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(MSPyBS), Asunción, Paraguay, 3Dipartimento di Scienze Biotecnologiche di Base, Cliniche
Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore,
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Introduction: New diagnostic tools are needed to rapidly assess the efficacy of

pulmonary tuberculosis (PTB) treatment. The aim of this study was to evaluate

several immune biomarkers in an observational and cross-sectional cohort study

conducted in Paraguay.

Methods: Thirty-two patients with clinically and microbiologically confirmed

PTB were evaluated before starting treatment (T0), after 2 months of treatment

(T1) and at the end of treatment (T2). At each timepoint plasma levels of IFN-y, 17

pro- and anti-inflammatory cytokines/chemokines and complement factors

C1q, C3 and C4 were assessed in unstimulated and Mtb-specific stimulated

whole blood samples using QuantiFERON-TB gold plus and recombinant

Mycobacterium smegmatis heparin binding hemagglutinin (rmsHBHA) as

stimulation antigen. Complete blood counts and liver enzyme assays were also

evaluated and correlated with biomarker levels in plasma.

Results: In unstimulated plasma, C1q (P<0.001), C4 (P<0.001), hemoglobin

(P<0.001), lymphocyte proportion (P<0.001) and absolute white blood cell

count (P=0.01) were significantly higher in PTB patients at baseline than in

cured patients. C1q and C4 levels were found to be related to Mycobacterium

tuberculosis load in sputum. Finally, a combinatorial analysis identified a plasma

host signature comprising the detection of C1q and IL-13 levels in response to

rmsHBHA as a tool differentiating PTB patients from cured TB profiles, with an

AUC of 0.92 (sensitivity 94% and specificity 79%).
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Conclusion: This observational study provides new insights on host immune

responses throughout anti-TB treatment and emphasizes the role of host C1q

and HBHA-specific IL-13 response as surrogate plasma biomarkers for

monitoring TB treatment efficacy.
KEYWORDS

pulmonary tuberculosis, host biomarkers, treatment immunomonitoring, plasma
protein signature, immunodiagnostic
1 Introduction

Tuberculosis (TB), an infectious disease caused by

Mycobacterium tuberculosis (Mtb), remains a major global health

problem with around 10.6 million cases in 2022 (1).

Pulmonary tuberculosis (PTB) occurs in around 80% of TB

cases and can be treated with WHO-approved treatment regimens,

based on the resistance profile of Mtb to first- and second-line drugs

(2, 3). TB treatment has the potential to cure the patient, restore

quality of life and productivity, while preventing death, relapse, and

transmission of drug-resistant strains. Completing long-term

treatment represents a major challenge for patients and clinicians

alike, particularly for patients undergoing treatment for multidrug-

resistant tuberculosis (MDR-TB), for whom treatment is often

associated with side effects. Treatment monitoring tools are

needed to determine, from the initial phase of treatment, whether

the patient is responding correctly to treatment.

TB treatment monitoring is currently assessed by clinical

evaluation of the patients, as well as by analysis of sputum

samples for microbiological testing at the second month and at

the end of treatment (2). However, sputum samples often contain

an insufficient number of bacteria, which has an impact on the

performance of sputum smear microscopy and the molecular tests

recommended by the WHO for the rapid diagnosis of tuberculosis

(mWRD) (4). Sputum culture remains the gold-standard diagnostic

test, but it takes time and results are only available after 3 to 6 weeks.

Non-sputum-based assays, such as blood tests, are considered a

potential valid alternative or substitute approach for active TB

diagnosis, triage and treatment monitoring (5–7). Among existing

blood tests for TB, interferon-g release assays (IGRA) remain

specifically useful for the identification of latent tuberculosis

infection and (8–10) and their usefulness as a treatment

monitoring tool has been also evaluated (11–13). Experimental

test based on the response to recombinant Mycobacterium

smegmatis heparin binding hemagglutinin(rmsHBHA) have been

shown to discriminate between TB disease and infection in HIV-

uninfected and infected individuals (11, 12, 14–16). Major advances

in transcriptomics, metabolomics and proteomics have made it

possible to develop tools for monitoring the efficacy of TB treatment

(17, 18). In addition to several blood transcriptomic signatures (19–

23), host plasma proteomic signatures have also been widely
02
evaluated as diagnostic tools for TB, but also for monitoring

treatment (24–28).

Various cytokines and chemokines linked to the Th1/Th17 and

Th2/Th9 signaling pathways are involved at different stages of the

TB spectrum, either to contain infection in the early phase, or to

contribute to Mtb elimination in TB disease (29–32). However, a

thorough description of the host immune response at different

stages of treatment is needed for the development of more sensitive

and specific non-sputum-based tests for monitoring TB treatment.

Here, we conducted an observational and cross-sectional cohort

study in 32 patients with clinically and microbiologically confirmed

PTB, followed up before the start of treatment (T0), after 2 months of

treatment (T1) and at the end of treatment (T2). At each timepoint

plasma levels of IFN-g, IL-1717 pro- and anti-inflammatory cytokines/

chemokines and complement factors C1q, C3 and C4 were assessed in

unstimulated and Mtb-specific stimulated plasma using interferon-g
release assays as QuantiFERON-TB gold plus and rmsHBHA.

This study provides new information on host immune

responses throughout the course of anti-TB treatment, and

enables the identification of a plasma protein signature, composed

of C1q and IL-13-specific response to rmsHBHA, capable of

differentiating an active form of pulmonary TB from cured disease.
2 Materials and methods

2.1 Type of study

Cross-sectional and observational clinical evaluation of blood

biomarkers for monitoring the efficacy of anti-tuberculosis

treatment (HINTT project). The Instituto de Investigaciones en

Ciencias de la Salud (Universidad Nacional de Asunción; IICS-

UNA) in Asunción, Paraguay, led the project in Paraguay with the

support from Mérieux Foundation, Lyon, France.
2.2 Ethical considerations

The research obtained ethical approval from the Research

Ethics Committee and the Scientific Committee of the IICS-UNA

(IRB number: IRB00011984; Federal Wide Assurance number:
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FWA00029097). Informed written consent was obtained from all

enrolled patients. The results obtained did not interfere with the

national standards for TB diagnosis and treatment; standard

procedures from the National Tuberculosis Program were followed.
2.3 Cohort recruitment, TB diagnosis, and
patient follow-up

Between July 2018 and June 2020, 32 patients with

microbiological confirmed pulmonary TB (positive culture and/or

sputum smear and/or GeneXpert MTB/RIF) were enrolled in the

study. Among them, 90.6% (29/32) were confirmed by sputum

smear-microscopy (Ziehl-Neelsen and/or Auramine O staining).

Patients with HIV or HbA1c levels exceeding 6.5%; Cobas (Roche)

automated analyzer were excluded. The median age of the patients

included in the cohort was 35 years (IQR: 23-49), 56.2% (18/32) of

the individuals were male, the median body mass index was 20.5

(IQR: 18.2-22.82), 6 subjects (18.8%) had a history of TB, and 68.8%

(22/32) of the subjects had proof of BCG vaccination. At inclusion,

all subjects had clinical symptoms consistent with pulmonary TB.

Patients were followed up for clinical evaluation before starting

anti-TB treatment, at baseline (T0), after 2 months of treatment

(T1) and at the end of treatment (T2). All patients in this cohort

followed the 6-months WHO-recommended treatment regimen for

drug-susceptible TB. Treatment outcomes were defined according

to WHO guidelines: cured (negative sputum culture at T2); failed

(positive sputum culture at T2). The study flowchart is described in

Supplementary Figure 1.
2.4 Whole blood sampling, cell count
and IGRA

At each time point, venous whole blood was collected and

processed as follows: 1 ml was collected in EDTA tubes for whole

blood cell counting using a standardized automated system, 2 ml

were collected in dry tubes for serological analysis, including

glutamate-pyruvate transaminase (GPT), g-glutamyl-transferase

(GGT), alkaline phosphatase and HIV testing. 5 ml were collected

in lithium heparin tubes for IGRA. QuantiFERON-TB Gold Plus

(QFT-P; Qiagen) were performed according to manufacturer’s

instructions. RmsHBHA was used in an in-house whole blood

stimulation test at a final concentration of 5 µg/ml according

previously described method (11, 12, 14, 15). Within 2 hours of

blood collection, the samples were placed at 37°C in a 5% CO2

atmosphere and incubated for 24 hours. After incubation, plasma

was separated from the cell fraction by decantation and stored at

−80°C for biomarker quantification.
2.5 Quantification of cytokines and
chemokines levels in plasma

Plasma levels of TNFa, IL-2, IL-4, IL-13, IFN-g, IL-1b, IL-17,
IL-6, IL-7, IL-8, IL-12p70, G-CSF, GM-CSF, IL-5, IL-10, MCP-1
Frontiers in Immunology 03
and MIP-1b were assessed using the Bio-Plex Pro Human Cytokine

17-Plex (BIO-RAD, USA) in accordance with the manufacturer’s

instructions. Plasma C1q/C3/C4 levels were assessed using the

HCMP2MAG-19K MILLIPLEX MAP Human Complement Panel

2 assay (Millipore) in accordance with the manufacturer’s

instructions. Multiplex readings were performed using MAGPIX®

equipment (Luminex platform). In addition, IFN-g secretion was

quantified using the QuantiFERON-TB Gold Plus (QFT-P) ELISA

kit (Qiagen), in accordance with the manufacturer’s instructions.
2.6 Clinical data collection and
statistical analysis

Standardized clinical report formats and data collection forms

were used in accordance with the methodology described (33). Data

were entered into the CASTOR database system (version 1.4,

Netherlands) and then subjected to extensive cleaning and analysis

in RStudio (version 1.4.1106). For continuous variables with a non-

normal distribution, the Mann-Whitney test was used. In the case of

repeated measures involving non-independent continuous variables,

analysis was performed using the Friedman rank sum test, followed

by the Wilcoxon-Nemenyi-McDonald-Thompson (34) post-hoc test.

Principal component analysis was performed using the R-studio

interface and implemented with the Kassambara script (35).

Combinatorial analysis of multiple biomarkers was performed

using the CombiROC software package to determine the most

effective combinations of the plasma markers studied (36).

Combinations with the highest area under the receiver operating

characteristic curve (AUC) were considered for the identification of

potent immune biomarker signatures. The process involved

computational evaluation and selection of the most optimal

biomarker combinations via integrated ROC analysis.
3 Results

3.1 Descriptive analysis of Mtb-specific and
non-specific immune responses
throughout TB treatment

The clinical and microbiological classification of patients at

each follow-up visit is shown in Figure 1A. At each time point, levels

of cytokines and chemokines (TNFa, IL-2, IL-4, IL-13, IFN-g, IL-
1b, IL-17, IL-6, IL-7, IL-8, IL-12p70, G-CSF, GM-CSF, IL-5, IL-10,

MCP-1, MIP-1b) and complement factors (C1q, C3 and C4) were

assessed in unstimulated plasma and Mtb-specific stimulated

plasma from blood stimulated by the QuantiFERON-TB gold plus

TB2 tube or with rmsHBHA (Figure 1B). Complete blood count

and alkaline phosphatase, glutamate-pyruvate-transaminase (GPT)

and g-glutamyl transferase (GGT) were evaluated in unstimulated

whole blood. The expression levels of each plasma or blood

biomarker are reported in Table 1 and summarized in heatmaps

in Figure 2. Overall, rmsHBHA stimulated blood contained a

significant higher concentration of inflammatory mediators

compared to unstimulated and TB2 stimulated plasma
frontiersin.org
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(Figure 2A). C1q (P<0.001) plasma levels, absolute WBC count

(P=0.001), alkaline phosphatase (P=0.003), GGT (P<0.001) and

GPT (P=0.008) enzymes were significantly higher in unstimulated

plasma from patients with PTB at baseline (T0) than other follow-

up timepoints (Figure 2B). C4 (P<0.001) plasma levels were the

highest after 2 months of TB treatment. The proportion of

lymphocytes (P<0.001), monocytes (P=0.05) and hemoglobin

(P<0.001) were highest at the end of treatment (T2). A

macroscopic overview of the immune response to rmsHBHA

reveals an overall activation of Th1/Th17 and Th2/Th9 cells

signaling pathways after 2 months of TB-treatment (Figure 2C).
3.2 Identification of the main parameters
discriminating active pulmonary TB (T0)
from a resolved infection (T2)

Plasma cytokines/chemokines, complement factors, blood counts

and levels of liver enzymes were included in a principal component

analysis (PCA) to identify the main parameters associated with the

specific phases of TB treatment (T0, T1 and T2). PCA results showed

that complement factors C1q and C4 plasma levels, lymphocyte

proportion, absolute WBC count, body mass index (BMI) and

hemoglobin (HB) were the main variables contributing most to

differentiating a PTB at onset from a cured TB profile (Figures 2D, E).

The dynamic expression of the main biomarkers of interest

identified in the PCA are shown in Figure 3. Levels of C1q, C4,

absolute WBC count decreased significantly over time, while

hemoglobin levels, lymphocyte proportion, IL-13 response to

HBHA (IL-13rmsHBHA) and BMI increased significantly over
Frontiers in Immunology 04
the same period (Figure 3A). Plasma C1q and C4q levels were

significantly lower in PTB individuals with a negative sputum smear

microscopy than in those with positive (grade 1+ and 2+) sputum

smear microscopy (Figure 3B).
3.3 Identification of a host blood signature
to differentiate PTB at diagnosis or during
disease from cured profiles

CombiROC algorithm was first used to identify the best

combinations of plasma host markers to distinguish PTB profiles

(T0, sputum culture positive at baseline) from cured profiles (T2,

sputum culture negative at the end of treatment) (Table 2). A set of 57

signatures were obtained from the six selected markers. These

signatures were ranked according to their decreasing AUC values,

then, the number and the relevance of the combinedmarkers involved

in each signature. The highest AUC for a single marker was obtained

with lymphocytes proportion as biomarker for differentiating PTB

disease at diagnosis from cured profiles. A signature including levels

of C1q and hemoglobin, combined with an evaluation of the levels of

IL-13 in response to rmsHBHA concentration can discriminate PTB

disease at diagnosis from cured profiles with an AUC of 0.92,

sensitivity of 94%, specificity of 79%. A second analysis aimed to

identify and evaluate the analytical performance of a protein signature

capable of differentiating subjects according to their bacterial load

(Supplementary Table 1). The [C1q] + [HB] + [IL-13rmsHBHA]

signature showed an AUC of 0.84, sensitivity of 89% and specificity of

78% in distinguishing subjects with a low bacterial load (grade 1+)

from microscopy-negative subjects.
A

B

FIGURE 1

Overview of the study design. (A) Clinical and microbiological definition of patients during TB treatment and (B) description of analyses performed
throughout the study. Plasma levels were assessed using the *QuantiFERON-TB Gold Plus (QFT-P) ELISA kit (Qiagen) or **Bio-Plex Pro Human
Cytokine 17-Plex (BIO-RAD, United States) or *** HCMP2MAG-19K MILLIPLEX MAP Human Complement Panel 2 assay (Millipore) on MAGPIX ®
equipment (Luminex).
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TABLE 1 Quantification of host blood biomarkers during TB treatment.

Timepoint

Condition Biomarkers T0 T1 T2 p

Unstimulated MIP-1b 822.5 (447.7 to 2352.7) 1319.6 (931.3 to 3424.8) 1053.5 (580.8 to 2688.8) 0.150

IL-6 64.5 (24.3 to 223.5) 59.0 (13.5 to 230.0) 36.8 (3.6 to 168.1) 0.519

IFN-g 6.8 (4.2 to 16.6) 8.5 (6.4 to 15.3) 8.3 (6.4 to 17.3) 0.481

IL-5 5.3 (5.3 to 10.9) 5.3 (5.3 to 21.7) 5.3 (5.3 to 6.0) 0.285

GM-CSF 0.4 (0.4 to 0.7) 0.4 (0.4 to 1.2) 0.4 (0.4 to 0.4) 0.362

TNF-a 56.9 (23.6 to 195.6) 84.7 (33.0 to 227.2) 49.4 (24.5 to 105.0) 0.354

IL-2 2.4 (1.7 to 5.6) 3.4 (1.7 to 6.2) 2.7 (1.7 to 8.3) 0.906

IL1-b 10.0 (5.1 to 35.1) 14.9 (7.7 to 60.4) 10.1 (0.8 to 31.1) 0.440

IL-13 0.6 (0.3 to 1.2) 0.7 (0.3 to 1.0) 0.3 (0.3 to 1.1) 0.473

IL-4 2.1 (1.1 to 5.7) 3.0 (1.6 to 6.5) 3.0 (0.4 to 5.0) 0.618

MCP-1 1570.3 (879.2 to 2126.3) 1653.4 (1035.5 to 2474.8) 1629.2 (980.5 to 2306.9) 0.691

IL-8 5197.2 (2386.2 to 18232.2) 7283.6 (3927.7 to 20243.9) 6912.0 (2024.1 to 19465.0) 0.818

IL-10 5.0 (2.3 to 10.7) 5.0 (3.4 to 12.4) 4.8 (0.8 to 6.8) 0.414

G-CSF 54.4 (4.3 to 109.6) 48.5 (7.7 to 80.1) 34.1 (4.3 to 89.2) 0.807

IL-7 0.5 (0.3 to 1.0) 0.5 (0.3 to 1.0) 0.3 (0.3 to 1.0) 0.644

IL-12P70 7.5 (1.9 to 17.1) 7.5 (2.0 to 17.8) 6.3 (1.9 to 20.1) 0.749

IL-17 2.7 (2.7 to 10.9) 6.6 (2.7 to 12.9) 4.3 (2.7 to 9.2) 0.211

C1q 174.1 (149.2 to 196.8) 152.9 (131.3 to 185.9) 131.9 (117.0 to 155.3) 0.002

C3 403.5 (270.3 to 507.0) 369.7 (259.5 to 455.8) 341.5 (232.8 to 473.9) 0.292

C4 584.5 (493.3 to 644.4) 575.2 (470.6 to 623.1) 456.8 (386.1 to 548.1) 0.005

TB2 MIP-1b 1367.0 (476.6 to 2228.6) 1563.6 (934.8 to 2887.8) 1894.6 (1029.5 to 2929.3) 0.164

IL-6 105.0 (27.7 to 402.9) 65.9 (23.6 to 564.8) 79.4 (10.2 to 387.5) 0.928

IFN-g 13.1 (8.7 to 32.8) 14.8 (8.6 to 31.9) 17.0 (12.2 to 36.2) 0.331

IL-5 5.3 (5.3 to 24.1) 5.3 (5.3 to 29.9) 5.5 (5.3 to 17.5) 0.595

GM-CSF 0.4 (0.4 to 1.6) 0.4 (0.4 to 1.8) 0.4 (0.4 to 3.2) 0.885

TNF-a 108.5 (28.0 to 200.9) 93.8 (29.9 to 229.0) 77.0 (39.2 to 169.2) 0.890

IL-2 11.9 (3.7 to 24.6) 11.1 (1.7 to 39.9) 15.8 (6.7 to 45.9) 0.371

IL1-b 18.7 (8.2 to 64.8) 22.2 (4.9 to 49.3) 16.8 (4.2 to 52.7) 0.984

IL-13 0.7 (0.3 to 1.3) 1.0 (0.3 to 1.5) 0.7 (0.3 to 1.8) 0.567

IL-4 3.2 (1.5 to 6.6) 3.3 (1.3 to 6.3) 4.0 (2.2 to 7.6) 0.930

MCP-1 1705.5 (934.5 to 2633.2) 1917.0 (1117.8 to 2894.8) 2202.9 (1688.8 to 2913.9) 0.329

IL-8 10744.7 (3025.0 to 23966.1) 10125.7 (4657.0 to 23719.0) 8875.6 (5343.7 to 31318.7) 0.812

IL-10 6.7 (1.9 to 10.0) 4.6 (2.0 to 8.7) 4.6 (1.6 to 8.4) 0.865

G-CSF 62.3 (4.3 to 112.7) 47.0 (4.3 to 81.8) 33.0 (4.3 to 81.1) 0.558

IL-7 0.6 (0.3 to 1.1) 0.5 (0.3 to 1.0) 0.4 (0.3 to 1.1) 0.842

IL-12P70 10.7 (1.9 to 24.5) 7.5 (1.9 to 25.6) 8.8 (1.9 to 23.1) 0.871

IL-17 5.5 (2.7 to 14.1) 7.2 (2.7 to 13.3) 7.9 (2.7 to 17.7) 0.489

rmsHBHA MIP-1b 6772.6 (3972.5 to 13668.5) 9961.7 (5932.3 to 17003.2) 11643.5 (6857.3 to 17570.3) 0.105

(Continued)
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4 Discussion

In the present study we characterized the immune responses of

patients with microbiologically confirmed PTB at different

timepoints of the treatment regimen to identify host blood

signatures that distinguish individuals with PTB disease at

enrolment from those with cured disease. We demonstrated that

host C1q plasma levels and IL-13-specific response to rmsHBHA

differentiate active form of pulmonary TB from cured disease.

Levels of plasma complement factors C1q and C4 were

significantly higher at baseline, in patients with clinically and

microbiologically confirmed PTB than in subjects fully treated

and cured. These results suggest that complement factors are

highly involved during the active phase of the TB and less during

treatment phase according to the significant decrease of those two

biomarkers across TB-treatment. These findings align with existing

literature, wherein the C1q protein has been newly identified as a

diagnostic biomarker for tuberculous pleural effusion (TPE),
Frontiers in Immunology 06
demonstrating notably high diagnostic accuracy, particularly

among younger patients (37). In non-human primates (NHP),

elevated levels of C1q, whether observed systemically or within

the local environment, are positively correlated with the

advancement of TB disease (assessed by PET-CT imaging or

post-mortem evaluation (38). In a separate cohort of South

African adolescents with latent Mtb infection, a specific gene pair,

C1qC/TRAV27, has been identified as a consistent predictor of TB

progression (39). Notably, this prediction holds true for household

contacts across various African sites yet does not apply to infected

adolescents without identifiable recent exposure events. In a

different study, elevated levels of C1q were observed in

individuals with TB disease when compared to those with latent

TB infection, as well as patients with sarcoidosis, leprosy, and

pneumonia (40). A deficiency in complement C4 could

potentially pose as a risk factor for non-tuberculous mycobacteria

(NTM) infect ion among individuals appearing to be

immunocompetent (41). In addition, C1q and C4 were
TABLE 1 Continued

Timepoint

Condition Biomarkers T0 T1 T2 p

IL-6 4512.4 (2061.3 to 9009.2) 6536.7 (5526.7 to 11812.3) 6805.8 (3062.9 to 10985.8) 0.082

IFN-g 12.4 (9.1 to 36.2) 14.1 (10.7 to 30.4) 18.0 (12.1 to 32.5) 0.380

IL-5 110.1 (5.3 to 188.1) 186.0 (88.8 to 261.9) 130.2 (15.1 to 262.5) 0.237

GM-CSF 4.2 (0.4 to 13.0) 8.5 (0.6 to 23.3) 6.7 (0.4 to 18.4) 0.532

TNF-a 459.7 (258.6 to 1402.9) 812.8 (449.0 to 2619.9) 498.8 (292.1 to 2119.5) 0.257

IL-2 19.6 (9.0 to 48.8) 37.9 (21.0 to 68.3) 34.6 (8.5 to 67.0) 0.213

IL1-b 420.6 (155.4 to 797.0) 776.7 (406.1 to 4027.9) 285.5 (104.1 to 1140.2) 0.057

IL-13 1.4 (0.5 to 2.2) 2.5 (1.2 to 4.4) 2.9 (0.6 to 4.7) 0.040

IL-4 25.7 (12.3 to 35.5) 29.6 (21.6 to 50.2) 18.5 (11.6 to 43.3) 0.229

MCP-1 2118.1 (1734.2 to 2935.5) 2567.4 (1783.9 to 3597.3) 2865.3 (2409.6 to 3265.2) 0.055

IL-8 44424.2 (31269.5 to 63095.9) 52874.8 (42872.7 to 65119.9) 46264.8 (33589.4 to 51569.8) 0.099

IL-10 60.0 (31.1 to 134.8) 121.4 (58.1 to 214.3) 111.4 (45.6 to 297.8) 0.119

G-CSF 193.9 (115.5 to 519.5) 396.7 (188.0 to 1001.9) 288.6 (117.2 to 1011.1) 0.292

IL-7 1.0 (0.5 to 2.0) 1.6 (0.4 to 2.6) 1.5 (0.3 to 2.9) 0.436

IL-12P70 27.4 (11.6 to 42.3) 42.7 (9.6 to 64.8) 30.0 (1.9 to 56.8) 0.448

IL-17 56.8 (25.0 to 102.9) 91.1 (52.3 to 191.7) 40.2 (20.0 to 130.4) 0.086

Unstimulated WBCc 9665.0 (7582.5 to 11640.0) 7570.0 (6150.0 to 9260.0) 6375.0 (5252.5 to 8205.0) 0.001

Lymphocytes 18.0 (14.8 to 23.0) 24.0 (19.0 to 31.0) 29.5 (23.5 to 37.0) <0.001

Monocytes 0.5 (0.0 to 2.0) 0.0 (0.0 to 2.0) 2.0 (0.0 to 2.0) 0.332

Hemoglobin 11.8 (10.6 to 13.1) 13.3 (12.5 to 14.1) 13.4 (12.7 to 15.1) <0.001

PA 137.5 (77.5 to 169.0) 100.0 (91.0 to 125.0) 102.0 (74.5 to 114.8) 0.299

GPT 20.0 (12.5 to 31.0) 12.0 (10.0 to 20.0) 9.0 (8.0 to 11.0) 0.001

GGT 74.5 (34.2 to 90.0) 35.0 (28.0 to 72.0) 32.0 (21.0 to 54.5) 0.083
frontie
T0, baseline; T1, 2 months of treatment; T2, end of treatment. Condition refers to the IGRA, unstimulated, TB2 from the QuantiFERON-TB gold plus assay and rmsHBHA for the in-house
IGRA. PA, alkaline phosphatase; GPT, glutamate‐pyruvate‐transaminase; GGT, g -glutamyl transferase.
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A B C

D E

FIGURE 2

Host blood biomarkers expression during TB treatment and principal component analysis. (A): Heatmaps showing comparison of the median
expression of 20 blood biomarkers at baseline (T0), after 2 months of treatment (T1) and at the end of treatment (T2) with unstimulated condition as
reference, or in the unstimulated condition only (B), or in the rmsHBHA condition only (C). Principal component analysis (PCA) was performed on
the expression of 9 markers. Arrows length represent the contribution of each marker to the variance described by Dim1 and Dim2 (D). PCA
representation of different group of patients (E). Each dot represents one patient. Color coding represents the different clinical groups. The axes
represent principal components 1 (Dimension 1, Dim1) and 2 (Dimension 2, Dim2) and the percentages indicate their contribution to the total
observed variance. Axis values represent individual PCA scores. The concentration ellipses correspond to 100% data coverage. *p < 0.05; **p < 0.01;
***p < 0.001.
A

B

FIGURE 3

Plasma concentrations of the main biomarkers of interest during the TB-treatment period and stratified according to sputum Mtb load.
(A) Expression dynamics of the PCA-selected biomarkers during TB treatment. T0: before treatment; T1: after two months of treatment; T2: at the
end of treatment. The boxplot shows the median (bold bar) and interquartile range (thin rectangle). Lines show data for each patient. WBCc:
absolute white blood cell count. BMI: body mass index. Repeated measures of non-independent continuous variables were analyzed using the
Friedman rank-sum test, with Wilcoxon-Nemenyi-McDonald-Thompson’s post-hoc test. (B) Plasma concentration of PCA-selected biomarkers
according to sputum Mtb load. AFB: acid-fast bacilli detected by sputum smear microscopy. 1+: AFB smear grade 1+; 2+: AFB smear grade 2+; 3+:
AFB smear grade 3+; NEG: negative detection by AFB smear microscopy. Statistical significance was calculated using Mann–Whitney U test. *p <
0.05; **p < 0.01; ***p < 0.001.
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differentially expressed in plasma of PTB patients according to Mtb

bacterial load assessed by smear microscopy at baseline. This later

finding implies that assessing the quantitative levels of C1q in

unstimulated plasma could hold promise in enhancing the

diagnosis of paucibacillary forms of TB (such as childhood TB

and/or extra-pulmonary TB).

Immune specific responses using rmsHBHA induced a higher

production of inflammatory and anti-inflammatory mediators

compared to the Mtb-specific peptides included in TB2 tube from

QFT. The highest accuracy for TB stage discrimination was

associated with IL-13 response to rmsHBHA which significantly

increased in cured TB suggesting that cure is associated with an

anti-inflammatory status.

Moreover, we observed a time-dependent engagement of Th1/

Th17 and Th2/Th9 cell signaling pathways and distinct cytokine

and chemokine profiles at three different timepoints throughout the

treatment regimen.

Host plasma C1q and the detection of IL-13 levels in response to

rmsHBHA levels in addition to hemoglobin evaluation in whole

blood allowed to discriminate patients with PTB (T0) from those who

have resolved the disease (T2) with an AUC of 0.92, sensitivity of

94%, specificity of 79%. These results, although preliminary, would

meet the accuracy expectations for a treatment monitoring assay, as

recently defined in the WHO’s Target Product Profile (TPP) (42).

This host blood signature could be evaluated as part of clinical trials

aimed at shortening anti-TB treatments, or as part of monitoring

MDR-TB patients throughout the course of their treatment.

As C1q levels correlates with Mtb load, we suggest this blood

assay could be of interest for detecting paucibacillary and/or

subclinical forms of TB. This approach could enhance TB

prevention by identifying the beneficiaries of the TB preventive

treatment among high-risk group populations.

The logistics beyond laboratory testing using IGRA approach

remains a major limitation (requirement of blood sample collection,

transfer to the laboratory, technical processing, and analysis), which

to date prevents it from being deployed in the field, for use in

decentralized diagnostic approaches or in household contact

surveys or active case finding campaigns.
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This study has few limitations. The evaluation of the immune

response to rmsHBHA and TB2 across TB-treatment was

performed only in one of the four sites of the HINTT

multicentered project. The different signatures and their accuracy

found in this nested study in Paraguay, from a relatively small

sample size (32 subjects), need to be validated in different and larger

cohorts. Moreover, we could not evaluate the ability of this

signature to predict treatment failure because all patients were

successful treated. Finally, we included only drug-susceptible TB

because no MDR-TB cases were enrolled.

In conclusion, our results suggest the combined assays based on the

quantitative evaluation of IL-13 in response to rmsHBHA and plasma

C1q levels are a promising tool for TB treatment monitoring. These

host markers may be valuable in the initial identification of patients

who would benefit from vigilant monitoring during e treatment.
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