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Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a

well-known spice and traditional Chinese medicine ingredient with a rich history

of use in treating inflammatory conditions. This review provides a comprehensive

overview of the botanical classification, traditional applications, and anti-

inflammatory effects of Z. bungeanum, with a specific focus on its

polyphenolic components. These polyphenols have exhibited considerable

promise, as evidenced by preclinical studies in animal models, suggesting their

therapeutic potential in human inflammatory diseases such as ulcerative colitis,

arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease,

and neurodegenerative conditions. This positions them as a promising class of

natural compounds with the potential to enhance human well-being. However,

further research is necessary to fully elucidate their mechanisms of action and

develop safe and effective therapeutic applications.
KEYWORDS
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1 Introduction

Chinese prickly ash, also known as Hua Jiao in Mandarin, belongs to the genus

Zanthoxylum in the Rutaceae family (1). Widely cultivated in Asia, including China, Japan,

India, and Korea (2), the genus comprises approximately 250 species, with 41 found in

China (Table 1) (3). Chinese prickly ash, or Hua Jiao, is a popular spice and traditional

Chinese medicine ingredient specifically derived from Zanthoxylum bungeanum Maxim.

and Zanthoxylum schinifolium, according to the Pharmacopoeia of the People’s Republic of

China (4). This review, we will focus on Zanthoxylum bungeanumMaxim. (Z. bungeanum).
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Zanthoxylum bungeanum Maxim., commonly known as

Honghuajiao, is a deciduous shrub with a height range of 3-7

meters, bearing small, crimson fruits measuring 4-5 mm in

diameter. The flowering period spans from April to May, while

fruit ripening occurring between August and October. Z.

bungeanum holds significant importance in both traditional

Chinese medicine and cuisine. The earliest record of its use in

China can be traced back to the “Book of Songs,” a compilation of

folk poetry from the Western Zhou period, underscoring a history

of over two thousand years of utilization (5). The dried fruit follicles

of Z. bungeanum are integral to Chinese cuisine, often incorporated

for their distinctive flavor and numbing taste (1). Additionally,

leaves at various stages of maturity serve as ingredients and

seasonings in Chinese culinary practices (6).

In traditional Chinese medicine, Z. bungeanum is esteemed for

its properties in warming the spleen and stomach, alleviating pain,

and demonstrating anthelmintic and antipruritic effects (4). It is

also recognized for promoting the flow of Qi and dispelling coldness

(5). Decoctions of Z. bungeanum find primary application in

treating conditions such as stomachaches accompanied by

sensations of coldness and dampness, vomiting, intestinal

disorders, diarrhea, ascarid infections, schistosomiasis, and

rheumatic joint inflammations (5, 7). Externally, the plant is used

to address issues like bruises, eczema, and snakebites (2).

Z. bungeanum also features prominently in Indian and

Nepalese folk medicine. Its decoction serves as an aromatic tonic

for fevers, and as a carminative and stomachic remedy for

dyspepsia, cholera, and toothaches (7).

Current research endeavors have demonstrated the

pharmacological effects of Z. bungeanum on the gastrointestinal,

neurological, and cardiovascular systems. Additionally, it exhibits

anti-inflammatory and analgesic properties, along with displaying

antioxidant, anti-tumor, antibacterial, antifungal, and insecticidal

effects (2) (Figure 1).

Inflammation constitutes an adaptive response of the immune

system to deleterious stimuli, encompassing pathogens, cellular

injury, and toxic agents. Its principal role is protective, expelling

these detrimental agents from the body and instigating the recovery

process. However, unbridled inflammation can also be deleterious,

culminating in conditions such as atherosclerosis, type 2 diabetes,

and rheumatoid arthritis (8). Empirical evidence corroborates the

noteworthy anti-inflammatory attributes of polyphenols. They
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possess the capacity to ameliorate inflammation in various

diseases induced by inflammation, such as inflammatory bowel

disease and acute pancreatitis (9). The molecular mechanisms

underlying the anti-inflammatory activities of polyphenols involve

scavenging free radicals, modulating the activity of inflammatory

cells, inhibiting enzymes linked to pro-inflammatory attributes like

COX2, iNOS, and LOX, suppressing NF-kB and AP-1, and

impeding the activation of MAPK, protein kinase C, and Nrf2 (10).

Currently, more than 140 constituents have been identified in

Zanthoxylum bungeanum, encompassing polyphenols, alkaloids,

lignans, coumarin, fatty acids, essential oils, and others (2, 11,

12). Among these, more than 40 polyphenols have been ascertained

in Z. bungeanum, categorized into various types based on their

chemical structures, including flavonoid glycosides, flavonoids,

glycosides, phenylpropanoid, anthocyanin and non-glycosides.

These polyphenolic compounds have exhibited promising anti-

inflammatory effects on disorders affecting diverse organs and

systems, comprising ulcerative colitis, arthritis, pain, asthma,

UVB-induced skin damage, and cognitive function of the brain

ulcerative colitis (13), arthritis (14), pain (15), asthma (16), UVB

skin damage (17), and cognitive function of the brain (18).

Polyphenols derived from Z. bungeanum proficiently inhibit

inflammatory cytokines and modulate NF-kB, p38-MAPK, TLR4,

Erk1/2, JNK, and Nrf2/HO-1 pathways to exert their anti-

inflammatory effects.

In this review, we summarize the polyphenolic compounds present

in Zanthoxylum bungeanum (Z. bungeanum) and the therapeutic

effects of Z. bungeanum on inflammation, with a particular emphasis

on the polyphenols. Recent research suggests that Z. bungeanum

polyphenols have the potential to significantly contribute to the

management and prevention of inflammatory conditions. Further in-

depth research is needed to promote their health benefits.
2 Composition and structure of
polyphenols in Z. bungeanum

Both the leaves and seeds of Z. bungeanum contain polyphenolic

compounds, predominantly comprising flavonoid glycosides.

Research conducted by three independent groups (19–21) provides

substantial evidence of the polyphenol richness in the leaves,

characterized by potent antioxidant properties. Noteworthy
TABLE 1 Species of the genus Zanthoxylum in China.

Z. acanthopodium Z. collinsiae Z. khasianum Z. molle Z. pilosulum Z. stipitatum

Z. ailanthoides Z. dimorphophyllum Z. kwangsiense Z. motuoense Z. pteracanthum Z. tomentellum

Z. armatum Z. dissitum Z. laetum Z. multijugum Z. rhombifoliolatum Z. undulatifolium

Z. austrosinense Z. echinocarpum Z. leiboicum Z. myriacanthum Z. scandens Z. wutaiense

Z. avicennae Z. esquirolii Z. liboense Z. nitidum Z. schinifolium Z. xichouense

Z. bungeanum Z. glomeratum Z. macranthum Z. oxyphyllum Z. simulans Z. yuanjiangense

Z. calcicola Z. integrifolium Z. micranthum Z. piasezkii Z. stenophyllum
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constituents include 5-feruloyquinic acid, vanillic acid-4-glucoside,

quercetin-3-arabinoside, chlorogenic acid, epicatechin, quinic acid,

syringetin-3-glucoside, quercetin, isorhamnetin-3-glucoside,

trifolin, afzelin, hyperoside, isovitexin, quercitrin, trifolin, rutin,

isorhamnetin 3-O-a-L-rhamnoside, astragalin, and isoquercitrin

(19–21). In the outer coverings of Z. bungeanum fruits,

Xiong et al. have identified tamarixetin 3,7-bis-glucoside,

quarcetin 3’,4’-dimethyl ether 7-glucoside, 3,5,6-trihydroxy-7,4’-

dimethoxyflavone, hyperoside, sitosterol b-glucoside, quercetin,
quercitrin, isorhamnetin 7-glucoside, rutin, arbutin, and L-

sesamin (22). Additionally, the research conducted by Jia’s group

has revealed the presence of epigallocatechin, dihydrorobinetin,

naringenin, catechin, kaempferol, catechin gallate, and

isorhamnetin are identified by Jia’s group (23). Recently, with the

advancement of technology such as the application of high-

throughput sequencing techniques, a series of polyphenolic

compounds with lower concentrations in Z. bungeanum have

been identified. The identification of polyphenols in Z.

bungeanum has expanded from approximately 40 types to over

150 types (24), thanks to these technological developments. Due to
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words limit, our review specifically revisits polyphenols with higher

concentrations in Z. bungeanum, focusing on those extensively

studied for their anti-inflammatory activities (Figure 2).

Investigation of the structure-activity relationships of Z.

bungeanum polyphenols reveals a correlation between elevated

antioxidant efficacy and the presence of a hydroxyl (-OH) group

at both the 4’ position on the B ring and the 7 position on the A ring.

Moreover, adjacent -OH groups on the B and/or A rings

significantly enhanced antioxidant capabilities. Additionally, the

diverse structures of these polyphenols suggest that they may

display different antioxidant capacities in solution or oil-in-water

emulsion reactions (20). Z. bungeanum polyphenols have

demonstrated effective radical scavenging activities in DPPH,

ABTS (21), FRAP, lipid peroxidation inhibition assays (20), and

superoxide anion (19). Furthermore, polyphenols have been

reported to protect Escherichia coli under peroxide stress (20)

and concurrently reduce reactive oxygen species (ROS) levels in

HT-29 cells without inducing any cell toxicity (19). Moreover,

polyphenols have a cell-protective impact, mitigating oxidative

damage in PC12 cells caused by H2O2 (21).
FIGURE 1

Constituents of Z. bungeanum and their pharmacological effects.
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3 Inflammatory diseases and
polyphenols in Z. bungeanum

A combination of polyphenols found in Zanthoxylum

bungeanum has demonstrated anti-inflammatory effectiveness in

both in vivo and in vitro experiments. The ethyl acetate fraction of

Z. bungeanum has been identified as the primary active component

in enhancing cognitive function in aging mice with D-galactose-

induced cognitive decline. This fraction contains several

polyphenols, such as hyperoside, chlorogenic acid, quercetin-3b-
Frontiers in Immunology 04
d-glucoside, rutin, and epicatechin. It aids in reducing

neuroinflammation, inhibiting the NLRP3/caspase-1 pathway,

GSDMD, and downstream pyroptosis, both in the mouse model

and in BV-2 cells subjected to LPS and ATP treatment, leading to

overall cognitive improvements (25).

The treatment with Z. bungeanum pericarp extract (ZBE),

predominantly composed of rutin, isoquercitrin, and quercitrin,

has demonstrated effectiveness in protecting mice with dextran

sulfate sodium (DSS)-induced ulcerative colitis (UC). It has been

observed to mitigate body weight loss, prevent colonic shortening,
FIGURE 2

Polyphenols identified in Z. bungeanum.
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reduce disease activity index scores, and inhibit myeloperoxidase

activity. ZBE is found to inhibit caspase-1, ASC, NLRP3, TLR4,

subsequent MAPK and NF-kB pathways, and the production of

TNFa, IL-12, and IL-1b, both in vitro in the LPS-triggered J774.1

cell model and in vivo. Concurrently, activation of PPARg is

detected (13).

In the subsequent section, we will individually discuss the

research pertaining to the anti-inflammatory effects of each

polyphenolic component found in Z. bungeanum. We will

categorize the 40 polyphenolic constituents of Z. bungeanum into

various groups based on their chemical compositions: flavonoids,

flavonoid glycosides, glycosides, phenylpropanoid, anthocyanin,

and nonglycosides (Figure 2). Please note that we do not aim to

provide an exhaustive or comprehensive list of all anti-

inflammatory studies for each component here. Instead, we have

selected those with high citation counts or the most recent research

to provide an overview of the association between inflammation

and polyphenols in Z. bungeanum.
3.1 Flavonoid glycosides

3.1.1 Rutin
Rutin is a flavonoid with well-established anti-inflammatory

properties (26) Administered at doses of 50-100 mg/kg, rutin

exhibits protective effects against hepatotoxicity induced by

cyclophosphamide (CP), a potent anticancer agent, in rats. This

protection is associated with decreased levels of pro-inflammatory

cytokines and signaling molecules, including IL-6, TNFa, iNOS,
COX2, p38-MAPK, and NF-kB. Histopathological analysis reveals

substantial structural damage to the liver caused by CP, effectively

reversed through prior administration of rutin (27). Rutin has also

demonstrated the preservation of the vascular barrier integrity in

human umbilical vein endothelial cells stimulated by LPS and in an

acetic acid-induced mouse mode (28). It effectively reduced

hyperpermeability induced by LPS, TNFa, and HMGB1, and

suppressed both TNFa production and NF-kB activation triggered

by LPS (28). Beyond its anti-inflammatory and vascular protective

effects, rutin has demonstrated neuroprotective and anti-colitic

properties. In a rat model of spinal cord injury, rutin administration

significantly attenuated histological alterations and reduced tissue

damage. This was associated with decreased levels of oxidative stress

markers, pro-inflammatory cytokines, and caspase-1 (29). In a mouse

model of DSS-induced colitis, rutin significantly improved several key

indicators of disease severity, including the disease activity score, colon

length, and the integrity of goblet cells and colon epithelium. Rutin

also reduced the expression of a range of oxidative-inflammatory

markers, including IgE, IgM, iNOS, HO-1, and ICAM-1, and restored

the balance among effector cells, regulatory cells, and B cells. The study

revealed a substantial increase in the activation of the PI3K/Akt/

GSK3b/MAPKs/NF-kB and p38/MK2 pathways during DSS-induced

colitis in the animal subjects, a condition that rutin treatment

effectively mitigated. In silico studies supported the specificity of

rutin’s interaction with these pathways (30).

In terms of pharmacokinetics, orally administered rutin is

absorbed in the small intestine, transferred to the liver via the
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bloodstream, and eliminated through bile and the kidneys (31).

Major metabolites include sulfates and glucuronides of quercetin

(32). In rats, Zhang et al. reported elimination rate half-life, area

under the curve, and plasma clearance values of 3.345 minutes, 5750

mg min/ml, and 5.891 mL/min/kg, respectively (33). Intravenous

rutin accumulates in the liver, with a significant portion then

transferred to the small intestine, and is also detected in the lung

post-injection (31). Interactions between rutin and drugs were

studied as well. Rutin reduces the anticoagulant effect of racemic

warfarin by 31% when co-administered orally. This outcome was

ascribed to a noteworthy 77% rise in the unbound formation

clearance of both oxidative and reductive metabolites, coupled

with an elevation in the unbound renal clearance of the more

potent S-enantiomer of warfarin (34). Rutin also significantly

decreases the oral Cmax and AUC of cyclosporine by 63.2% and

57.2%, respectively, through the activation of Pgp transporter and

CYP3A enzyme (35).

3.1.2 Hyperoside
Hyperoside is another flavonoid known for its anti-

inflammatory properties. In mouse peritoneal macrophages

subjected to LPS stimulation, hyperoside inhibited TNFa, IL-6,
and NO production by 32.3%, 41.3%, and 30%, respectively.

Moreover, hyperoside reduced NF-kB activation and IkB-a
degradation (36). This compound also exhibits anti-

neuroinflammation effect in vitro and in vivo (37, 38). In the

LPS-induced HT22 murine neuronal cell line, hyperoside

enhances cell survival and mitigates inflammation, oxidative

stress, and apoptosis. This effect is achieved by amplifying SIRT1,

triggering the activation of both Wnt/b-catenin and sonic hedgehog

pathways (38). In rats, 50 mg/kg hyperoside protected against

cerebral ischemia-reperfusion injury by mitigating oxidative

stress, inflammation, and cell death. Rats treated with hyperoside

exhibited significantly enhanced neurological function and a

substantial reduction in the ratio of cerebral infarction volume (37).

Hyperoside also attenuate several vascular inflammatory

responses initiated by elevated glucose levels in human umbilical

vein endothelial cells and mice. These responses include vascular

permeability, monocyte attachment, CAMs expression, ROS

formation, and NF-kB activation (39). Furthermore, hyperoside’s

anti-arthritic properties have also been verified both in vitro and in

vivo. It can suppress inflammation and prevent cartilage breakdown

by influencing the PI3K/AKT/NF-kB and MAPK signaling

pathways, as well as the interplay between the Nrf2/HO-1 and

NF-kB signaling pathways (40). Hyperoside also inhibited OVA-

induced airway hyperresponsiveness in mice through activation of

Nrf2/HO-1 (41). In a rat model of antiphospholipid syndrome

(APS), hyperoside at a dose of 40 mg/kg led to increased fetal

weight, reduction of fetal resorption rates, and reduced pregnancy

loss by modulating the mTOR/S6K and TLR4/MyD88/NF-kB

signaling pathways (42).
3.1.3 Quercitrin
Quercitrin demonstrates the ability to attenuate carbon

tetrachloride (CCl4) induced brain injury by suppressing ROS,
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MDA, TNFa, and IL-6 (43). Furthermore, it exhibits protective

effects against skin damage induced by UVB damage. This

protection is achieved through the reduction of ROS, NF-kB
activation, and DNA damage triggered by UVB exposure.

Quercitrin also restores the diminished expression of catalase and

the GSH/GSSG ratio due to UVB exposure (17). In a study

involving mice with Alzheimer’s disease, quercitrin inhibits the

activation and proliferation of microglia, decreases the

accumulation of amyloid-b plaques, and improves cognitive

impairment by inhibiting inflammation. Specifically, this

compound inhibits the level of IL-1a, IL-17A, IL-6, and G-CSF in

peripheral blood, as well as IL-1a, IL-4, IL-6, Eotaxin, CXCL-1,
MIP-1a, MIP-1b and G-CSF in the brain, thereby alleviating

systemic inflammation in the 5XFAD mice (44).

Quercetin and quercitrin, common flavonoids in vegetables, are

frequently compared (45). Theoretical calculations clarify that the

oxygen atom located on the B rings could serve as the primary site

for alterations in electron cloud density, providing insights into how

quercetin and quercitrin exert their anti-inflammatory and ROS

scavenging effects (46). In LPS-stimulated RAW264.7 cells, both

compounds markedly decrease NO and ROS production, as well as

the expression of TNFa, IL-1b, and IL-6 (46). However, Comalada

et al. reported that unlike quercitrin, quercetin can reduce the

expression of cytokines and iNOS by inhibiting the NF-kB pathway

in vitro in bone marrow-derived macrophages, without affecting c-

Jun N-terminal kinase activity. The group revealed that quercitrin’s

in vivo impact in a rat colitis model induced by DSS may be

attributed to the liberation of quercetin, which occurs following the

breakdown of glycosides by intestinal microbiota. In other words,

quercitrin releases quercetin to exert its anti-inflammatory

influence, achieved by inhibiting the NF-kB pathway (45).

3.1.4 Isoquercitrin
Isoquercitrin has undergone tested in an LPS-stimulated

RAW264.7 cell model, revealing its ability to decrease NO

production, downregulate the expression of PGE2, COX2, iNOS,

and NF-kB p65 protein, and reduce the mRNA levels of IL-1, IL-6,

PTGES2, and MCP-1 (47). Moreover, at a dosage of 20 mg/kg,

isoquercitrin has demonstrated the capacity to protect denervated

muscle from atrophy. This protective effect is achieved by reducing

the levels of IL-1b, TNFa, and IL-6 and inactivating the JAK/

STAT3 signaling pathway in the target muscle (48).

3.1.5 Vitexin
Vitexin exhibits anti-inflammatory properties in the OVA-

induced mouse allergic asthma model at doses of ranging from

0.2 to 5 mg/kg. Specifically, vitexin mitigates the migration of

eosinophils, neutrophils, and mononuclear cells prompted by

OVA within bronchoalveolar lavage fluid (BALF). Examination of

lung tissue reveals that vitexin effectively suppresses the invasion of

leukocytes, mucus production, and development of pulmonary

edema. It also moderates the escalation of Th2 cytokines in BALF

and reduces the concentration of IgE in the plasma (49). Vitexin has

also demonstrated anti-inflammatory effects in chronic cerebral

hypoperfusion injury in a rat model of persistent bilateral common
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carotid artery occlusion and in HT22 mouse hippocampal neuronal

cells exposed to oxygen and glucose deprivation followed by

reoxygenation injury. The findings confirm vitexin’s ability to

modulate Epac and NLRP3. Additionally, in the rat model,

vitexin has shown the potential in diminishing the severity of

ongoing pathological harm in the cortex and hippocampus and

preventing further decline in cognitive function (18). Moreover,

vitexin inhibits inflammatory pain in various mouse models of

inflammation-related pain, including acetic acid-induced writhing,

pain-like behavior prompted by phenyl-p-benzoquinone, capsaicin,

complete Freund’s adjuvant (CFA), and both phases of the formalin

test. It also alleviates mechanical and thermal hyperalgesia triggered

by capsaicin, carrageenan, and chronic CF. TRPV1 is considered the

key target (50). Additionally, vitexin alleviates liver inflammation in

a DSS-induced colitis model by inhibiting the TLR4/NF-kB
signaling pathway activation. Administration of vitexin results in

lower ALT and TC levels in the livers of mice suffering from liver

injury. It also reduces the release of IL-6, TNFa, and IL-1b induced

by DSS (51). Furthermore, vitexin inhibits the movement of

neutrophils toward areas of inflammation by suppressing the p38,

ERK1/2, and JNK pathways (52).

3.1.6 Isovitexin
Isovitexin effectively alleviates contact dermatitis in mice

triggered by ginkgolic acids, leading to a significant reduction in

ear swelling, splenomegaly, and inflammatory cell infiltration.

Subsequent investigations have revealed that isovitexin can

impede the MAPK and STAT signaling pathways, along with the

phosphorylation of SHP2 (53). In the mouse models of kidney

injury induced by cyclophosphamide (CP) (54), liver injury

triggered by LPS/d-galactosamine (55), and acute lung injury

induced by LPS (56), isovitexin demonstrates its therapeutic

effects via inhibiting NF-kB activation and inducing Nrf2 and

HO-1 expression. In the kidney injury model, isovitexin mitigates

CP-induced increases in serum BUN and creatinine, and curbs

TNFa, IL-1b, and IL-6 (54). Isovitexin substantially diminishes

liver injury, evidenced by reduced histopathological changes and

lower AST and ALT levels. It also reduces TNFa levels, MPO

activity, and MDA content (55). Pretreatment with isovitexin

significantly alleviates acute lung injury, as demonstrated by

reduced histopathological changes, diminished granulocyte

infiltration, and subdued endothelial activation. Additionally, it

lowers VCAM-1 and ICAM-1 expression, reduces MPO and

MDA levels, and enhances GSH and SOD (56).

3.1.7 Astragalin
Astragalin notably alleviates inflammatory reactions and bone

damage in both DBA/1J mice with collagen-induced arthritis and

human fibroblast-like synoviocytes. It reduces joint swelling,

arthritis index, and bone erosion, while also inhibiting the

production of IL-1b, TNFa, IL-6, and IL-8. Moreover, a decrease

in MMP-1, MMP-3, and MMP-13 levels has also been observed in

chondrocytes, synovial cells, and TNFa-induced MH7A cells.

Additionally, astragalin inhibits p38, JNK phosphorylation, and c-

Jun/AP-1 activation (57). Furthermore, through the ROS and
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MAPK signaling pathway, the process of osteoclastogenesis in

inflammatory osteolysis is alleviated by astragalin (58). In an

OVA-challenged mouse model, astragalin at doses of 10-20 mg/

kg impedes mast cell recruitment, preventing airway thickening and

alveolar emphysema (59).

3.1.8 Afzelin
Afzelin performs anti-inflammatory effect in two in vitro

experiments (60, 61). In human keratinocytes exposed to

particulate matter (PM), a widespread airborne contaminant,

afzelin mitigates inflammation and ROS production. It also

inhibits p38 kinase, as well as the transcription factors c-Fos and

c-Jun (61). The inhibitory effect of afzelin on the p38 kinase

pathway contributes to its protective effect of human

keratinocytes and epidermal equivalent models exposed to UVB,

resulting in a reduction of IL-6, TNFa, and PGE2 release induced

by UVB (60).
3.2 Flavones

3.2.1 Quercetin
Quercetin stands out as one of the extensively researched

polyphenols in Z. bungeanum. showcasing therapeutic potential

in addressing inflammatory conditions, particularly arthritis (62,

63). In a study involving women with rheumatoid arthritis, a daily

supplement of 500mg quercetin over 8 weeks resulted in significant

improvements in the clinical symptoms, disease activity, hs-TNFa
levels, and health assessment questionnaire outcomes (62). For

rabbits with surgically-induced osteoarthritis (OA), a 4-week

gavage treatment of 25 mg/kg quercetin demonstrated increased

SOD and TIMP-1 expressions, reduced MMP-13 expression, and

mitigation of OA degeneration, comparable to the effects observed

in the celecoxib-treated group (63). Quercetin’s impact extends to

inflammation-based pain models, as intraperitoneal and oral

administrations significantly suppressed pain induced by phenyl-

p-benzoquinone and acetic acid. It also mitigated the second phase

of pain intensity escalation caused by formalin and carrageenin.

This compound further demonstrated its efficacy in curtailing

hypernociception stimulated by TNFa and CXCL1, along with

reducing carrageenin-induced IL-1b production (15). Moreover,

in RAW264.7 cells stimulated with LPS, quercetin significantly

reduced the production of NO, inducible NO synthase, and IL-6.

It also hindered the relocation of NF-kB to the cell nucleus and

suppressed the activation of Erk1/2 and JNK. In DNCB-induced

atopic dermatitis mouse model, quercetin exhibited anti-

inflammatory effects, as evidenced by improvements in ear

thickness, serum IgE levels, and histological analysis (64).

Regarding the pharmacokinetic aspects of quercetin, initial

metabolism occurs in the small intestine through processes like

glucuronidation and O-methylation. The subsequent breakdown

and processing take place in the liver after reaching it through the

hepatic portal vein. Notably, gut bacteria, especially clostridium

orbiscindens, play a role in the breakdown process in the large

intestine. Key metabolites found in human plasma include
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quercetin-3-glucuronide, quercetin-3-sulfate, and isorhamnetin-3-

glucosidic acid. Quercetin distribution involves various organs

(lungs, kidneys, heart, and liver), with the lungs exhibiting the

highest concentrations. Conjugates are predominantly present in

the blood and are excreted in urine (65).

Pharmacokinetic and pharmacodynamic interactions between

quercetin and drugs have been unveiled in studies. Competitive

binding to serum albumin influence on cytochrome P450,

glycoproteins, and other factors modify drug profiles, affecting

treatment outcomes for infectious diseases, cardiovascular

diseases, diabetes, and cancer (65). For example, quercetin

competes with erlotinib for binding to bovine serum albumin,

potentially contributing to increased adverse events associated

with erlotinib use (66). Additionally, combined treatment with

quercetin and methotrexate significantly reduces inflammatory

mediators in collagen-induced arthritis mice, suggesting

quercetin’s potential as an adjuvant to enhance anti-rheumatic

monotherapy (67).

3.2.2 Epicatechin
Epicatechin exhibits dose-dependent reduction in TNFa-

induced increase of JNK, p38, and ERK1/2 phosphorylation,

nuclear AP-1-DNA interaction, activation of the NF-kB signaling

pathway, nuclear NF-kB-DNA binding, p65 nuclear translocation,

and PPARg expression in 3T3-L1 adipocytes (68). A dosage of 20

mg/kg epicatechin proves effective in mitigating inflammation in

the renal cortex of fructose-fed rats (69), while a higher dose of 80

mg/kg demonstrates efficacy in alleviating LPS-induced renal

inflammation in rats (70). In both studies, downregulation of

TNFa, iNOS and IL-6 are observed (69, 70). Furthermore, a

dosage of 15 mg/kg epicatechin exhibits anti-inflammatory

properties in mice experiencing LPS-induced acute lung injury,

achieved by directly impeding the function of the p38-MAPK

signaling pathway (71). Epicatechin also shows significant effects

in mitigating atherosclerosis, specifically reducing severe lesions by

27% in ApoE*3-Leiden mice, without affecting plasma lipids.

Additionally, it successfully countered diet-induced increases in

inflammatory markers such as serum amyloid A and human C-

reactive protein (72).

Concerning the pharmacokinetic parameters, orally

administered epicatechin is initially absorbed in the duodenum,

with the majority (70%) being absorbed in the lower intestine after

catabolism by the gut microbiome. Over 80% of ingested

epicatechin is absorbed, and the gut microbiome plays a crucial

role in its metabolism, yielding more than 20 identifiable

metabolites. These metabolites are then mainly excreted through

urine (73).

3.2.3 Catechin
Catechin mitigates coronary heart disease in rats induced by

pituitrin injection and a high-fat diet by inhibiting, lipoprotein-

associated phospholipase A2, C-reactive protein, TNFa, and IL-6.

Simultaneously, catechin treatment also demonstrates the

inhibition of NF-kB and upregulation of FXR, p-STAT3, and p-

Akt expression levels (74). High fructose consumption over a six-
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week period in rats induces a series of metabolic problems,

including insulin resistance, dyslipidemia, obesity, reduced plasma

adiponectin, and inflammation of adipose tissue. Supplementing

their diet with 20 mg/kg/day of catechin effectively enhances all

these parameters. In the TNFa induced 3T3-L1 adipocyte model,

catechin inhibits inflammation by suppressing MAPKs, JNK and

p38 activation, and preventing PPAR-g reduction (75). At a dose of

75-300 mg/kg, catechin alleviates allergic symptoms such as

sneezing and nose rubbing in mice suffering from OVA-induced

allergic rhinitis. It reduces the levels of ovalbumin-specific IgE, IL-5,

IL-13, restoring the balance between Th2 and Th1 cells. The

potential mechanism of action involves the inhibition of TSLP

expression in epithelial cells through the modulation of the NF-kB/
TSLP pathway by catechin (76).

3.2.4 Naringenin
Naringenin significantly inhibits paw swelling and pathological

changes in the joint tissue in the SD rat model of complete Freund’s

adjuvant-induced arthritis. Additionally, IL-1b, TNFa, and IL-6 in

serum are notably suppressed (14). Naringenin demonstrates

neuroprotective effects by ameliorating neuroinflammation

through the inhibition of p38-MAPK and STAT-1. In neuroglial

cells induced by LPS/IFN-g, this compound reduces the production

of TNFa and NO, along with the expression of iNOS, thereby

preventing neuron death induced by inflammation (77).

Furthermore, naringenin inhibits pain behavior in mice triggered

by various inflammatory stimuli, including acute pain caused by the

use of acetic acid, PBQ, formalin, capsaicin, and CFA, as well as the

provocation of mechanical hyperalgesia through subplantar

injection of capsaicin, CFA, carrageenan, or PGE2. The

mechanism of naringenin involves the activation of NF-kB and

the inhibition of IL-1b, IL-33, TNFa, and oxidative stress.

Additionally, naringenin activates the analgesic NO-cyclic GMP-

PKG-ATP sensitive K+ channel pathway (78). Naringenin also

exhibits anti-inflammatory effects in respiratory inflammation. In

a murine COPD model, characterized by 90 days of cigarette smoke

exposure-induced initiation, 20-80mg/kg of naringenin

significantly improves pulmonary function, reduced inflammatory

cells, and inhibits IL-8, TNFa, and MMP-9 in mouse BALF and

serum. Suppression of the NF-kB pathway is also observed in mice

treated with naringenin (79).

Delving into the pharmacokinetic characteristics, orally

administrated naringenin exhibits limited absorption in the human

gastrointestinal tract, yielding a modest 15% oral bioavailability. The

absorption process encompasses both passive diffusion and active

transport mechanisms. Once absorbed, naringenin swiftly distribute

to vital organs such as the liver, cerebrum, kidney, spleen, and heart,

suggesting potential neuroprotection within the central nervous

system. Remarkably, naringenin demonstrates high permeability

across blood-brain barrier models. The enterohepatic recycling of

naringenin plays a crucial role, contributing to hepatic conjugate

excretion in bile and participating in the enteric excretion of phase II

conjugation. Post-absorption, Naringenin undergoes a significant

metabolic process involving glucuronidation, resulting in the
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detection of 98% of naringenin−o−b−d−glucuronide in plasma.

Before absorption in the caecum, naringenin undergoes hydrolysis

by beta–glucosidase in the small intestine. Further metabolism by

intestinal bacterial microflora produces p−hydroxybenzoic acid, p

−hydroxyphenylpropionic acid, and p−coumaric acid, which

manifest in plasma and urine. Ultimately, flavonoid excretion

primarily occurs through two pathways: the biliary and urinary

pathways (80).

3.2.5 Kaempferol
In OVA challenged asthmatic mouse models, oral intake of

kaempferol mitigated the increase in eosinophil major basic protein

and eotaxin-1 expression, achieve through the transactivation

inhibition of NF-kB. Consequently, this reduction leads to

decreased accumulation of eosinophils in the airways and lung

tissue (16). Furthermore, kaempferol demonstrates the ability to

control vascular inflammation in an atherosclerosis rabbit model

with a high-cholesterol diet for ten weeks. Following treatment with

kaempferol, decreased levels of IL-1b, TNFa, and MDA, an increase

in serum SOD activity, and a reduction in the gene and protein

expression of aortic E-selectin, ICAM-1, VCAM-1, and MCP-1 are

observed (81). In a rat model simulating cerebral ischemia/

reperfusion by occluding the middle cerebral artery for 60

minutes and then reperfusion, kaempferol is administered at

doses of 25-100 mg/kg. The treatment significantly reduces the

volume of cerebral infarction following cerebral ischemia-

reperfusion, alleviated inflammation, and prevented the

breakdown of the blood-brain barrier, thereby improving the

neurological outcome on the 7th day after cerebral ischemia

reperfusion. Additionally, reduced nuclear translocation and

phosphorylation of the transcription factor NF-kB p65 are

observed (82). What’s more, kaempferol exerts a protective effect

on osteoarthritis chondrocytes by regulating the XIST/miR-130a/

STAT3 axis, thereby inhibiting inflammation and extracellular

matrix degradation (83).

Limited absorption and minimal oral bioavailability are

observed with kaempferol. Its lipophilic nature allows for passive

absorption, diffusion facilitation, and active transport. Metabolism

in the liver results in the formation of glucuronic acid and sulfate

conjugates, while intestinal enzymes in the small intestine

contribute to its processing. Aglycogens, produced through the

metabolism of kaempferol by colonic microbiota, are further

transformed into 4-hydroxyphenylacetic acid, 4-methylphenol,

and phloroglucinol. These metabolites undergo absorption into

the systemic circulation, distribution to tissues, and eventual

excretion in feces or urine (84).

Notably, the administration of a 12 mg/kg kaempferol dose

demonstrated a substantial improvement in oral etoposide

bioavailability in rats, showing a 64% enhancement compared to

lower doses of 47% and 15%. At the highest dose, 12 mg/kg

kaempferol exhibited a 26% increase in intravenous etoposide

bioavailability. This intriguing finding suggests potential hepatic

CYP3A4 inhibition and implicates kaempferol in reducing the

unpredictable oral bioavailability of etoposide (85).
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3.2.6 Isorhamnetin
Isorhamnetin possesses the ability to inhibit inflammation and

provide renal protection. In a rat model of type 2 diabetes induced

by a high-fat diet and streptozotocin, isorhamnetin significantly

improved the renal function. The study reported that Isorhamnetin

inhibited NF-kB signaling activity, resulting in reductions in IL-1b,
IL-6, TNFa, TGF-b1, and ICAM-1 levels, as well as the mitigation

of oxidative stress in diabetic rats and glomerular mesangial cells

(86). Research conducted by Dou’s team demonstrated that

isorhamnetin exerts beneficial effects on TNBS- and DSS-induced

mouse inflammatory bowel disease (IBD) by upregulating

xenobiotic metabolism mediated by PXR and concomitantly

downregulating NF-kB signaling. Isorhamnetin inhibited the

expression of IL-6 and TNFa, as well as the mRNA levels of

ICAM-1, iNOS, TNFa , COX2, IL-6, IL-2, through the

aforementioned pathways (87). Isorhamnetin has been found

to inhibit neuroinflammation. In BV2 microglial cells stimulated

with LPS, isorhamnetin significantly inhibits NO and PEG2, as

well as IL-1b, TNFa, iNOS and COX2. Research on its anti-

inflammatory mechanism indicates that isorhamnetin controls

neuroinflammation by inhibiting the TLR4/MyD88/NF-kB

pathway (88). Moreover, isorhamnetin exhibits efficacy in asthma.

In TNFa-induced human bronchial epithelial cell line BEAS-2B,

isorhamnetin at concentrations of 20-40 mM can reduce cellular

proliferation and notably suppress the expression of CXCL10, IL-

1b, IL-6, and IL-8. Furthermore, treatment with isorhamnetin

downregulates the phosphorylation of the NF-kB and MAPK

pathways in this model (89).

In the context of collagen-induced arthritis, isorhamnetin at

doses ranging from 10 to 20 mg/kg significantly alleviate arthritis,

improving arthritis score, joint damage score, and inflammation

score. Isorhamnetin can also regulate the production of cytokines

such as IL-1b, TNFa, IL-6, IL-10, IL-17A, IL-17F, and IL-35, while

mitigating oxidative stress (90).
3.3 Glycosides

Arbutin significantly enhances kidney function in rats

experiencing LPS-induced acute kidney damage. It reduces

inflammation and cell death by modulating the PI3K/Akt/Nrf2

pathway after LPS exposure both in vivo and in vitro. Moreover, the

Akt inhibitor GDC effectively inhibits this arbutin-induced

improvement in vitro (91). Additionally, arbutin protects mice

from isoproterenol (ISO)-induced cardiac hypertrophy. Pre-

treatment with arbutin notably inhibits the TLR4/NF-kB
pathway, resulting in decreased IL-6 and TNFa (92). In a DSS-

induced mouse colitis model, arbutin significantly mitigates

symptoms such as elevated disease activity index, loss of body

weight, and increased colon weight-to-length ratio. This anti-

inflammatory impact is contingent upon the control of JAK2 and

the suppression of IL-1b, TNFa, and IL-6. Arbutin also suppresses

inflammatory responses in epithelial (IEC6) and immune

(RAW264.7) cells triggered by LPS. However, these benefits, both

in vitro and in vivo, can be negated by the JAK2 inhibitor AG490 (93).

In addressing metabolic issues, arbutin is found to suppress high-
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glucose-induced inflammation in adult human retinal pigment

epithelial cells via upregulation of SIRT1, which provides a novel

therapeutic target for diabetic retinopathy management (94). In

arbutin-treated LPS-triggered BV2 murine microglial cells, inhibition

of NO production, and reduced expression of COX2 and iNOS are

observed. Arbutin significantly diminishes the expression of IL-1b, IL-
6, MCP-1, and TNFa. Additionally, it impedes the nuclear

transcriptional and translocation activity of NF-kB (95).

Jin’s group developed arbutin-loaded gelatine methacryloyl-

Liposome microspheres (GM-Lipo@ARB), offering extended

arbutin release and notable cartilage targeting. The microspheres

decrease inflammation in IL-1b-stimulated arthritic chondrocytes

and maintain cartilage matrix equilibrium through NF-kB
inhibition and Nrf2 pathway activation. Application of the GM-

Lipo@ARB lessens inflammation and oxidative stress in articular

cartilage, effectively decelerating osteoarthritis progression in a

mouse model (96).
3.4 Phenylpropanoid

The anti-inflammatory effects of chlorogenic acid (CGA) have

been investigated in LPS-stimulated RAW 264.7 macrophages and

BV2microglial cells. CGA inhibits the production of NO, IL-1b, IL-6,
TNFa, CXCL1, COX2, and iNOS. A possible mechanism of action

involves the reduction of ninjurin1 level and nuclear translocation of

NF-kB (97). CGA also downregulates the TLR4/MyD88/NF-kB
signaling pathway (98, 99). Through this pathway, CGA can

potently inhibit CCl4-induced liver fibrosis in rats (98), and

alleviate renal inflammation in a mouse model of hyperuricemia

induced by hypoxanthine and potassium oxonate (99). Animal

experiments have confirmed that the systemic administration of

CGA can help alleviate both inflammatory and neuropathic

pain (100).

The hydrophilic nature of CGA essentially impedes its passage

through the lipophilic membrane barrier, resulting in low

absorption. Absorption likely occurs in the stomach rather than

the small intestine. Caffeic acid is detected in plasma and urine 1.5

hours after a CGA-supplemented meal, along with derivatives like

ferulic acid and isoferulic acid. These derivatives result from CGA

hydrolysis in the small intestinal mucosa. CGAs’ absorption and

metabolism are relatively low, constituting about one-third of total

intake in the upper gastrointestinal tract. The remaining two-thirds

reach the colon, where intense microbial metabolism occurs.

Microflora-derived esterase hydrolyzes CGA, producing microbial

metabolites, comprising 57.4% of the total CGA consumed,

emphasizing the crucial role of gut microbiota in CGA

metabolism and biological properties (101).
3.5 Anthocyanin

Anthocyanins, a member of the polyphenolic family in Z.

bungeanum, contribute to the crimson coloration of its fruit peel. (102).

In total, five types of anthocyanins with clear chemical structure

have been identified in Z. bungeanum (24, 102–104).
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The anti-inflammatory efficacy of cyanidin 3-O-glucoside

(C3G) has been demonstrated across various in vivo and in vitro

models. C3G exhibits the ability to safeguard mice from chronic

skin damage induced by UVB exposure, leading to notable

improvements in UVB-induced epidermal hyperplasia, collagen

fiber preservation, ROS levels, and the expression of COX-2 and

IL-6 (105). Furthermore, C3G demonstrates protective effects in

rats against cecal ligation and puncture (CLP)-induced acute lung

injury (ALI), enhancing their survival rate. C3G treatment results in

reduced serum levels of TNF-a, IL-1b, and IL-6, along with the

inhibition of COX-2 protein expression and PGE2 production in

the lung, potentially through the suppression of the NF-kB
signaling pathway (106). C3G also exerts anti-neuroinflammatory

effects. In LPS-stimulated BV2 microglia, C3G effectively suppresses

microglial activation and the levels of neurotoxic mediators and

pro-inflammatory cytokines. Moreover, there is observed

suppression of the NF-kB and p38 MAPK signaling pathways

(107). Additionally, in TNBS-challenged mice, C3G significantly

ameliorates clinical symptoms and mitigates histological damage,

possibly by protecting the intestinal barrier and suppressing

inflammatory cytokine secretion (108).

Cyanidin 3-O-rutinoside, peonidin 3-O-glucoside, pelargonidin

3,5-O-diglucoside, cyanidin-3,5-O-diglucoside have limited study

in inflammatory disorders. Only a few in vitro studies were found

(109, 110).
3.6 Non-glycosides

Research on the anti-inflammatory effects of quinic acid is

limited. However, one study shown that quinic acid mitigates

vascular inflammation in TNFa-stimulated vascular smooth

muscle cells by reducing MAPK phosphorylation and inhibiting

NF-kB activation (111).

Limited study has been conducted on the anti-inflammatory

effects of catechin gallate, epigallocatechin, dihydrorobinetin,

quercetin-3-arabinoside, quarcetin 3’,4’-dimethyl ether 7-

glucoside, isorhamnetin-3-glucoside, isorhamnetin 7-glucoside,

isorhamnetin 3-O-a-L-rhamnoside, tamarixetin 3,7-bis-glucoside,

3,5,6-trihydroxy-7,4’-dimethoxy flavone, sitosterol b-glucoside,
trifolin, vanillic acid-4-glucoside, syringetin-3-glucoside, L-

sesamin, and 5-feruloyquinic acid.
4 Direct target of
Z. bungeanum polyphenols

In the preceding sections, we primarily delineated the anti-

inflammatory pharmacological activities of Z. bungeanum

polyphenols, highlighting their modulation of inflammation

through signaling pathways, including NF-kB, MAPK, Nrf2/keap1,

and the NLRP3 inflammasome (Figure 3). However, to date, limited

research has been conducted on the direct targeting of proteins or

genes associated with inflammation by Z. bungeanum polyphenols.

In this section, we consolidate and summarize the pertinent studies
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investigating the direct interactions of Z. bungeanum polyphenols

with inflammatory-related proteins or genes (Table 2).
5 Clinical trials of
Z. bungeanum polyphenols

Currently, several clinical trials have utilized Z. bungeanum

polyphenols; however, their application in inflammatory conditions

remains limited. Table 3 below summarizes completed clinical

studies on Z. bungeanum polyphenols to date. Notably, no severe

adverse reactions associated with these polyphenols have been

reported across these clinical investigations, providing a certain

degree of evidence supporting their safety profile.
6 Inflammatory diseases and other
compositions in Z. bungeanum

6.1 Alkaloids

Alkaloids, such as hydroxy-alpha-sanshool (HAS), constitute

the characteristic compounds in Z. bungeanum, contributing to the

notable sensation of numbness in the mouth (124). In a rat model of

type 2 diabetes mellitus (T2DM), Zanthoxylum alkylamides (ZA), a

mixed extract containing hydroxyl-g-sanshool, hydroxyl-b-
sanshool, and hydroxyl-a-sanshool, demonstrated the ability to

control inflammation and address protein metabolism disorders,

consequently ameliorating T2DM. The PI3K/Akt/forkhead box O

signaling pathway and the TNFa/NF-kB pathway are implicated in

this process (125).

Among the alkaloids in Z. bungeanum, HAS has been extensively

studied for its anti-inflammatory effects. HAS exhibits a

neuroprotective effect on H2O2-stimulated PC12 cells without

inducing cytotoxicity in normal PC12 cells. The suppression of

apoptosis is achieved by regulating the PI3K/Akt signaling pathway

(126). Oral administration of HAS markedly improves spontaneous

locomotion, cognitive function, and histopathological injuries in a

mouse model of Alzheimer’s disease induced by D-galactose and

AlCl3. The therapeutic effect of HAS involves the mitigation of

oxidative stress damage and the activation of the Nrf2/HO-1

signaling pathway (127). As one of the main active ingredients in the

herbal medicine TU-100, HAS enhances the production of

antimicrobial defense molecules (ADM) by intestinal epithelial cells.

TU-100, administered orally, prevents weight loss and colon ulceration

in both TNBS-induced type-1 model colitis and OXN-induced type-2

model colitis. This suggests that HAS possesses anti-inflammatory

properties and could potentially serve as a beneficial treatment agent

for UC through the promotion of ADM production (128).

Zanthoxylin, another major alkaloid of Z. bungeanum, exhibits

anti-inflammatory and pain-relieving effects in a variety of animal

models. In mice, zanthoxylin alleviates pain in both general and

formaldehyde-induced pain models. Its mechanism of action

involves binding to the a7nAChR receptor and activating the

JAK2/STAT3 signaling pathway, thereby inhibiting inflammation
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and reducing the production of pro-inflammatory cytokines such as

IL-6 and TNFa (129).
6.2 Fatty acid

Research on the anti-inflammatory properties of fatty acids in Z.

bungeanum predominantly focuses on Z. bungeanum seed oil

(ZBSO). The primary components of ZBSO include eicosoic acid,

linolenic acid, linoleic acid, oleic acid, palmitic acid, arachidonic

acid, stearic acid, eicosenoic acid, and docosahexenoic acid (130). In

LPS-triggered lung epithelial cells, ZBSO effectively inhibits the

production of pro-inflammatory cytokines and chemokines,

including IL-6, IL-10, TNFa, PGE2, MMP2, MMP9, MCP1, and

COX2. This inhibition is achieved by blocking the TLR4/MyD88/
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NF-kB signaling pathway. Additionally, ZBSO inhibits the nuclear

translocation of NF-kB/p65 (131).

Zanthoxylum bungeanum Maxim seed (ZBMS), rich in oleic

acid, linoleic acid, and a-linolenic acid, exhibits potential for

treating asthma and stress-related disorders (132). ZBMS protects

mice from histamine/acetylcholine-induced asthma, reduces citric

acid-induced cough in guinea pigs, and increases swimming

endurance and survival time in mice, indicating a positive anti-

stress effect. In an OVA-induced airway inflammation mouse

model, ZBMS treatment improved lung peak inspiratory airflow

in a dose-dependent manner (132).

Another group examined ZBSO in an OVA-induced asthmatic

mouse model, demonstrating its efficacy in alleviating airway

inflammation, attenuates lung tissue injury and airway remodeling,

and inhibits leukocytes and eosinophils infiltration into the airway.
FIGURE 3

Molecule mechanism of polyphenols in Z. bungeanum and their anti-inflammatory effect.
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ZBSO also reduces IL-5 and IL-4 in the bronchial airway, attenuates

the induction of ICAM-1 and TNFa mRNA and protein expression

levels, and alleviates ERK, JNK phosphorylation, c-fos and c-JUN

induction in the lung tissue (133). ZBSO exhibits effective anti-

inflammatory properties in the wound healing process. In SD rat

models with deep second-degree burns, topical ZBSO application

resulted in decreased levels of TNFa, IL-6, and IL-1b in serum,

elevated IkBa, and reduced p-IkBa and p-NF-kB p65 expression

(134). In copper comb-induced rat burn model, ZBSO can reduce the

level of thiobarbituric acid reactant, IL-6, TNFa, increase GSH level

and promote wound recovery (135). ZBSO also inhibits

inflammation in bone-destroying diseases. In RAW264.7 cells

stimulated with NF-kB ligand (RANKL), ZBSO decreases NF-kB,
TNFa, NFATc1, and TRAP, leading to the inhibition of

osteoclastogenesis. Among the fatty acids in ZBSO, alpha-linolenic

acid (ALA) exhibits the strongest effect. In ovariectomized
TABLE 2 Direct target of Z. bungeanum polyphenols.

Polyphenols Target Verified by Publication

Rutin HMGB1 SPR (112)

Quercetin
HMGB1 SPR (112)

PI3K1R SPR (113)

Kaempferol

HMGB1 SPR (114)

TNF- a SPR (115)

CASP3
PARP1

SPR (116)

JAK3 IP (117)
*SPR, Surface plasmon resonance;
BLI, Bio-Layer Interferometry;
IP, Immunoprecipitation;
ChIP, Chromatin immunoprecipitation.
TABLE 3 Completed clinical trials utilizing Z. bungeanum polyphenols.

Compound ID
Study
phase

Dose & Administraton Condition Publication

Quercetin
and Rutin

NCT01847521 2 Quercetin 70 mg/10kg/d and Rutin 30 mg/
10kg/d
po

Autism Spectrum Disorders /

Rutin NCT03437902 2 & 3 180mg po Type 2 Diabetes Mellitus /

Quercetin

NCT00913081 4 500-2000 mg po one time Flushing /

NCT01708278 1 500-2000 mg/d po Chronic Obstructive
Pulmonary Disease

(118)

NCT02463357 4 1000mg/d po Mountain Sickness /

NCT01722669 1 500mg po Healthy (119)

Epicatechin

NCT01856868 1 & 2 100mg/day, po Becker Muscular Dystrophy /

NCT03236662 2 100mg/day, po Becker Muscular Dystrophy /

NCT01691404 / 100mg/d po Hypertension,
Endothelial Dysfunction

(120–122)

Naringenin

NCT01091077 1 1000mg po HCV Infection /

NCT04697355 / 900mg/d po Energy Expenditure
Safety Issues
Glucose Metabolism

/

Kaempferol NCT06060691 1 Topical Female Sexual Dysfunction /

Arbutin NCT03868748 1 150-400mg/d po Healthy Volunteers /

Chlorogenic acid

NCT02245204 1 Injection* Advanced Cancer /

NCT02136342 1 Injection* Advanced Cancer /

NCT02728349 1 Injection* Glioblastoma /

NCT02728349 1 Injection* Glioblastoma /

NCT03758014 2 & 3 Injection* 3 mg/kg/d Glioblastoma /

NCT02621060 2 1200 mg/d po Impaired Glucose Tolerance /

NCT02929901 2 & 3 200mg/d po Type 2 Diabetes Nonalcoholic
Fatty Liver

(123)
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osteoporotic rats, preventive and therapeutic interventions with ALA

resulted in decreased levels of IL-1b, IL-6, TAK1, TRAP, NFATc1,
and TNFa (136).
6.3 Z. bungeanum essential oil

Z. bungeanum essential oil (ZBEO) is the primary source of the

distinctive flavor of Sichuan pepper, with terpenoids being a major

component of ZBEO (2). ZBEO has demonstrated anti-inflammatory

effects in various skin disease models. In a guinea pig model of

psoriasis, ZBEO treatment significantly improved Baker scores and

reduced inflammatory cell infiltration (137). In a mouse model of

ultraviolet-induced skin photoaging, topical application of ZBEO

improved photoaging damage, reduced skin thickening, and

attenuated inflammatory cell infiltration. ZBEO also inhibits the

levels of MMP9, MMP1, and MMP3 in skin tissue, enhance the

activity of CAT, SOD, and GSH-Px/GPX, and reduced the

production of the lipid peroxidation byproduct MDA.

Furthermore, ZBEO effectively suppress the expression of TNFa,
IL-6, IL-1b, and IL-1a (138). In a HaCaT cell inflammatory model

induced by Propionibacterium acnes (P. acnes), pretreatment with

ZBEO reduced the levels of TNFa, IL-1b, IL-8, and IL-6, as well as

the mRNA levels of TLR2, IL-8, IL-6, and NF-kB (139).

ZBEO also shows therapeutic effects in gastrointestinal

disorders due to its anti-inflammatory properties. ZBEO has

demonstrated protective effects against DSS-induced colitis in

mice. ZBEO doses of 20-80 mg/kg reduced myeloperoxidase

activity, colonic pathological damage, colon length shortening,

disease activity index, and DSS-induced weight loss (140, 141).

Administration of ZBEO significantly reduced IL-1b, IL-12 (140),

TNFa, VCAM-1, TLR8, and IL-11 (141) mRNA levels. ZBEO is

reported to inhibit inflammation in colitis in mice by regulating the

PPARg and NF-kB pathways, and suppressing NLRP3 activation

(140). Next-generation sequencing (NGS) verifies that ZBEO

increases VCAM-1 and CYP, and suppresses CXCL and S100A8

to attenuate UC symptoms (141). In vitro studies also demonstrate

that ZBEO can reverse the imbalanced expression of IL-1b, IL-6, IL-
10, and TNFa in LPS-induced NCM460 colon epithelial cells (141).

ZBEO inhibited enteritis and intestinal dysfunction caused by E.

coli infection in mice. Histopathological observations indicated that

ZBEO significantly improved the impairment of intestinal tissue

structure, which could be associated with its inhibitory effect on the

gene expression of inflammatory cytokines such as IL-8, TNFa,
TLR4, and TLR2 (142). Atomized inhalation of ZBEO protects

mouse from inflammation related colorectal cancer by reducing

inflammation and cancer transformation. Furthermore, a decrease

in AChE activity, an increase in ChAT activity, an increase in

a7nAChR expression, and a decrease in IL-6 mRNA levels are

observed in ZBEO treated group (143).
6.4 Other extractions

Z. bungeanum-cake-separated moxibustion (ZBCS-moxi) is a

traditional Chinese therapy that has been employed for centuries to
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treat rheumatoid arthritis. A recent study assessed the anti-

inflammatory effects of ZBCS-moxi in a rat model of rheumatoid

arthritis. The study found that rats treated with ZBCS-moxi for

three weeks exhibited a significant reduction in paw volume,

pannus formation, synovial hyperplasia of synovial membranes,

and levels of TNFa and IL-1b in serum (144).

These findings suggest that Zanthoxylin and ZBCS-moxi may

have therapeutic potential for the treatment of inflammation and

pain. However, more research is needed to confirm these findings

through clinical trials.
7 Discussion

Zanthoxylum bungeanum Maxim., or Chinese prickly ash, holds

a rich history spanning over two millennia in traditional Chinese

medicine (5). This herb has been extensively used orally and topically

to address various ailments, including gastrointestinal discomfort,

arthritis, and bruises (5, 7). Its significance extends beyond China,

finding a place in traditional medical practices in countries such as

India and Nepal (7). Additionally, the unique flavor and numbing

taste of the dried fruit follicles of Z. bungeanum have made it a

significant ingredient in Chinese cuisine (1). Over time, research on

and applications of Z. bungeanum have expanded significantly. Z.

bungeanum exhibits diverse pharmacological activities such as anti-

inflammatory, analgesic, antibacterial, and anti-tumor properties,

showcasing therapeutic effects on multiple organ systems, including

the gastrointestinal tract, cardiovascular system, and nervous system

(2). The plant contains over 140 compounds, including polyphenols,

alkaloids, lignans, coumarin, fatty acids, and essential oils (2, 11, 12).

Beyond its polyphenolic content, constituents like hydroxy-alpha-

sanshool, a mixed extract of fatty acids, and essential oil extraction

from Z. bungeanum, have proven anti-inflammatory efficacious in

various systems, such as the nervous system (127) and digestive

system (140, 141). As research progresses, the application of Z.

bungeanum in both medical and daily contexts continues to

broaden, promising potential benefits to human health.

Polyphenols from Z. bungeanum emerge as a promising class of

natural compounds with potential health benefits, particularly in

preventing and treating inflammatory diseases. Numerous studies

have highlighted their anti-inflammatory and antioxidant

properties through a variety of mechanisms, including:
• Inhibiting pro-inflammatory cytokine production, such as

IL-1b, TNFa, and IL-6.

• Suppressing the NF-kB and MAPK signaling pathway,

central to inflammation.

• Activating the Nrf2/HO-1 signaling pathway, protecting

cells from oxidative damage.

• Modulating the immune response, promoting regulatory T

cells and suppressing inflammatory T cells.
While much of the current research on polyphenols of Z.

bungeanum has been conducted in vitro or in animal models,

promising preclinical data suggest therapeutic potential for a

range of inflammatory diseases in humans, including ulcerative
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colitis, arthritis, asthma, chronic obstructive pulmonary disease,

cardiovascular disease, and neurodegenerative diseases. In addition

to their anti-inflammatory effects, polyphenols of Z. bungeanum

have demonstrated other beneficial properties, such as anti-cancer,

anti-diabetic, anti-bacterial, and neuroprotective effects.

Several clinical trials have tested Z. bungeanum polyphenols in

non- inflammatory diseases, indicating the safety of these

compound. Future research should prioritize human clinical trials

to validate the clinical efficacy of polyphenols of Z. bungeanum on

inflammatory diseases. Additionally, researchers should investigate:
Fron
• Optimal dosages and long-term safety of polyphenols of

Z. bungeanum.

• Synergistic or antagonistic interactions of polyphenols of Z.

bungeanum with other bioactive substances.

• Effects of polyphenols of Z. bungeanum on specific

biomarkers of inflammation and disease activity.

• Mechanisms by which polyphenols of Z. bungeanum exert

their beneficial effects.
Ultimately, research outcomes may contribute to the

development of novel therapeutic interventions and dietary

recommendations that harness the power of polyphenols of Z.

bungeanum to improve human health and well-being. For

example, polyphenols of Z. bungeanum could be used to develop:
• New drugs or dietary supplements for the prevention and

treatment of inflammatory diseases.

• Functional foods or fortified beverages that promote overall

health and well-being.

• Personalized nutrition plans that take into account

individual genetic and environmental risk factors.
Overall, the polyphenols of Z. bungeanum are a promising class

of natural compounds with the potential to play a significant role in

human health and well-being. Further research is needed to fully

elucidate their mechanisms of action and develop safe and effective

therapies for human use.
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