, and inducing T

cell activation, proliferation, and clearance of TNFRSF17+ plasma

cells in multiple myeloma (MM) patients (35). We added IBI379 to

the PBMCs of LN patients, cultured for 24 hours, and then detected

the apoptosis of B cells and plasma cells. As shown in Figures 8B-G,

results showed that there was no statistically significant difference in

the effect of IBI379 on CD19/CD20 double-positive B cells
B

C D E F

G H I J

A

FIGURE 7

Protein levels of TNFRSF17 in the kidneys of LN patients. (A) Immunohistochemical staining of TNFRSF17 in the kidneys of LN patients and healthy
controls. Glomerulus (GLO), renal tubular (TUB). (B) The percentage of TNFRSF17+ area in kidney was evaluated (n=4, p < 0.05) using ImageJ
software. (C-J). Correlation analysis between TNFRSF17 levels and clinical indicators.
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compared to the control group (p > 0.05, Figure 8D), but IBI379

effectively kill CD19+CD20-CD38+ plasma cells in LN patients (p =

0.0328, Figure 8G).
4 Discussion

Due to the urgent need for efficient and low-toxicity drugs for

LN, we performed high-throughput transcriptome sequencing on

PBMCs from LN patients, analyzed differential genes, and identified

70 LN-specific differential genes. qRT-PCR validation of 5

upregulated genes and 5 downregulated genes showed consistent

results with the sequencing results. These genes were enriched in

the GO term of ‘regulation of biological quality’ and the cell cycle

pathway. Additionally, through the comparison of microarray
Frontiers in Immunology 09
findings on these 70 genes in kidney tissue, we thoroughly

examine the gene expression and potential pathways implicated

in the development of LN, thereby proposing novel therapeutic

targets for LN management. As far as we know, these differentially

expressed genes unique to LN patients have not been reported in the

microarray or qRT-PCR studies (36–43).

Firstly, SCARB2 was significantly elevated in PBMCs,

glomeruli, and renal tubules of LN patients. Similar to the single-

cell sequencing results we analyzed, people reported that SCARB2

was significantly upregulated in monocyte-derived macrophages in

the kidney of LN patients (44, 45). Guo et al. found that SCARB2

was highly expressed in human plasmacytoid dendritic cells (pDC)

and could regulate type I interferon production by mediating

endosomal translocation of TLR9 and nuclear translocation of

IFN regulatory factor 7 (46). IFN levels were elevated in LN
B C D

E F G

A

FIGURE 8

Flow cytometry analysis of CD19+CD20+ B cells and CD19+CD20-CD38+ plasma cells in peripheral blood mononuclear cells (PBMCs) of lupus
nephritis (LN) patients after treatment with IBI379. (A) Workflow shows the experimental strategied and analysis in this study. (B) Representative flow
cytometry plots of CD19+CD20+ B cells. (C) Annexin V/PI apoptosis assay of B cells. (D) Comparison of Annexin V/PI apoptosis assay results between
control and treatment groups for B cells. (E) Representative flow cytometry plots of CD19+CD20-CD38+ plasma cells. (F) Annexin V/PI apoptosis
assay of plasma cells. (G) Comparison of Annexin V/PI apoptosis assay results between control and treatment groups for plasma cells. The p-values
are indicated as *p < 0.05.
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patients (47). Type I interferon may break immune tolerance in SLE

patients by activating dendritic cells and CD8 T cells (48).

Therefore, SCARB2 may be an effective therapeutic target for LN,

inhibiting SCARB2 can reduce the production of type I interferon.

Secondly, we observed a significant downregulation of BUB1

(Budding uninhibited by benzimidazoles-1) in PBMCs and renal

tissue of LN patients. BUB1 encodes a serine/threonine protein

kinase that plays a central role in mitosis. Overexpression of BUB1

was showed to promote tumor cell proliferation, migration,

invasion, and reduce apoptosis (49–52). Nyati et al. found that

BUB1 promotes the formation of the TGFBRI/II receptor complex

and regulates downstream signaling in the Smad pathway, which is

an important component of TGFb signaling transduction (53). The

differentiation of Treg cells depends mainly on the binding of TGFb
to the TGFBRI/II receptor complex on the surface of naïve T cells,

which activates Smads (R-Smad) and forms a complex with Smad4

that translocates to the nucleus and induces forkhead box p3

(Foxp3) gene expression (54). Therefore, the downregulation of

BUB1 in LNmay inhibit the differentiation of Treg cells through the

TGFb/Smads pathway, leading to immune tolerance dysfunction.

Thirdly, we observed that the upregulated PPP2R2A is enriched

in the PI3K/AKT pathway. It was reported that the activation of the

PI3K/AKT pathway signaling contributes to lymphocyte-

hyperactivation (55). PPP2R2A, as a regulatory subunit of PP2A,

promotes the differentiation of Th1 and Th17 cells by activating the

GEF-H1/RhoA/ROCK signaling pathway (56). Inflammation

positively regulates Th17 differentiation through the phosphatase

PP2A (57). In addition, PPP2R2A may also enhancing MAPK

signaling through RAF and KSR or inhibit the MAPK signaling

by regulating ERK (58). Furthermore, both PI3K and MAPK

promote the production of type I IFN by regulating the nuclear

translocation of IRF7 in human pDC (59). Therefore, upregulated

gene PPP2R2A may play an important role on the pathogenesis of

LN by enhancing lymphocyte hyperactivation and type I

IFN-production.

The hemoglobin subunit beta (HBB) gene, which is expressed

on erythroid lineage cells and involved in folate metabolism and

innate immune response, was significantly upregulated in PBMCs,

glomeruli, and renal tubules of LN patients (60). Similarly, elevated

levels of HBB protein are reported in the serum of SLE patients (61)

and in the urine of LN patient (62) compared to SLE without LN

patients and healthy controls. Afridi et al. found that HBB

polymorphisms upregulated the production of anti-malarial IgG

(63). In addition, Wu et al. identified HBB as a major player in the

iron death signaling pathway in diabetes (64). Sharma et al. also

found HBB to be enriched in the iron homeostasis and iron death

signaling pathways (65). Therefore, we speculate that HBB may be

involved in the inflammatory process of LN through the regulation

of IgG and iron death.

Finally, we observed a significant upregulation of TNFRSF17 in

the PBMCs of LN patients compared to both control and SLE

without LN groups. TNFRSF17 protein was highly expressed in the

kidneys of LN patients, with distribution in the glomeruli, tubules,

and interstitium, which supports the results of gene-level

upregulation in both glomeruli and tubules observed in

microarray analysis. Therefore, we believe that both gene and
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protein levels of TNFRSF17 are elevated in LN patients. In the

current study, pathological classification of the involved LN patients

included mainly III, IV, and V types,. Similar studies found that

TNFRSF17 expression is significantly increased in the interstitium

of proliferative LN patients (66), and in the glomeruli of V type LN

patients (67). Our data support TNFRSF17 expression in class-

switched memory B cells. TNFRSF17 mediates plasma cell survival

through the classical NF-kB pathway, and may be a therapeutic

target for plasma cells (6). We found that TNFRSF17 was

significantly positively correlated with 24-hour urine protein

quantification, and significantly negatively correlated with

complement C3 and C4 levels. Studies revealed that the copy

number variation (CNV) of the C4 gene and its related

polymorphisms are associated with the susceptibility to SLE (68,

69). Specifically, low gene copy numbers (GCNs) of total C4 and the

deficiencies of C4A were identified as medium to large effect size

risk factors, while high copy numbers of total C4 or C4A were

prevalent protective factors for European and East-Asian SLE

patients (70). Complement C4 promote urine protein formation

and LN development, and are negatively correlated with the severity

of SLE (71). Therefore, we speculate that TNFRSF17 plays a

pathogenic role in both PBMCs and local kidney tissue of LN

patients, and further investigation into the possibility of targeting

TNFRSF17 for the treatment of lupus is warranted.

The use of chimeric antigen receptor T cells (CAR-T) in

autoimmune diseases has gained attention. Ellebrecht et al.

designed a CAR targeting self-antigens to guide T cells in

eliminating autoreactive B cells in pemphigus vulgaris (72).

Mackensen et al. used anti-CD19 CAR-T cells to treat refractory

SLE and found good patient tolerance. However, CAR-T cell

therapy still faces challenges such as high cost, difficulty in

production, the need for specific biomarkers to measure

treatment efficacy, and safety concerns (73, 74). Therefore, we

aimed to find a safe, specific, and efficient immunotherapy for the

treatment of LN. The universal bispecific T cell engager IBI379

targets TNFRSF17 and CD3 in an asymmetric IgG-like format. In

multiple myeloma (MM) studies, IBI379 effectively linked T cells

and plasma cells, inducing T cell activation, proliferation, and

clearance of TNFRSF17+ plasma cells (35). As IBI379 cannot bind

to the TNFRSF17 of mouse, we conducted experiments by adding

IBI379 to the culture of patients’ PBMCs. The results revealed that

IBI379 effectively eliminated TNFRSF17+ plasma cells in vitro.

However, its impact on B cells was not significantly different from

the control group. These findings demonstrate the fast-acting and

highly specific nature of IBI379, as it selectively targets pathogenic

plasma cells expressing TNFRSF17 while preserving the patient’s B

cell immune defense against infections, thus minimizing the risk of

severe adverse reactions. Therefore, further in vivo studies are

urgently needed to confirm the efficacy and safety of IBI379 as a

potential therapeutic agent for LN.

To summarize, our study has identified a set of 70 unique genes

specific to LN. These genes are enriched in the biological process

class term (‘regulation of biological quality’) and the cell cycle

pathway. Notably, the upregulation of SCARB2 presents a potential

therapeutic target for inhibiting type I IFN production, while the

downregulation of BUB1 may contribute to immune imbalance in
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LN. Furthermore, the upregulation of PPP2R2A may enhance

lymphocyte hyperactivation and IFN production, while the

upregulation of HBB may play a role in IgG production, iron

death, and contribute to LN pathogenesis. Additionally, TNFRSF17

was found to be significantly upregulated in both PBMCs and

kidney tissue of LN patients, and its expression level positively

correlated with the levels of 24-hour urine protein. TNFRSF17 may

promote plasma cell survival and contribute to LN pathogenesis,

and the targeted drug IBI379 effectively induces apoptosis in plasma

cells without affecting B cells in LN patients.
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