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Type I and II interferons,
transcription factors and major
histocompatibility complexes
were enhanced by knocking
down the PRRSV-induced
transforming growth factor beta
in monocytes co-cultured with
peripheral blood lymphocytes
Dante Fabros Jr. and Wasin Charerntantanakul*

Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
The innate and adaptive immune responses elicited by porcine reproductive and

respiratory syndrome virus (PRRSV) infection are known to be poor. This study

investigates the impact of PRRSV-induced transforming growth factor beta 1

(TGFb1) on the expressions of type I and II interferons (IFNs), transcription factors,

major histocompatibility complexes (MHC), anti-inflammatory and pro-

inflammatory cytokines in PRRSV-infected co-cultures of monocytes and

peripheral blood lymphocytes (PBL). Phosphorothioate-modified antisense

oligodeoxynucleotide (AS ODN) specific to the AUG region of porcine TGFb1
mRNA was synthesized and successfully knocked down TGFb1 mRNA expression

and protein translation. Monocytes transfected with TGFbAS1 ODN, then

simultaneously co-cultured with PBL and inoculated with either classical

PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) showed a

significant reduction in TGFb1 mRNA expression and a significant increase in the

mRNA expressions of IFNa, IFNg, MHC-I, MHC-II, signal transducer and activator

of transcription 1 (STAT1), and STAT2. Additionally, transfection of TGFbAS1 ODN

in the monocyte and PBL co-culture inoculated with cPRRSV-2 significantly

increased the mRNA expression of interleukin-12p40 (IL-12p40). PRRSV-2 RNA

copy numbers were significantly reduced in monocytes and PBL co-culture

transfected with TGFbAS1 ODN compared to the untransfected control. The

yields of PRRSV-2 RNA copy numbers in PRRSV-2-inoculated monocytes and

PBL co-culture were sustained and reduced by porcine TGFb1 (rTGFb1) and

recombinant porcine IFNa (rIFNa), respectively. These findings highlight the

strategy employed by PRRSV to suppress the innate immune response through

the induction of TGFb expression. The inclusion of TGFb as a parameter for future

PRRSV vaccine and vaccine adjuvant candidates is recommended.
KEYWORDS

porcine reproductive and respiratory syndrome virus, transforming growth factor beta,
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1 Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV)

is causing global economic loss to the swine industry (1). PRRSV

causes chronic respiratory symptoms in pigs of all ages,

reproductive failure, abortion, fetal death, and congenital illnesses

in pregnant sows (2). It belongs to the genus Porarterivirus, family

Arteriviridae, order Nidovirales. PRRSV is divided into two distinct

species i.e., Betaarterivirus suid 1 (previously known as PRRSV-1)

and Betaarterivirus suid 2 (previously known as PRRSV-2) (3, 4).

Both PRRSV species share up to 60% nucleotide sequence

homology and comprise classical PRRSV (cPRRSV) strains and

highly pathogenic PRRSV (HP-PRRSV) strains (5).

PRRSV is an enveloped positive single-stranded RNA virus that

primarily infects and highly restricts porcine myeloid antigen

presenting cells (APCs) i.e., monocytes, macrophages, and

dendritic cells (6, 7). Its genome is approximately 15 kb in size,

consisting of 10 open reading frames. PRRSV’s structural protein

i.e. nucleocapsid (N) (8), and glycoprotein 5 (9) suppress the host’s

antiviral interferon (IFN) response by interfering TRIM22 and

TRIM25 mediated RIG-1 ubiquitination, downregulating NF-kB
and p38 MAPK (10), inhibiting the phosphorylation and nuclear

translocation of interferon regulatory factor 3 (IRF3) (11), signal

transducer and activator of transcription 2 (STAT2) expression and

STAT1 translocation (12) Non-structural protein 1a (nsp1a) (13,
14), nsp1b (15), nsp2 (16), nsp4 (17), nsp5 (18), and nsp11 (19)

mediate downregulation of type I IFN-regulated genes, and IFN-

stimulated genes (ISGs) by degrading CREB-binding protein (13,

14), IRF-3 and NF-kB (15–17), degrading STAT3 (18) and

inhibiting ISGF3 targeting IRF9 (19). On the other hand,

upregulation of interleukin-10 (IL-10) and STAT3 by PRRSV’s

proteins N (10), nsp1 (20), and GP5 (21) was observed in APCs to

skew the antiviral response of the host.

Moreover, PRRSV is thought to be able to infect professional

antigen presenting cells, impairing their normal antigen

presentation ability by inducing apoptosis, down-regulating the

expression of IFNa, major histocompatibility complex-I (MHC-

I), MHC-II, CD11b/c and CD14, upregulating the expression of IL-

10, and inducing minimal Th1 cytokine secretion (22–24). PRRSV

upregulated the frequency of regulatory T-cells (Tregs) (25). The

virus could stimulate IL-10 production with the associated

generation of Tregs (10). PRRSV-infected monocyte-derived

dendritic cells (MoDCs) drastically upregulated transcriptional

forkhead pox P3 (FoxP3) for Tregs generation. It also suggested

that IL-10 and Tregs could be related to weakened IFNg production
and altered development of protective T-cell response (6, 26).

PRRSV enhances IL-10 expression (27, 28). IL-10 upregulation,

in conjunction with limited expressions of interferon-regulated

genes, contributes to the downregulation of pro-inflammatory

innate immune defense mechanisms e.g., antiviral and phagocytic

activities, antigen presentation, pro-inflammatory cytokines and

immune-related marker expressions in infected myeloid APCs. The

weak and delayed inductions of adaptive cytotoxic T cell (29) and T

helper 1 (Th1) cell responses, as well as the promotion of regulatory

Tregs differentiation, further facilitate the survival of PRRSV and

the development of clinical manifestations (30–32).
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Transforming growth factor beta (TGFb) has three isoforms in

mammals, with TGFb1 being the most abundant isoform and

responsible for a wide range of specific responses (33). In pigs, the

impact of PRRSV-induced TGFb1 overexpression on immune

protection against PRRSV has not been investigated to date. TGFb
is up-regulated by PRRSV in infected myeloid APCs (34), co-

cultivated peripheral blood mononuclear cells (PBMCs) (27), lungs

and lymphoid tissues of pigs (35). According to the previous study,

TGFb can enhance the viability of PRRSV-infected cells, thereby

contributing to increased PRRSV survival (36). Limited existing

reports on the immunoregulatory activities of TGFb in pigs are

available. In porcine monocyte-derived macrophages (MDMs),

TGFb has been reported to down-regulate the expressions of

CD14, IL-6, MHCII, and tumor necrosis factor alpha (TNFa) (37).
In mice, TGFb has been found to down-regulate CD14 expression in

lipopolysaccharide (LPS)-stimulated macrophages, leading to the

suppression of the MyD88-dependent signaling pathway (38, 39).

Moreover, TGFb has been shown to suppress MHCII, IL-12p40, and

CD40 expressions in murine macrophages (38), Th1 cell

differentiation, Th1-mediated inflammatory response, and the

expressions of IFNg, IL-2, and IL-4 (40) as well as the activation of

macrophages, dendritic cells (DCs), and natural killer cells (38). In

contrast, TGFb promotes Tregs differentiation through the up-

regulation of Smad3 and Foxp3 expressions (41).

This study aims to investigate the effects of PRRSV-induced

TGFb on the expressions of immune-related genes in PRRSV-

inoculated monocytes and PBL co-culture. Monocytes were

transfected with phosphorothioate-modified antisense (AS)

oligodeoxynucleotide (ODN) targeting the AUG region of porcine

TGFb1 mRNA to knockdown its expression. The present study

reveals that TGFb exerts a regulatory role by down-regulating gene

expressions of type I and II IFNs, MHCs, and STATs in PRRSV-

inoculated monocytes and PBL co-culture. These findings provide

valuable insights into potential targets and strategies for

augmenting the innate and cell-mediated immune (CMI)

responses to PRRSV vaccines and vaccine adjuvants.
2 Materials and methods

2.1 Virus

Thai cPRRSV-2 (01NP1) (42) and HP-PRRSV-2 (10PL1) (43)

were propagated in MARC-145 cells grown in minimum essential

medium (MEM; Caisson Laboratories, Smithfield, UT), 10% heat-

inactivated fetal bovine serum (FBS; Capricorn Scientific GmbH,

Germany) streptomycin (100 µg/ml), penicillin (100 IU/ml), and

amphotericin B (250 ng/ml) (all from Gibco, NY) to 106 TCID50/

ml. Supernatants from uninoculated MARC-145 cell lysate were

served as mock Ag.
2.2 Pigs

Eight 24-week-old PRRSV-seronegative crossbred pigs (large

white/landrace x duroc) were the source of peripheral blood
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mononuclear cells (PBMCs) to obtain monocytes and PBLs. They

were housed at the swine research farm, faculty of animal science

and technology, Maejo University.
2.3 Optimization of real-time
PCR conditions

PBMC isolation was conducted as described previously (44).

Briefly, PBMCs were isolated from whole blood by density gradient

centrifugation using Histopaque®-1077 (Sigma, St. Louis, MO).

Contaminating red blood cells were lysed by cold lysis buffer (1 mM

EDTA, 0.156 M ammonium chloride and 10 mM sodium

bicarbonate). PBMCs were resuspended in roswell park memorial

institute-1640 (RPMI-1640) with L-glutamine (Caisson

Laboratories), 10% heat-inactivated FBS, penicillin (100 IU/ml),

streptomycin (100 mg/ml) and amphotericin B (250 ng/ml) to 106

cells. In this study, RPMI-1640 added with FBS and antibiotic/

antimycotic i.e., penicillin, streptomycin and amphotericin B was

named as RPMI++. Two hundred ml of PBMC suspension (2 x 106

cells) was seeded onto 96-well flat-bottom plates (Nunc, Denmark),

and received 50 µl of either Concanavalin A (ConA) (10 mg/ml final

conc.) (TargetMol, MA) or phorbol 12-myristate 13-acetate (7 ng/

ml final conc.) (TargetMol, MA) plus ionomycin (430 ng/ml, final

conc.) (APExBIO, TX) (PMAi). The final concentrations of ConA

and PMAi used in this study were the least concentrations that

could induce detectable mRNA expressions of all immune-related

genes of interest (45, 46). PBMCs were stimulated for 18 h (37°C,

humidified 5% CO2) prior to RNA isolation.

Total RNA was isolated using PureLink™ RNA mini kit

(Invitrogen, USA). The quality and quantity of RNA were

evaluated by the OneDrop TOUCH Pro/Lite Micro-Volume

Spectrophotometer (Biometrics Technologies Inc. USA). All RNA

samples had A260/230 and A260/280 between 1.8-2.2 and 2.0-2.2,

respectively. The integrity of RNA was determined by denaturing

agarose gel electrophoresis followed by ethidium bromide staining.

cDNA was carried out using the ReverTra Ace® qPCR RT Kit

(Toyobo, Japan). The reaction used 1,000 ng of pooled total RNA as

a template, and a mixture of random hexamers and oligo-dT as

primers. cDNAs were stored at -20°C until real-time PCR.

Real-time PCR was performed on a QIAquant 96 thermal

cycler. A total reaction volume of 20 ml comprised 2 ml serial 5-
fold dilutions of pooled cDNA template (starting at 1 µg), 10 ml
SYBR® Green real time PCR master mix (Toyobo, Japan), and

varying concentrations (200-500 nM) of primer pairs for FOXP3,

GATA3 (gata binding protein 3), IFNa, IFNg, IL-2, IL-4, IL-6, IL-
10, IL-12p40, IL-17, MHC-I, MHC-II, RORgT (retinoic acid

receptor-related orphan nuclear receptor gamma-t), RPL32

(ribosomal protein L32), STAT1, STAT2, STAT6, T-bet (t-box

expressed in T-cells), TGFb1, TNFa, YWHAZ (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein,

zeta) (Additional File 1). All reactions were set up in duplicate. The

PCR condition was 95°C (10 min); and 40 cycles of 94°C (15s),

designated annealing temperature of 50-60°C (30s), and 72°C (30s),

followed by melting curve analysis and agarose gel electrophoresis

of PCR products. Band intensities were documented under
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ultraviolet light (GelMax™ Imager, UVP, CA). A nuclease-free

water was included as no template control in every run.
2.4 Antisense oligodeoxynucleotides

Phosphorothioate-modified AS-ODNs (TGFbAS1; 5’-

AGCCCCGAAGGCGGCATG-3’ and Scramble control (Scr); 5’-

GCCGCTTGCTCGCGCCTA-3’) were synthesized by Integrated

DNA Technologies (IDT, Singapore).
2.5 Transfection of monocytes with
AS ODNs

The preparation of monocytes was conducted as previously

described (44). Briefly, 100 µl of PBMCs (1 x 106 cells) were seeded

onto a 96-well flat bottom plate and incubated for 4 h (37°C,

humidified 5% CO2). Non-adherent cells were removed, and

adherent monocytes were washed twice with 150 µl of pre-

warmed (37°C) Opti-MEM® I.

Transfection was carried out following the guidelines of

Lipofectamine™ RNAiMax (Invitrogen, CA) with the

recommended small interfering RNA (siRNA, BLOCK-iT™ Alexa

Fluor® Red Fluorescent control, Invitrogen). Mixtures of 0.75, 1.5 and

3% Lipofectamine™ RNAiMax in Opti-MEM® I (v/v) and 2 µM

siRNA suspended in Opti-MEM® I were incubated at room

temperature (RT) for 30 min. Twenty µl of each mixture was added

to the wells containing monocytes and gently mixed by rocking for

5 min. Monocyte uptake offluorescent-labeled siRNA (Figures 1A, B)

was observed under an immunofluorescent microscope (Nikon

Eclipse Ti, Japan) every 2 h for 10 h and finally at 24 h.

Frequencies of immunofluorescent-positive cells were identified

using automatic measurement for cell counting (NIS-elements

software ver. 3.22, Nikon, Japan). Cell viability was determined by

trypan blue staining. Optimal concentration of transfection reagent

and optimal transfection period were determined.
2.6 TGFb1 knockdown in monocytes then
co-cultured with peripheral blood
lymphocytes prior to the evaluation of
immune-related gene expressions

Monocytes were prepared as described above while PBLs were

prepared as previously described (44). Monocytes were washed with

100 µl pre-warmed (37°C) Opti-MEM® I and transfected with 40 µl

TGFbAS1 mixture for 4 h (37°C, humidified 5% CO2). The

transfection condition was based on the results of optimization of

transfection reagent concentration and transfection period (Figure 1C,

Additional File 2). The TGFbAS1 mixture was removed, and adherent

TGFbAS1-transfected monocytes were washed. Then, 200 µl of PBL (2

x 106 cells) in RPMI++ from the same animal were added to the

TGFbAS1-transfected monocyte for co-culture. The ratio of PBL

added to monocytes resembled the ratio of lymphocytes to

monocytes in the peripheral blood of pigs of the same age,
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approximately 10:1 (47). Finally, 50 µl of inducer, either ConA (10 mg/
ml final conc.) or PMAi (7 and 430 ng/ml final conc.) was added to the

wells and incubated for an additional 12 h (37°C, humidified 5% CO2).

Cell culture supernatants were collected for subsequent

determination of TGFb1 protein levels by ELISA (Porcine TGF

Beta 1 PicoKine™ ELISA kit, Boster Biological Technology,

Pleasanton, CA). Monocytes and PBL co-cultures were harvested

prior to RNA isolation and generation of cDNA as described above.

Unspecific knockdown of immune-related genes, i.e., FoxP3,

GATA3, IFNa, IFNg, IL-2, IL-4, IL-6, IL-10, IL-12p40, IL-17,
MHC-I, MHC-II, RORgT, STAT1, STAT2, STAT6, T-bet, TGFb1
and TNFa was determined by real-time PCR. Positive, negative,

Scr, and transfection media controls were included.

For the determination of mRNA expression levels of TGFb1 and
other immune-related genes (Additional File 1), 200 ng of total RNA

was used as template for cDNA synthesis as described above. The

threshold cycles (CT) of all genes were used for the calculation of gene

expression by the 2^(-DDCT) method. The expressions of TGFb1 and
other immune-related genes were normalized to the geometric

average of RPL32 (ribosomal protein L32) and YWHAZ (tyrosine

3-monooxygenase/tryptophan 5-monooxygenase activation protein,

zeta) and calibrated to that in the negative control. The expression

levels of all immune-related genes were transformed into log2 scale.
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2.7 Evaluation of TGFb1 knockdown
effects on immune-related gene
expressions in monocytes co-cultured
with PBL and inoculated with cPRRSV-2
and HP-PRRSV-2

Monocytes were transfected with 2 µM TGFbAS1 for 4 h. The

TGFbAS1 mixture was removed, and monocytes were washed.

TGFbAS1-transfected monocytes were inoculated with 100 µl of

either cPRRSV-2 or HP-PRRSV-2 equivalent to a multiplicity of

infection (m.o.i.) of 1. At the time of PRRSV-2 inoculation, each

monocyte culture simultaneously received 100 µl of PBL (1 x 106

cells) from the same animal. The cultures were incubated for 48 h

(37°C, humidified 5% CO2), then received 50 µl of inducers. The

cultures were incubated further for 12 h (37°C, humidified 5%

CO2). Cells were then harvested prior to RNA isolation. Cell culture

supernatants were collected for the determination of TGFb1 protein
levels by ELISA. Expressions of immune-related genes were

determined every 12 h by real-time PCR. Controls included cells

receiving mock Ag plus inducers (mock control); cells receiving

PRRSV-2 and inducers (PRRSV-2-inoculated control); and cells

treated with transfection media alone (without TGFbAS1),
inoculated with PRRSV-2, and stimulated with inducers (PRRSV-
B

C

A

FIGURE 1

Monocyte transfection and uptake (A) Monocytes under bright field microscopy. (B) Monocyte uptake of fluorescent-labeled siRNA under
immunofluorescent microscopy. (C) Monocyte uptake of fluorescent-labeled siRNA complexed with 1.5% of transfection reagent. The uptake was
observed every 2 h for 10 h and finally at 24 h. Mean differences of percentages of fluoresced cells among groups were tested by one-way ANOVA,
followed by Tukey HSD test. Different letters indicate significant differences. P<0.05 was set as a statistically significant level.
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inoculated/transfection media control). Untreated cells receiving

culture media in the presence or absence of inducers served as

positive and negative controls, respectively. Cell viability was

determined at the end of the transfection period, PRRSV-2

inoculation, and inducer stimulation using trypan blue.
2.8 Evaluation of TGFb1 knockdown effects
on PRRSV RNA yields in monocytes and
PBL co-cultures inoculated with cPRRSV-2
and HP-PRRSV-2

Monocytes were transfected with TGFbAS1 (2 µM) in

transfection media as described above. Subsequently, transfection

media were removed and replaced with 100 µl of either cPRRSV-2

or HP-PRRSV-2 (equivalent to m.o.i. of 1). Monocyte cultures were

incubated for 1 h (37°C, humidified 5% CO2), then the supernatants

were discarded. The monocytes were then washed twice with 150 µl

pre-warmed (37°C) RPMI++ and received 200 µl PBL (2 x 106 cells)

prior to the addition of 50 µl inducers. The cultures were incubated

further for 12 h (37°C, humidified 5% CO2) prior to RNA isolation.

Cell culture supernatants (150 µl) were collected for quantification of

PRRSV-2 ORF7 RNA by real-time PCR (48). Controls included cells

receiving PRRSV-2 and inducers (PRRSV-2-inoculated control); cells

transfected with Scr, inoculated with PRRSV-2, and stimulated with

inducers (PRRSV-2-inoculated/Scr control); and cells treated with

transfection media alone, inoculated with PRRSV-2, and stimulated

with inducers (PRRSV-2-inoculated/transfectionmedia control). Cells

receiving mock Ag plus inducers served as uninoculated controls.

PRRSV-2 RNA was isolated and contaminating DNA was

eliminated using PureLink™ RNA mini kit (Invitrogen, USA). The

quality and quantity of RNA were determined by OneDrop TOUCH

Pro/Lite Micro-Volume Spectrophotometer (Biometrics

Technologies Inc. USA). Reverse transcription (using the ReverTra

Ace® qPCR RT Kit, Toyobo, Japan) and real-time PCR were

conducted as described previously (48). In brief, a total reaction

volume of 20 µl, consisting of 2 µl cDNA, 10 µl SYBR® Green PCR

master mix (Toyobo), and 400 nM each of primers ORF7 149F and

ORF7 346R was set up in duplicate. The PCR condition was 95°C

(15 min); and 35 cycles of 95°C (15 s), 53°C (30 s), and 72°C (30 s).

The CT was collected and compared with the standard curve of CT

generated from 101-108 copy numbers of recombinant PRRSV-2

ORF7 plasmids. Melting curve analysis and agarose gel

electrophoresis were performed to verify a single product.

Nuclease-free water was included as no template control in every run.
2.9 Evaluation of TGFb1 and IFNa protein
effects on PRRSV RNA yields in monocytes
and PBL co-culture inoculated with
cPRRSV-2 and HP-PRRSV-2

2.9.1 Effect of porcine IFNa and
TGFb1 concentrations

Monocytes were treated with 100 µl of either recombinant

porcine TGFb1 (rTGFb1; Raybiotech, GA) or recombinant
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porcine IFNa (rIFNa; Raybiotech, GA) resuspended in pre-

warmed RPMI++ at 10, 1, and 0.1 ng/ml final. The cultures were

incubated for 24 h (37°C, humidified 5% CO2), then received 100 µl

of either cPRRSV-2 or HP-PRRSV-2 (equivalent to m.o.i. of 1). The

cultures were incubated for 1 h (37°C, humidified 5% CO2), then

washed and added with 200 µl PBL (2 x 106 cells) and 50 µl inducers.

The cultures were incubated further for 12 h (37°C, humidified 5%

CO2) prior to RNA isolation. Cell culture supernatants (150 µl) were

collected for quantification of PRRSV-2 ORF7 RNA by real-time

PCR. Controls included cells receiving PRRSV-2 and inducers

(PRRSV-2-inoculated control), and cells receiving mock Ag plus

inducers (uninoculated control). Cell viability was determined at the

end of culture periods using trypan blue.

2.9.2 Effects of TGFb1 and IFNa on PRRSV RNA
yields in monocytes and PBL co-culture
inoculated with cPRRSV-2 and HP-PRRSV-2

Monocytes were treated with 100 µl of rTGFb1 (10 ng/ml final)

resuspended in pre-warmed RPMI++. The monocyte cultures were

incubated for 24 h (37°C, humidified 5% CO2) prior to receiving 50 µl

of rIFNa (10 ng/ml final). The cultures were further incubated for

24 h (37°C, humidified 5% CO2), then received 100 µl of either

cPRRSV-2 or HP-PRRSV-2 (equivalent to m.o.i. of 1). The monocyte

cultures were incubated for 1 h (37°C, humidified 5% CO2), and then

the supernatants were removed. Monocytes cultures were washed,

added with 200 µl PBL (2 x 106 cells), and received 50 µl inducers. The

cultures were incubated further for 12 h (37°C, humidified 5% CO2)

prior to RNA isolation. Cell culture supernatants (150 µl) were

collected for quantification of PRRSV-2 ORF7 RNA by real-time

PCR. Controls included cells receiving PRRSV-2 and inducers

(PRRSV-2-inoculated control); cells receiving rTGFb1, PRRSV-2,
and inducers (rTGFb1-treated/PRRSV-2-inoculated control); cells

receiving rIFNa, PRRSV-2, and inducers (rIFNa-treated/PRRSV-2-
inoculated control); and cells receiving mock Ag plus inducers

(uninoculated control). Cell viability was determined at the end of

culture periods using trypan blue.
2.10 Statistical analysis

Statistical analyses were performed using the SPSS software version

28 (IBM, Armonk, NY). Mean differences of immune-related gene

expressions among groups were tested by one-way ANOVA, followed

by Tukey HSD test. Mean differences of PRRSV-2ORF7 copy numbers

and immune-related gene expressions among groups at time points

were tested by one-way repeated measures ANOVA, followed by

Tukey HSD test. P<0.05 was set as a statistically significant level.
3 Results

3.1 Efficient knockdown of TGFb1 mRNA
expression by TGFbAS1

Tr. media of 1.5% (v/v) complexed with fluorescent-labeled

siRNA control and a transfection period of 4 h had yielded the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1308330
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fabros and Charerntantanakul 10.3389/fimmu.2024.1308330
highest transfection efficiency with approximately 74% fluorescent-

positive monocytes (Figure 1C). These conditions were therefore

used for subsequent transfection experiments. Tr. media of 0.75%

and 3% were also tested (Additional File 2) to confirm the effect of

transfection media concentrations, in which 0.75% transfection

media yielded the lowest transfection efficiency and 3% Tr. media

had no s ignificant di fference to 1 .5% Tr . media in

transfection efficiency.

TGFb1 mRNA expression (Figure 2A) and protein translation

(Figure 2B) were efficiently downregulated by TGFbAS1 in ConA-

stimulated monocytes and PBL co-culture. The same

downregulation by TGFbAS1 was observed in PMAi-stimulated

monocytes and PBL co-culture (Figures 2C, D). TGFbAS1 targeted
the AUG region of porcine TGFb1 mRNA and had no activity-

decreasing motifs to ensure the antisense activity. Scr and Tr.media

had no significant effect on TGFb1 mRNA expression when

compared to positive control.
3.2 Specificity of TGFbAS1 knockdown

Using BLAST, the specificity of TGFbAS1 and Scr was

evaluated and analyzed. TGFbAS1 was specific to porcine TGFb1
mRNA and had no aligned target in any porcine immune-related

genes reported in this study or essential genes involved in the

porcine immune system. Also, Scr had no aligned target in any of

the porcine genes of interest. TGFbAS1 also had no aligned target in
any ORFs of PRRSV-2 strains used in this study.
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Slightly reduced mRNA expressions of FoxP3 (1.3 ± 0.3 vs 2.0 ±

0.4) and IL-10 (4.0 ± 0.2 vs 4.6 ± 0.3) as compared to positive control

were observed in TGFbAS1-transfected monocytes co-cultured with

PBL (Table 1). On the other hand, slightly increased mRNA

expressions of IFNg (5.5 ± 0.2 vs 4.8 ± 0.2), MHC-I (3.1 ± 0.3 vs

2.4 ± 0.4), and STAT2 (2.4 ± 0.3 vs 1.9 ± 0.4) were demonstrated in

TGFbAS1-transfected monocytes then co-cultured with PBL, when

compared to positive control. But these changes in mRNA

expression levels were not statistically significant. No significant

changes in immune-related mRNA expression levels were observed

in Scr and Tr. Media controls as compared to positive control.
3.3 TGFbAS1 significantly knockdown
TGFb1 mRNA expression which was up-
regulated by cPRRSV-2 and HP-PRRSV-2,
and contributed to improve gene
expressions of type I and II IFNs, MHCs,
transcription factors which were down-
regulated by the viruses

Compared to cPRRSV-2-inoculated and HP-PRRSV-2-

inoculated monocytes co-cultured with PBL, TGFbAS1+cPRRSV-
2-treated and TGFbAS1+HP-PRRSV-2-treated monocytes co-

cultured with PBL significantly down-regulated TGFb1 mRNA

expression (Figures 3A, C) and protein production (Figures 3B, D).

Compared to positive control, cPRRSV-2-inoculated and HP-

PRRSV-2-inoculated monocytes co-cultured with PBL significantly
B

C D

A

FIGURE 2

Effect of TGFb1 antisense (TGFbAS1), and scramble (Scr) phosphorothioate-modified ODNs on expression of TGFb1 mRNA and protein translation in
monocyte and PBL co-culture. Monocytes were transfected with TGFbAS1 or Scr, added with PBL, and then stimulated with either (A, B) ConA or
(C, D) PMAi. Monocytes transfected with transfection media (Tr.media) alone, added with PBL, and finally stimulated with inducers (either ConA or
PMAi) served as Tr.media control. Untransfected monocytes, added with PBL, and finally stimulated with inducers served as positive control (Pos
Ctrl). Cell supernatant was collected prior to ELISA. Data were normalized to the geometric average of RPL32 and YWHAZ in relative to
untransfected/unstimulated monocytes and PBL co-culture. Band intensities indicate the quality of TGFb1 knockdown (Additional File 3). Error bars
indicate the standard deviation (SD). Mean differences of TGFb1 gene expression or protein translation among groups were tested by one-way
ANOVA, followed by Tukey HSD test. Different letters above the error bars indicate significant differences. Data are presented in log 2 scale of “fold”
according to 2^(-DDCT) method.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1308330
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fabros and Charerntantanakul 10.3389/fimmu.2024.1308330
upregulated the mRNA expression levels of TGFb1 (Figures 3A, C),
FoxP3, GATA3, IL-2, IL-4, IL-10, IL-12p40, IL-17, RORgT, and T-

bet (Figure 4, Additional File 4). HP-PRRSV-2-inoculated

monocytes co-cultured with PBL significantly had higher mRNA

expression levels of Foxp3, IL-4 and IL-10 than cPRRSV-2-

inoculated monocytes co-cultured with PBL. On the other hand,

IFNa, IFNg, MHC-I, MHC-II, STAT1, STAT2, STAT6, and TNFa
were significantly downregulated on both cPRRSV-2-inoculated

and HP-PRRSV-2-inoculated monocytes co-cultured with PBL as

compared to positive control (Figure 4, Additional File 4). Mock Ag

has no significant effect on the expression levels of these immune-

related genes as compared to positive control.

Compared to cPRRSV-2-inoculated and HP-PRRSV-2-

inoculated monocytes co-cultured with PBL, TGFbAS1+cPRRSV-
2-treated and TGFbAS1+HP-PRRSV-2-treated cells significantly

down-regulated IL-4 and IL-10 mRNA expression levels (Figure 4,

Additional File 4). On the other hand, significantly increased IFNa,
IFNg, IL-12p40, MHC-I, MHC-II, STAT1, and STAT2 mRNA

expression levels in TGFbAS1+cPRRSV-2-treated monocytes co-

cultured with PBL were observed as compared to cPRRSV-2-

inoculated monocytes co-cultured with PBL. Also, mRNA

expression levels of IFNa, IFNg, MHC-I, MHC-II, and STAT1,

STAT2 were significantly increased in TGFbAS1+HP-PRRSV-2-

treated monocytes co-cultured with PBL as compared to HP-
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PRRSV-2-inoculated monocytes and PBL co-culture. Moreover,

TNFa expression in TGFbAS1+cPRRSV-2-treated and TGFbAS1
+HP-PRRSV-2-treated monocytes co-cultured with PBL had a

higher mRNA expression level than cPRRSV-2-inoculated and

TGFbAS1+HP-PRRSV-2-treated monocytes co-cultured with

PBL, respectively, but showed not statistically significant.

No significant difference was observed with the mRNA

expressions of FoxP3, GATA3, IL-2, IL-6, IL-17, and STAT6

between TGFbAS1+cPRRSV-2/HP-PRRSV-2-treated and cPRRSV-

2/HP-PRRSV-2-inoculated monocytes and PBL co-culture.

Transfection media has no significant effect on the expression levels

of these immune-related genes as compared to positive control.
3.4 Significantly reduced amounts of
cPRRSV-2 and HP-PRRSV-2 RNA yields
were influenced by TGFb1 knockdown

Compared to cPRRSV-2-inoculated monocytes co-cultured

with PBL, monocytes transfected with TGFbAS1 prior to

cPRRSV-2 inoculation and PBL co-culture demonstrated

significantly lower amount of PRRSV-2 ORF7 RNA copy

numbers at 12, 24, 36,48, and 60 h after inoculation (Figures 5A,

B). Compared to HP-PRRSV-2-inoculated monocytes co-cultured
TABLE 1 Expression levels of immune-related genes in monocytes transfected with either TGFbAS1 or Scr1, or otherwise treated with transfection
media (Tr. media) alone prior to simultaneous addition of PBL for co-culture and stimulated with inducers, either ConA or PMAi.

Gene TGFbAS1 Scr Tr. Media Pos Ctrl

FoxP3 1.3 ± 0.3 2.1 ± 0.4 2.1 ± 0.3 2.0 ± 0.4

GATA3 2.0 ± 0.3 2.5 ± 0.2 2.5 ± 0.1 2.4 ± 0.3

IFNa 3.6 ± 0.4 3.4 ± 0.3 3.6 ± 0.2 3.5 ± 0.2

IFNg 5.5 ± 0.2 5.1 ± 0.4 5.0 ± 0.3 4.8 ± 0.2

IL-2 2.0 ± 0.4 2.1 ± 0.3 2.1 ± 0.2 2.0 ± 0.4

IL-4 2.7 ± 0.4 3.0 ± 0.4 2.7 ± 0.3 2.7 ± 0.4

IL-6 3.5 ± 0.2 3.4 ± 0.2 3.2 ± 0.2 3.1 ± 0.4

IL-10 4.0 ± 0.2 4.4 ± 0.1 4.5 ± 0.1 4.6 ± 0.3

IL-12p40 4.3 ± 0.2 3.9 ± 0.3 3.9 ± 0.3 4.0 ± 0.4

IL-17 2.6 ± 0.4 2.7 ± 0.3 2.9 ± 0.2 2.9 ± 0.2

MHC-I 3.1 ± 0.3 2.8 ± 0.2 2.7 ± 0.3 2.4 ± 0.4

MHC-II 2.3 ± 0.4 2.3 ± 0.3 2.2 ± 0.2 2.3 ± 0.2

RORgT 3.3 ± 0.3 3.7 ± 0.2 3.7 ± 0.2 3.7 ± 0.1

STAT1 2.0 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.7 ± 0.3

STAT2 2.4 ± 0.3 2.0 ± 0.2 2.2 ± 0.2 1.9 ± 0.4

STAT6 2.4 ± 0.3 2.3 ± 0.1 2.1 ± 0.2 2.2 ± 0.3

T-bet 3.9 ± 0.3 4.0 ± 0.3 3.6 ± 0.3 3.7 ± 0.2

TNFa 4.5 ± 0.1 4.7 ± 0.2 4.7 ± 0.2 4.4 ± 0.3
Untransfected monocytes co-cultured with PBL and stimulated with either ConA (for IFNa, IFNg, IL-6, IL-17, IL-12p40, RORgT, Stat1, T-bet, TNFa) or PMAi (for MHC-I, MHC-II, IL-2, IL-4,
FoxP3, Stat2, Stat6, GATA3, IL-10) served as positive control (Pos Ctrl). Data were normalized to the geometric average of RPL32 and YWHAZ in relative to untransfected/unstimulated
monocytes and PBL co-culture. Data are presented in log 2 scale of “fold” according to 2^(-DDCT) method (Mean ± SD).
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with PBL, monocytes transfected with TGFbAS1 prior to

HP-PRRSV-2 inoculation and PBL co-culture demonstrated

significantly lower amount of PRRSV-2 ORF7 RNA copy

numbers at 12, 24, 36, 48, and 60 h after inoculation (Figures 5A,

B). Scr and Tr. media had no effect on the alteration of PRRSV-2

ORF7 RNA copy numbers. With mock Ag-treated cells, no PRRSV-

2 ORF RNA was detected.
3.5 Increased amounts of cPRRSV-2 and
HP-PRRSV-2 RNA yields were significantly
influenced by TGFb1

Compared to cPRRSV-2-inoculated monocytes co-cultured

with PBL, rTGFb1-treated (10 ng/ml final) monocytes inoculated

with cPRRSV-2 and then co-cultured with PBL showed significantly

higher amount of PRRSV-2 ORF7 RNA copy numbers at 12, 24, 36,

48, and 60 h after inoculation (Figures 6A, B). Monocytes treated

with rTGFb1 (1 and 0.1 ng/ml final) prior to cPRRSV-2 inoculation

and PBL co-culture had a higher amount of PRRSV-2 ORF7 RNA

copy numbers after inoculation.

Compared to HP-PRRSV-2-inoculated monocytes co-

cultured with PBL, rTGFb1-treated (10 ng/ml final) monocytes

inoculated with HP-PRRSV-2 and then co-cultured with PBL

displayed significantly higher amount of PRRSV-2 ORF7 RNA

copy numbers at 12, 24, 36, 48, and 60 h after inoculation

(Figures 6A, B). Monocytes treated with rTGFb1 (1 and 0.1 ng/

ml final) and then inoculated with HP-PRRSV-2 prior to the co-

culture of PBL did not demonstrate a lower amount of PRRSV-2

ORF7 RNA copy numbers after inoculation.
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3.6 Decreased amounts of cPRRSV-2 and
HP-PRRSV-2 RNA yields were significantly
influenced by IFNa

Compared to cPRRSV-2-inoculated monocytes co-cultured

with PBL, rIFNa-treated (10 ng/ml final) monocytes inoculated

with cPRRSV-2 prior to PBL co-culture demonstrated significantly

lower amount of PRRSV-2 ORF7 RNA copy numbers at 12, 24, 36,

48, and 60 h after inoculation (Figures 7A, B). Monocytes treated

with rIFNa (1 and 0.1 ng/ml final) and then inoculated with

cPRRSV-2 prior to PBL co-culture did not demonstrate a lower

amount of PRRSV-2 ORF7 RNA copy numbers after inoculation.

Similarly, as compared to HP-PRRSV-2-inoculated monocytes

co-cultured with PBL, rIFNa-treated (10 ng/ml final) monocytes

inoculated with HP-PRRSV-2 and then co-cultured with PBL

demonstrated significantly lower amount of PRRSV-2 ORF7 RNA

copy numbers at 12, 24, 36, 48, and 60 h after inoculation

(Figures 7A, B). Also, monocytes treated with rIFNa (1 and 0.1

ng/ml final) prior to HP-PRRSV-2 inoculation and co-culture with

PBL did not demonstrate a lower amount of PRRSV-2 ORF7 RNA

copy numbers after inoculation.
3.7 Increased amounts of cPRRSV-2 and
HP-PRRSV-2 RNA yields were significantly
contributed by TGFb1 which decreased the
anti-PRRSV effect of IFNa

The direct effect of rTGFb1 on PRRSV-2 RNA yields was

examined, along with its effect on the anti-PRRSV activity of
B

C D

A

FIGURE 3

Effect of TGFbAS1 on TGFb1 mRNA expression and protein translation in PRRSV-2-inoculated PBMCs. Monocytes were transfected with TGFbAS1,
then co-cultured with PBL, inoculated with either cPRRSV-2 or HP-PRRSV-2, and stimulated with inducers of either (A, B) ConA or (C, D) PMAi.
Untransfected monocytes, co-cultured with PBL and inoculated with cPRRSV-2 or HP-PRRSV-2, stimulated with inducers, served as the PRRSV-2-
inoculated control. Monocytes treated with transfection media (Tr. media), co-cultured with PBL, and inoculated with cPRRSV-2 or HP-PRRSV-2,
then stimulated with inducers served as PRRSV-2-inoculated/Tr. media control. Untransfected monocytes, co-cultured with PBL, inoculated with
mock Ag, and stimulated with inducers served as mock control. Untreated monocytes then co-cultured with PBL and receiving culture media in the
presence or absence of inducers served as positive and negative controls, respectively. (B, D) Cell culture supernatants were collected for ELISA.
Error bars indicate the SD. Mean differences of TGFb1 protein translation among groups were tested by one-way ANOVA, followed by Tukey HSD
test. Different letters indicate significant differences. P<0.05 was set as a statistically significant level.
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rIFNa. Compared to cPRRSV-2-inoculated monocytes co-cultured

with PBL, monocytes treated with rTGFb1 prior to cPRRSV-2

inoculation and the addition of PBL for co-culture demonstrated

significantly higher amount of PRRSV-2 ORF7 RNA copy numbers

at 12, 24, 36, 48, and 60 h after inoculation (Figures 8A, B).

Compared to HP-PRRSV-2-inoculated monocytes co-cultured

with PBL, monocytes treated with rTGFb1 prior to HP-PRRSV-2

inoculation and PBL addition demonstrated significantly higher

amount of PRRSV-2 ORF7 RNA copy numbers at 12, 24, 36, 48,

and 60 h after inoculation (Figures 8A, B).

Compared to cPRRSV-2-inoculated monocytes co-cultured

with PBL, monocytes treated with rIFNa prior to cPRRSV-2

inoculation and PBL co-culture demonstrated a significantly

lower amount of PRRSV-2 ORF7 RNA copy numbers at 12, 24,

36, 48, and 60 h after inoculation (Figures 8A, B). Compared to HP-

PRRSV-2-inoculated monocytes co-cultured with PBL, monocytes

treated with rIFNa prior to HP-PRRSV-2 inoculation and addition

of PBL demonstrated significantly lower amount of PRRSV-2 ORF7

RNA copy numbers at 12, 24, 36, 48, and 60 h after inoculation

(Figures 8A, B).
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Compared to cPRRSV-2-inoculated monocytes co-cultured with

PBL, monocytes treated with rTGFb1, followed by rIFNa prior to

cPRRSV-2 inoculation and PBL co-culture showed no alteration of

the amount of PRRSV-2 ORF7 RNA copy numbers after inoculation

(Figures 8A, B). Likewise, compared to HP-PRRSV-2-inoculated

monocytes co-cultured with PBL, monocytes treated with rTGFb1,
followed by rIFNa prior to HP-PRRSV-2 inoculation and PBL co-

culture did not show alteration of the amount of PRRSV-2 ORF7

RNA copy numbers after inoculation (Figures 8A, B). No PRRSV-2

ORF7 RNA was detected in cells treated with mock Ag.
4 Discussion

The effects of PRRSV-induced TGFb1 overexpression on

mRNA expressions of transcription factors, type I and II IFNs,

MHCs, anti-inflammatory and pro-inflammatory cytokines in

PRRSV-2-inoculated cells were investigated in this study. PRRSV-

2-induced TGFb1 overexpression in cells e.g., monocytes, MDMs,

and in lungs and lymphoid organs of pigs has been reported (27, 34,

35). At present, the detailed function of PRRSV-2-up-regulated

TGFb1 expression on swine immune protection against PRRSV-2

has not yet been explored.

The phosophorothioate-modified TGFbAS ODN targeting the

AUG region of TGFb1 mRNA significantly reduced TGFb1 mRNA

expression and protein translation (Figure 2, Additional File 3). In

swine immune setting, the AUG region is reported as the most

efficient target for gene knockdown of at least cytokines i.e., IFNg,
TGFb1, and IL-10 (49, 50). Theoretically, phosophorothioate-

modified AS ODNs hybridize specifically to target region of

mRNA, which enables RNaseH to cleave the hybridized target

mRNA. This consequentially results in the degradation of the

intact mRNA template for protein translation.

Porcine monocytes are permissive to PRRSV-2 infection in the

PBMC population. In the previous research, adherent porcine

monocytes in the well-plate had greater than 90% of SWC3a+,

which is indicative of monocytes (44). Non-adherent cells in

PBMCs consisting of PBLs incubated for 2 h has been

demonstrated to yield CD3+ lymphocytes and with less than 5%

of SWC3+ cells in the harvested population (26). To indicate T-

helper lymphocyte polarization, transcription factors i.e., FOXP3,

T-bet, GATA3, and RORgT, together with immune-related genes

i.e., TGFb1, IFNg, IL4, and IL17, were chosen as representative

indicators of Treg, Th1, Th2, and Th17, respectively.

Significantly increased mRNA expressions of FoxP3, GATA3,

IL-2, IL-4, IL-10, IL-12p40, IL-17, RORgT, TGFb1, and T-bet were

detected in monocytes co-cultured with PBL and inoculated with

either cPRRSV-2 or HP-PRRSV-2. HP-PRRSV-2-inoculated cells

significantly had higher mRNA expression levels of Foxp3, IL-10,

and TGFb1 than cPRRSV-2-inoculated monocytes co-cultured with

PBLs. Similar levels of mRNA expressions of GATA3, IL-2, IL-

12p40, IL-17, RORgT, and T-bet were observed between cPRRSV-2

and HP-PRRSV-2-inoculated monocytes co-cultured with PBLs.

Similar findings have been reported in PRRSV-2-infected

PBMCs that expressed high levels of FoxP3 (26), IL-2 (45), IL-10,

and TGFb1 (27). It was recorded that PRRSV N protein (10) and
FIGURE 4

Heat map illustrating effects of TGFbAS1 on immune-related
gene expressions in PRRSV-2-inoculated monocytes and PBL
co-cultures. Monocytes were transfected with TGFbAS1 prior to the
simultaneous addition of PBL and inoculation with either cPRRSV-2
or HP-PRRSV-2, then finally stimulated with either ConA or PMAi.
Monocytes transfected with TGFbAS1, co-cultured with PBL,
inoculated with either cPRRSV-2 or HP-PRRSV-2, and stimulated
with either ConA or PMAi served as the PRRSV-2-inoculated control.
Monocytes treated with transfection media (Tr. media), co-cultured
with PBL, inoculated with cPRRSV-2 or HP-PRRSV-2, and then
stimulated with either ConA or PMAi served as PRRSV-2-inoculated/
Tr. media control. Monocytes inoculated with mock Ag, co-cultured
with PBL, and stimulated with either ConA or PMAi served as mock
control. Untreated monocytes, co-cultured with PBL, stimulated
with either ConA (for IFNa, IFNg, IL-6, IL-17, IL-12p40, RORgT, Stat1,
T-bet, TNFa) or PMAi (for MHC-I, MHC-II, IL-2, IL-4, FoxP3, Stat2,
Stat6, GATA3, IL-10) served as positive control (Pos Ctrl). I = cPRRSV-
2; II = HP-PRRSV-2; III = Tr. media + cPRRSV-2; IV = Tr. media +
HP-PRRSV-2; V = TGFbAS1 + cPRRSV-2; VI = TGFbAS1 + HP-PRRSV-2;
VII = Mock Ag; VIII = Pos Ctrl. Data were normalized to the geometric
average of RPL32 and YWHAZ in relative to untransfected/unstimulated
monocytes and PBL co-cultures. Data are presented in log 2 scale
of “fold” according to 2^(-DDCT) method.
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GP5 (21) induce IL-10 production in vivo and ex vivo. The

increased expression of TGFb1 in PRRSV-infected MDMs in

vitro, and in lungs, lymph nodes and tonsils of PRRSV-infected

pigs has been reported (34, 35). In addition, Foxp3 and IL-10

mRNA expressions were also elevated in PRRSV-2-infected moDCs

(6, 10) and MDMs (7). Also, significant upregulation of GATA3

mRNA expression in PRRSV-infected mononuclear phagocyte cells

co-cultured with lymphocytes was recorded (51). In addition,

enhanced IL-4 production in PRRSV-2-infected pigs was

observed (25). RORgt contributes to the increased IL-17

production. IL-17 was induced in HP-PRRSV-2-infected PAMs

by inducing P13K and p38MAPK signaling (52). PRRSV-infected

pigs have been recorded with upregulated T-bet expression (53) in
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lung, tracheobronchial lymph node, and thymus (54). Upregulated

IL-12p40 expression in lungs (55) and moDCs (56) was also

demonstrated in PRRSV-infected pigs. IL-12p40 expression

through the JNK-AP-1 and NF-kB signaling pathways in vitro

and in vivo (55). These findings indicated that immune-related gene

expressions associated with Treg, Th1, Th2 and Th17 cells in

response to PRRSV-2 inoculation were activated.

In contrast to the upregulation of FoxP3, GATA3, IL-2, IL-4,

IL-10, IL-12p40, IL-17, RORgT, TGFb1, and T-bet mRNA

expressions, both cPRRSV-2 and HP-PRRSV-2 downregulated

the mRNA expressions of type I and II IFNs (i.e., IFNa and

IFNg), MHCs (i.e., MHC-I, MHC-II), STATs (i.e., STAT1, STAT2

and STAT6) and proinflammatory cytokines (i.e., TNFa) (Figure 4,
B

A

FIGURE 5

Effect of TGFb knockdown on PRRSV copy numbers in PRRSV-2-inoculated PBMCs. Monocytes were transfected with TGFbAS1, then inoculated
with either cPRRSV-2 or HP-PRRSV-2 and co-cultured with PBL (0 h), and finally stimulated with inducers i.e., (A) ConA or (B) PMAi (48 h).
Monocytes inoculated with cPRRSV-2 or HP-PRRSV-2, then co-cultured with PBL and stimulated with inducer served as the PRRSV-2-inoculated
control. Monocytes transfected with Scr, then inoculated with either cPRRSV-2 or HP-PRRSV-2, co-cultured with PBL, and finally stimulated with
inducer served as PRRSV-2-inoculated/Scr control. Monocytes treated with transfection media (Tr.media), inoculated with cPRRSV-2 or HP-PRRSV-
2, then co-cultured with PBL, and finally stimulated with inducer served as PRRSV-2-inoculated/Tr. media control. Cells receiving mock Ag plus
inducer served as uninoculated control. Cell culture supernatants were collected for real-time PCR. The CT values were obtained, and PRRSV-2
ORF7 RNA copy numbers were calculated based on the CT standard curve generated from 101-108 copies of recombinant PRRSV-2 ORF7 plasmids.
Data were presented in log 10 scale of copy number/ml. Error bars indicate the SD. Mean differences of PRRSV-2 ORF7 RNA copy numbers among
groups at time points were tested by one-way repeated measures ANOVA, followed by Tukey HSD. Different superscript letters indicate significant
difference. P<0.05 was set as a statistically significant level.
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Additional File 4). The mRNA expression levels of IFNa, IFNg,
MHC-I, MHC-II, STAT1, STAT2, and TNFa were lower in HP-

PRRSV-2-inoculated monocytes and PBL co-culture than in

cPRRSV-2-inoculated monocytes and PBL co-culture.

Similar findings have been reported in PRRSV-infected pigs.

PRRSV proteins i.e., nsp1a, nsp1b, nsp2, nsp4, nsp11, and N, have

been identified as type I IFN antagonists by targeting CREB-binding

protein (CBP) (13, 14), NF-kb signaling (57), NEMO (58), STAT2

and ISG production (59, 60), STAT1 translocation (12), and IRF3

phosphorylation (11), respectively. IFNa and IFNg transcription

levels in PRRSV-infected PAMs were upregulated at 12 and 24 h

post-infection, and significantly down-regulated at 36–72 h post-

infection (61). Downregulations of type I and II in MDMs (7),

monocytes (62), and PBMCs (27) inoculated with PRRSV-2 have

been demonstrated. MHC-I and MHC-II expressions were

suppressed in PRRSV-infected APCs (6, 56, 63). PRRSV-2 was
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reported to reduce STAT1, STAT2, and STAT6 expressions in

MARC-145 cells and PAMs (64, 65). HP-PRRSV was

demonstrated to inhibit TNFa in PAMs. PRRSV’s nsp1

downregulates TNFa production by targeting ERK signaling, NF-

kb, and SP1 promoter activities (21, 66, 67). It has been suggested

that PRRSV-induced suppression of innate immunity potentially

causes poor adaptive immune responses (68), characterized by

attenuated T lymphocyte proliferation, and poor induction of

PRRSV-specific IFN-g-producing cells (69).

TGFbAS1 transfection in monocytes then co-cultured with PBL

and inoculated with cPRRSV-2 and HP-PRRSV-2 significantly

reduced TGFb1 mRNA expression (Figures 3A, C). Percentage

reductions of 41% and 38% were observed on TGFbAS1-
transfected/cPRRSV-2-inoculated cells then stimulated with ConA

and PMAi, respectively. Also, there were 25% and 27% reductions

in TGFbAS1-transfected/HP-PRRSV-2-inoculated cells then
B

A

FIGURE 6

Effects of rTGFb1 on PRRSV-2 ORF7 RNA copy numbers in PRRSV-2-inoculated monocytes co-cultured with PBL. Monocytes were treated with rTGFb1
(10, 1 and 0.1 ng/ml final), inoculated with either cPRRSV-2 or HP-PRRSV-2, then co-cultured with PBL (0 h), and finally stimulated with inducers i.e.,
(A) ConA or (B) PMAi (48 h). Monocytes inoculated with cPRRSV-2 or HP-PRRSV-2, then co-cultured with PBL and stimulated with inducers served as
PRRSV-2-inoculated control. Monocytes receiving mock Ag then co-cultured with PBL plus inducer served as uninoculated control. Cell culture
supernatants were collected for real-time PCR. The CT values were obtained and PRRSV-2 ORF7 RNA copy numbers were calculated based on the CT

standard curve generated from 101-108 copies of recombinant PRRSV-2 ORF7 plasmids. Data were presented in log 10 scale of copy number/ml. Error
bars indicate the SD. Mean differences of PRRSV-2 ORF7 RNA copy numbers among groups at time points were tested by one-way repeated measures
ANOVA, followed by Tukey HSD. Different superscript letters indicate significant difference. P<0.05 was set as a statistically significant level.
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stimulated with ConA and PMAi, respectively. ConA and PMAi

were used to induce mRNA expressions of TGFb1 and other

immune-related genes of interest. In the presence of these

inducers, we clearly demonstrate that PRRSV-2 suppresses

mRNA expressions of several immune-related genes in PRRSV-

inoculated cells as compared to uninoculated control (45, 49).

Unexpectedly, mRNA expressions of IL-4 and IL-10 were

significantly reduced with transfection of TGFbAS1 in monocytes

co-cultured with PBL and inoculated with cPRRSV-2 and HP-

PRRSV-2 (Figure 4, Additional File 4). The significant reductions of

IL-4 and IL-10 mRNA expressions were not detected in the

specificity testing of TGFbAS1 in uninoculated monocytes and

PBL co-culture (Table 1). Approximately, there were 18% and

11% reductions of IL-4 and IL-10 in TGFbAS1-transfected/
cPRRSV-2-inoculated cells, respectively. Whereas, TGFbAS1-
transfected/HP-PRRSV-2-inoculated cells had approximately 22%
Frontiers in Immunology 12
and 5% reductions in IL-4 and IL-10 mRNA expressions,

respectively. The outcomes of reduced IL-4 and IL-10 expressions

in TGFbAS1-transfected/PRRSV-2-inoculated monocytes and PBL

co-culture were not clearly understood. IL-10 and TGFb reportedly

promote each other’s gene expression (70). In human monocytes

and macrophages, TGFb induces IL-10 production (71). In murine

T-cells, TGFb suppresses Th2 by inducing T-regs (72). IL-4

primarily drives Th2 polarization. Th1 cells produce IFNg that

inhibits IL-4-mediated Th2 differentiation (73). In pigs, IL-4

expression has been shown to control APC’s inflammatory

activities. IL-4 was recorded to induce porcine PAMs to become

an alternatively activated M2 macrophages that are characterized by

IL-10 production (74). In both human and murine, IL-4 is vital for

antibody production and a diagnostic marker for Th2 immune cell

response. In contrast, IL-4 is not a porcine B-cell’s stimulatory

factor because it impedes IL-6 and antibody secretion, and
B

A

FIGURE 7

Effects of rIFNa on PRRSV-2 ORF7 RNA copy numbers in PRRSV-2-inoculated monocytes co-cultured with PBL. Monocytes were treated with rIFNa
(10, 1 and 0.1 ng/ml final), inoculated with either cPRRSV-2 or HP-PRRSV-2, then co-cultured with PBL (0 h), and finally stimulated with inducers i.e.,
(A) ConA or (B) PMAi (48 h). Monocytes inoculated with cPRRSV-2 or HP-PRRSV-2, co-cultured with PBL, and finally stimulated with inducers served
as PRRSV-2-inoculated control. Monocytes receiving mock Ag then co-cultured with PBL plus inducer served as uninoculated control. Cell culture
supernatants were collected for real-time PCR. The CT values were obtained and PRRSV-2 ORF7 RNA copy numbers were calculated based on the
CT standard curve generated from 101-108 copies of recombinant PRRSV-2 ORF7 plasmids. Data were presented in log 10 scale of copy number/ml.
Error bars indicate the SD. Mean differences of PRRSV-2 ORF7 RNA copy numbers among groups at time points were tested by one-way repeated
measures ANOVA, followed by Tukey HSD. Different superscript letters indicate significant difference. P<0.05 was set as a statistically
significant level.
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suppresses antigen-stimulated proliferation of B-cells (75). IL-4 was

also demonstrated to suppress the transcription of inflammatory

cytokines in porcine macrophages (76). The slightly reduced IL-4

and IL-10 after TGFb knockdown might be attributed to the

upregulation of STAT1/2 and IFNa/g. This hypothesis needs to

be verified by more studies, as no significant differences in T-bet

expression were observed in PRRSV-2-inoculated and TGFbAS1-
transfected/PRRSV-2-inoculated monocytes and PBL co-culture.

In contrast to the significant reductions of IL-4, IL-10, and

TGFb1 mRNA in response to TGFbAS1 transfection, TGFbAS1-
transfected monocytes co-cultured with PBLs and then inoculated

with cPRRSV-2 and HP-PRRSV-2 significantly increased IFNa,
IFNg, MHC-I, MHC-II, STAT1, and STAT2 mRNA expressions
Frontiers in Immunology 13
(Figure 4, Additional File 4). In addition, mRNA expressions of IL-

12p40 were also significantly reduced in TGFbAS1-transfected cells

then inoculated with cPRRSV-2. The existing information regarding

the immunoregulatory activities of TGFb in pigs is limited. In

murine T-cells, TGFb inhibits Th1-mediated inflammatory

response and cell differentiation by suppressing IFNg, T-bet, IL-2,
and IL-4 but promotes Tregs differentiation (41, 77, 78). In porcine

MDMs, TGFb has been reported to down-regulate CD14, IL-6,

MHC-II, and TNFa (37). In murine macrophages, TGFb has been

reported to inhibit TLR2, TLR4, and TLR5 ligand-induced NF-kb
activation, TNFa, CD14, CD40, IL12p40, and MHCII (38, 39). The

increased mRNA expressions of immune-related genes in response

to TGFbAS1 transfection should be considered alongside the
B

A

FIGURE 8

Effects of rTGFb1 and rIFNa on PRRSV-2 ORF7 RNA copy numbers in PRRSV-2-inoculated monocytes then co-cultured with lymphocytes.
Monocytes were treated with rTGFb1 (10 ng/ml final), followed by rIFNa (10 ng/ml final), then inoculated with either cPRRSV-2 or HP-PRRSV-2, then
co-cultured with PBL (0 h), and stimulated with inducers i.e., (A) ConA or (B) PMAi (48 h). Monocytes inoculated with cPRRSV-2 or HP-PRRSV-2, co-
cultured with PBL, and stimulated with either ConA or PMAi served as PRRSV-2-inoculated control. Monocytes treated with rTGFb1, co-cultured
with PBL, then inoculated with either cPRRSV-2 or HP-PRRSV-2 (0 h), and stimulated with inducers (48 h) served as rTGFb1-treated/PRRSV-2-
inoculated control. Monocytes treated with rIFNa, co-cultured with PBL, then inoculated with either cPRRSV-2 or HP-PRRSV-2 (0 h), and stimulated
with inducers (48 h) served as rIFNa -treated/PRRSV-2-inoculated control. Monocytes co-cultured with PBL receiving mock Ag plus inducers served
as uninoculated control. Cell culture supernatants were collected for real-time PCR. The CT values were obtained and PRRSV-2 ORF7 RNA copy
numbers were calculated based on the CT standard curve generated from 101-108 copies of recombinant PRRSV-2 ORF7 plasmids. Data were
presented in log 10 scale of copy number/ml. Error bars indicate the SD. Mean differences of PRRSV-2 ORF7 RNA copy numbers among groups at
time points were tested by one-way repeated measures ANOVA, followed by Tukey HSD. Different letters indicate significant differences. P<0.05 was
set as a statistically significant level.
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reduced IL-10 expression. IL-10 has been shown to suppress mRNA

expression of these immune-related genes (79). In pigs, knocking

down IL-10 led to significantly increased mRNA expressions of IFNg
and TNFa, and slightly increased CD80, CD86, IL-1b, and IL-12p40
mRNA expressions (45, 46).

The transfection of monocytes with TGFbAS1, followed by co-

culturing with PBLs and subsequent inoculation with cPRRSV-2

and HP-PRRSV-2, resulted in a significant decrease in PRRSV-2

ORF7 RNA copy numbers (Figure 5). This reduction was observed

from 12 h to 60 h after inoculation. In TGFbAS1-transfected/
cPRRSV-2-inoculated cells, the reduction percentages of PRRSV-2

ORF7 RNA copy numbers were approximately 10.8% at 12 h after

inoculation and 28.5% at 60 h after inoculation. Similarly, in

TGFbAS1-transfected/HP-PRRSV-2-inoculated cells, the

reduction percentage was approximately 9.6% at 12 h after

inoculation and 24.6% at 60 h after inoculation. It is important to

note that the reduction in PRRSV-2 ORF7 RNA copy numbers was

not attributed to non-specific binding of TGFbAS1 to PRRSV RNA,

as there was no alignment between TGFbAS1 and any ORFs of

cPRRSV-2 and HP-PRRSV-2 used in this study. Furthermore, it is

worth mentioning that the reduction percentage of PRRSV-2 ORF7

RNA copy numbers and TGFb1 mRNA expression was higher in

TGFbAS1-transfected/cPRRSV-2-inoculated monocytes and PBL

co-culture compared to TGFbAS1-transfected/HP-PRRSV-2-

inoculated monocytes and PBL co-culture.

In addition to the notable decrease in TGFb1 mRNA expression,

a significant decrease in PRRSV-2 ORF7 RNA copy numbers was

observed in TGFbAS1-transfected/cPRRSV-2-inoculated and

TGFbAS1-transfected/HP-PRRSV-2-inoculated monocytes and

PBL co-culture, accompanied by a significant increase in mRNA

expressions of IFNa, IFNg, MHC-I, MHC-II, STAT1, and STAT2.

Previous studies have reported the inhibitory effects of certain

immune-related genes, such as IFNa, IFNg, and TNFa, on PRRSV

replication (80–82). To further investigate the role of these immune-

related genes in reducing PRRSV-2 ORF7 RNA copy numbers,

commercially available rIFNa was utilized. Treatment of

monocytes and PBL co-culture with an optimal concentration of

rIFNa prior to either cPRRSV-2 or HP-PRRSV-2 inoculation

resulted in a significant reduction in PRRSV-2 ORF7 RNA copy

numbers (Figure 7). Monocytes were susceptible to PRRSV-2

infection in the co-culture system. Knockdown of TGFb1 in

monocytes within the co-culture system led to the upregulation of

IFNa, IFNg, MHC-I, MHC-II, STAT1, and STAT2, which could

potentially act as the anti-PRRSV response. These findings suggest

that the significant increase in the expressions of these immune-

related genes in response to TGFb1 knockdown may contribute to

the reduction of PRRSV-2 ORF7 RNA copy numbers.

rTGFb1 was employed to provide additional clarification

regarding the potential role of PRRSV-up-regulated TGFb1
expression in supporting PRRSV replication. The treatment of

monocytes and PBL co-culture with rTGFb1 prior to inoculation

with either cPRRSV-2 or HP-PRRSV-2 resulted in a significant

increase in PRRSV-2 ORF7 RNA copy numbers (Figure 6).

Additionally, the treatment of cells with rTGFb1 prior to rIFNa
treatment and inoculation with cPRRSV-2 or HP-PRRSV-2 led to a

reduction in the antiviral activity of rIFNa (Figure 8). These
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findings demonstrate the positive influence of TGFb1 on PRRSV

replication. Furthermore, these findings suggest a potential strategy

employed by PRRSV to enhance virus replication and diminish

innate immune defense against the virus through the upregulation

of TGFb1 expression.
5 Conclusion

In conclusion, both cPRRSV-2 and HP-PRRSV-2 significantly

upregulated the expression of TGFb1 in the co-culture of

monocytes and PBL. The knockdown of TGFb1 expression by

TGFbAS1 significantly enhanced the IFNa/g, MHC-I/II, and

STAT1/2 mRNA expression levels in the monocytes and PBL co-

cultures infected with the virus. Additionally, the suppression of

TGFb1 expression by TGFbAS1 contributed to the significant

reduction in the yields of PRRSV-2 RNA copy numbers.

Conversely, rTGFb1 and rIFNa sustained and decreased the

yields of PRRSV-2 RNA copy numbers, respectively. The results

of this study illustrate a plausible strategy employed by PRRSV to

suppress the innate immune response, highlighting the

immunomodulatory role of PRRSV-induced TGFb in dampening

the innate immune defense against the virus. Furthermore, these

findings suggest that the development of future PRRSV vaccines

and vaccine adjuvants should consider targeting TGFb as a

potential therapeutic approach.
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