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Introduction: Hypopharyngeal squamous cell carcinoma (HSCC) is one of the

malignant tumors with the worst prognosis in head and neck cancers. The

transformation from normal tissue through low-grade and high-grade

intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a

progressive pathological sequence typical of tumorigenesis. Nonetheless, the

alterations in diverse cell clusters within the tissue microenvironment (TME)

throughout tumorigenesis and their impact on the development of HSCC are yet

to be fully understood.

Methods: We employed single-cell RNA sequencing and TCR/BCR sequencing

to sequence 60,854 cells from nine tissue samples representing different stages

during the progression of HSCC. This allowed us to construct dynamic

transcriptomic maps of cells in diverse TME across various disease stages, and

experimentally validated the key molecules within it.

Results: We delineated the heterogeneity among tumor cells, immune cells

(including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts

and endothelial cells) during the tumorigenesis of HSCC. We uncovered the

alterations in function and state of distinct cell clusters at different stages of

tumor development and identified specific clusters closely associated with the

tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3

and MMP3, pivotal for the diagnosis and treatment of HSCC.

Discussion: Our research sheds light on the dynamic alterations within the TME

during the tumorigenesis of HSCC, which will help to understand its mechanism of

canceration, identify early diagnostic markers, and discover new therapeutic targets.
KEYWORDS
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1 Introduction

The hypopharynx is crucial for physiological functions like

swallowing and speech. Hypopharyngeal squamous cell

carcinoma (HSCC) often develops unnoticed, leading to late-stage

diagnoses. Despite advanced treatments, the 5-year survival rate is

below 40%, marking it as one of the most severe malignancies in the

head and neck region (1). Squamous cell carcinoma is the

predominant form of hypopharynx, strongly linked to smoking

and alcohol (2). The transformation from normal mucosa to cancer,

involving stages of low-grade intraepithelial neoplasia (LGIN) and

high-grade intraepithelial neoplasia (HGIN), is poorly understood

due to the complexity of signaling networks and molecules involved

(3). Thus, studying the cellular and molecular alterations in HSCC

development is vital for understanding its molecular mechanisms,

identifying diagnostic markers, and discovering therapeutic targets.

Understanding the biological mechanisms of HSCC

carcinogenesis requires detailed characterization of the molecular,

cellular, and acellular components involved in cancerous

transformation, which exhibit pronounced spatial and temporal

heterogeneity throughout tumor initiation and progression (4).

This heterogeneity is marked by the emergence of distinct cellular

entities, each with unique molecular signatures and functional

differences (5).

Traditional transcriptome sequencing methods, which average

RNA expression, can mask the disparities in gene expression among

diverse cells within a group. The advent of single-cell RNA

sequencing (scRNA-seq) has overcome this, allowing for the

extraction and preparation of RNA libraries at the single-cell level

and providing comprehensive transcriptomic insights. This

technology aids in identifying cell types, states, and functions, and

illuminates cellular heterogeneity and evolutionary pathways.

Integrated with immunome library analysis, it offers a complete

examination of the T-cell receptors (TCR) and B-cell receptors

(BCR) of all immune cells, providing a detailed immune profile of

gene expression in specific tissues or diseases. This analysis is crucial

for uncovering tumor heterogeneity, tracing cell lineage, and

understanding the complex mechanisms of tumor clonal

evolution, paving the way for early detection, therapeutic

stratification, prognostic evaluation, and monitoring of

recurrence (6).

In this study, we explored the multi-stage carcinogenesis of

hypopharyngeal mucosa by conducting scRNA-seq on tissue

specimens from various pathological stages, aiming to analyze the

composition and expression variations of cells within different

tissue microenvironments (TME). This approach, simulating the

progression of hypopharyngeal carcinogenesis, aspires to construct

a comprehensive dynamic transcriptome map to depict the

evolution of cellular and molecular expressions throughout
Abbreviations: HSCC, Hypopharyngeal squamous cell carcinoma; TME, tissue

microenvironment; LGIN, low-grade intraepithelial neoplasia; HGIN, high-grade

intraepithelial neoplasia; TCR, T-cell receptors; BCR, B-cell receptors; CNVs,

chromosome copy number variants; HNSCC, head and neck squamous cell

carcinoma; TCGA, The Cancer Genome Atlas.
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tumorigenesis. The insights gained are expected to elucidate the

trajectory and potential molecular mechanisms of hypopharyngeal

carcinogenesis and reveal key regulatory molecules, aiding in the

identification of predictive molecular markers for hypopharyngeal

carcinogenesis, thereby contributing significantly to the

advancement of HSCC analysis.
2 Materials and methods

2.1 Patient recruitment and
sample collection

From January to February 2023, five male patients, median age

57 (55-63 years), with HSCC were recruited from the Cancer

Hospital of the Chinese Academy of Medical Sciences. The study

received approval from the hospital ethics committee (number: 22/

454-3656), with informed consent obtained from each patient

before examination. None had received any treatment (radiation,

chemotherapy, or surgery) or had a history of other tumor diseases.

Before treatment, all underwent laryngoscopy and gastroscopy.

Based on laryngoscopic findings, multiple biopsies were taken

from different hypopharyngeal regions of the patients, yielding

nine samples: four from the left pyriform sinus, three from the

right, and two from the posterior hypopharyngeal wall. Each sample

was bifurcated; a fragment was preserved in 10% formalin for

routine pathology, and the remainder was used for scRNA-seq

and TCR/BCR-seq. Two experienced, blinded pathologists

conducted the pathological assessments, agreeing on the final

diagnoses. Histopathological diagnosis is the diagnostic gold

standard. The final pathological diagnoses were two cases of

normal squamous epithelial tissue, one of LGIN, three of HGIN,

and three of HSCC. Subsequently, we classified the study categories

into four groups based on pathological grading: Normal, LGIN,

HGIN, and Tumor (7, 8).
2.2 Preparation of single cell suspensions

After sampling, tissues were rinsed of any blood stains with

saline and stored in brown tubes with MACS® Tissue Storage

Solution (Miltenyi Biotec), transported to the laboratory at 4°C.

Dissociation experiments began within 1 hour of arrival. Samples

were segmented into 2-3 mm pieces and processed to single-cell

suspensions using the Human Tumor Dissociation Kit protocol.

Tissue pieces were transferred to a 5 mL tube with dissociation

solution and dissociated at 37°C for 2 hours using a rotary mixer.

Post-dissociation, 20 mL of DMEM was added, and the suspension

was filtered using a 70 mm strainer. Cells were collected by

centrifugation at 4°C. Cells were then resuspended in 1×PBS and

treated with Red Blood Cell Lysis Solution. Finally, cells were

resuspended in 1×PBS + 0.04% BSA + 1U/mL RNase inhibitor.

Cell viability, concentration, and aggregation rate were measured

using AO/PI Fluorescent Dye on a LUNA-FL™ Cell Counter, with

required standards of viability >75%, concentration between 700-

1200 cells/mL, and aggregation rate <5%.
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2.3 Library construction and Next
generation sequencing

We utilized Chromium Next GEM Single Cell 5’ Reagent Kits

v2 (Dual Index) from 10× Genomics to construct single-cell

libraries, aiming for 10,000 captured cells per sample. After

generating GEMs with the Chromium Controller, we adhered to

the kit instructions for 5’ single-cell RT-PCR amplification, 5’

cDNA amplification and purification, TCR and BCR sequence

amplification and purification, and library construction.

The quality and concentration of the library were assessed using a

Qubit 4.0 and Qubit™ 1× dsDNA Assay Kits (high sensitivity) from

Thermo Fisher Scientific. The molar concentration and fragment

insertion of the library were evaluated using the StepOnePlus™

Real-Time PCR System from Applied Biosystems and detected by

LabChip Touch. Sequencing was executed on Illumina’s Novaseq 6000

with a PE150 read length.

For processing single-cell 5’ gene expression and TCR enrichment

data, we employed Cell Ranger count and Cell Ranger vdj functions of

Cellranger software (version 6.0.1) from 10× Genomics. Gene

expression data were aligned to the human genome reference

(GRCh38), and TCR and BCR enrichment data to the VDJ reference

sequences available at 10× Genomics Reference Data.
2.4 Single-cell gene expression
quantification and determination of
cell types

We processed the sequencing data utilizing the Seurat R package

(version 4.3.0) (9). Data was converted into a Seurat object and quality

filtered to exclude cells meeting specific conditions. Perform batch

effect correction using the harmony package (version 1.0.3).

Logarithmic normalization and linear regression were performed

using Seurat package functions to construct the gene expression

matrix. The COSG package (version 0.9.3) identified cell clusters,

categorized into six primary cell types based on distinct marker

genes: T cells, myeloid cells, B cells, epithelial cells, mast cells, and

fibroblasts (10).

Subsequently, normalization, scaling, and clustering were

repeated to further subdivide and label specific cell subtypes based

on average expression of gene sets in each primary cell type. Cells

withmultiple labeled genes and elevated UMI counts were considered

cellular contamination and excluded. Each cluster of a primary cell

type was assigned a cluster identifier containing a marker gene,

selected based on criteria including top ranking in differential gene

expression analysis, high specificity of gene expression, and literature

support validating their role as marker genes or functional genes

associated with the cell type.
2.5 Pathway enrichment analysis

We used the clusterProfiler software package (11) (version

4.0.5) for R for Gene Ontology (GO), KEGG Pathway, and
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Reactome enrichment analyses to explore the functions and

mechanisms of the identified cellular clusters. P-values were

adjusted with the Benjamini and Hochberg method, with p.adjust

values below 0.05 deemed statistically significant. Additionally, we

performed Gene Set Variation Analysis (GSVA) using the

GSEABase package (12) (version 1.62.0) for R, primarily focusing

on the 50 hallmark gene sets from the MSigDB database (https://

www.gsea-msigdb.org/).
2.6 CNV estimation

To identify malignant cells in HSCC patients, we used inferCNV

software (version 1.14.2) to infer CNVs from chromosomal gene

expression patterns, setting a cutoff value at 0.1 and enabling the

denoise option. We chose the expression profiles of T and B cells as

references, including all epithelial cell clusters in the observation

group. We then evaluated the CNVs signal intensity of each cell by

scaling its corrected expression from -2 to 2, establishing the CNV

score as the aggregate of the scale scores for each cell. By integrating

the sample sources of cell clusters and performing statistical tests

between cluster CNV scores, we determined which cells

were malignant.
2.7 Tissue distribution of clusters

To evaluate the tissue preference of each cell population, we

computed the ratio of the number of observed cells to the expected

number of cells (Ro/e) across different tissues, allowing statistical

inference of cell population preference for specific tissues (13, 14).

We used a chi-square test to determine the expected number of cells

for each combination of cell population and tissue, offering a robust

statistical basis to validate observed distributions against

expected ones.
2.8 Immunofluorescence staining

The Human Protein Atlas (HPA) database was employed to

gather comprehensive information on the human protein, matrix

metalloproteinase 3 (MMP3). The HPA database provides a rich

resource of data, including immunofluorescence staining results,

enabling the exploration of the spatial distribution and expression

levels of proteins across different tissues and cells.
2.9 Developmental trajectory inference

Initially, we used the CytoTRACE package (15) (version 0.3.3) to

infer evolutionary relationships among single cells by assigning an

evolutionary score to each cell based on scRNA-seq data, revealing

potential evolutionary connections between cells. Next, we used the

Monocle3 package (16) (version 1.3.1) to infer evolutionary trajectories,

identify cell states, and visualize transition events, enhancing
frontiersin.org

https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
https://doi.org/10.3389/fimmu.2024.1310376
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tie et al. 10.3389/fimmu.2024.1310376
understanding of cellular development and transitions. Finally, to fully

understand evolutionary genes and pathways, we used the ClusterGVis

package (version 0.1.0) for displaying evolutionary genes and

conducting pathway enrichment analysis, integrating diverse data

sources and providing extensive visualization options to understand

the evolutionary dynamics within cellular populations better.
2.10 Survival analysis with TCGA data

We analyzed bulk RNA-seq data from >500 head and neck

squamous cell carcinoma (HNSCC) samples profiled by The Cancer

Genome Atlas (TCGA) using GEPIA2 (17) and performed Kaplan-

Meier analysis. Patients were divided into high and low expression

groups based on median gene expression; the top 50% were high

expression, and the bottom 50% were low expression. Survival

curves were compared using the Log-rank test. GEPIA2 also

enabled pan-cancer expression analysis and visualization of

MMP3 expression across different cancers.
2.11 TCR/BCR repertoire analysis

We utilized the immunarch package (version 0.9.0) for

extensive analysis of TCR-bchain and BCR in the dataset. This

package offers specialized functions for immunoreceptor analysis,

which were employed for all data processing and analysis steps,

including TCR and BCR sequence identification, clustering, and

diversity analysis, using the package’s default parameters to

maintain accuracy and reproducibility.
2.12 qRT-PCR analysis

We chose five patients with untreated HSCC, confirmed

pathologically, from the Cancer Hospital of the Chinese Academy

of Medical Sciences between January 2016 and May 2017. Biopsies of

cancerous and adjacent normal tissues were performed on each

patient. The patients had a median age of 61, with detailed

characteristics available in Supplementary Table 3. All participants

provided written informed consent, and the study received approval

from the hospital’s Ethics Committee.

RNA from the samples was extracted using Invitrogen reagents

and converted to cDNA using the High-Capacity cDNA Reverse

Transcription Kit from Applied Biosystems. qRT-PCR analysis was

performed with Invitrogen qPCR reagents, and further PCR

analysis was conducted using the Agilent cDNA Reverse

Transcription Kit, with an Agilent (Stratagene MX3005p) device.

Specific primers were used for MMP3, MMP7, MAGEA3, and

GAPDH, which served as an internal reference (Supplementary

Table 2). All procedures were replicated three times, and the DDCt
method was used to calculate relative gene expression levels.
Frontiers in Immunology 04
2.13 Analysis of
intercellular communication

The CellChat package in R (version 1.6.1) has been developed

for inferring and analyzing intercellular communication networks

from scRNA-seq data through network analysis, pattern

recognition, and various learning methods (18).
2.14 Statistics analysis

All statistical analyses were executed with R software, utilizing

tests such as the two-sided paired Student’s t-test, two-sided

Wilcoxon test, two-sided Pearson correlation test, and two-sided

Kruskal-Wallis test. A p-value below 0.05 was deemed to signify a

statistically significant difference.
3 Results

3.1 Landscape view of cell composition in
HSCC and its precancerous lesions

To explore the TME during hypopharyngeal carcinogenesis in

detail, we performed 5’ RNA sequencing and constructed TCR and

BCR libraries on various tumor tissue samples, including the

adjacent normal tissue, LGIN, HGIN, and HSCC, using scRNA-

seq technology (Supplementary Tables 1, 2). Subsequent TCR/BCR

analysis and expression profiling were conducted (Figure 1A).

To minimize individual variances, we selected patients with two

or more different lesion stages, including normal tissue. Each

sample yielded an average of over 290 million sequencing reads,

with an average sequencing saturation of 88.01% (Supplementary

Table 1). After stringent quality control, we analyzed a total of

64,529 cells across the samples, identifying approximately 2,224

genes and 9,117 UMIs per cell (Supplementary Figure 1A).

For identifying diverse cell types, we used the Seurat package for

unsupervised cluster analysis, identifying 12 clusters (Supplementary

Figures 1B, C). These were classified into seven distinct cell types

using classical markers: T cells, myeloid cells, epithelial cells, B cells,

endothelial cells, mast cells, and fibroblasts (Figures 1B, D) (19). T

cells, myeloid cells, and epithelial cells constituted the majority of the

total cell population, over 72%, with immune cells representing over

75% of all cells. The presence of cells from multiple samples within

the same clusters indicated minimal batch effect (Figure 1C;

Supplementary Figures 1B, F).

During the LGIN stage of HSCC, there is a notable increase in

the proportion of T cells, suggesting potential extensive immune

stimulation at this stage. Myeloid cells show consistent

augmentation post lesion onset. The most significant alterations

across stages are seen in immune and epithelial cells

(Supplementary Figure 1D). Endothelial cells are primarily found
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1310376
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tie et al. 10.3389/fimmu.2024.1310376
in normal tissue, whereas fibroblasts are more prevalent in tumor

tissues (Supplementary Figure 1E).
3.2 The dynamic multidimensional features
of epithelial cells in the development
of HSCC

We categorized 12,113 epithelial cells into seven distinct clusters

based on expression profiles (Figure 2A). Three clusters
Frontiers in Immunology 05
(Epi_C1_SPARC, Epi_C6_TCIM, Epi_C7_SPINK6) originated

from different tumor tissue samples (Figure 2B). Given the

spectrum of our biopsy samples, transcriptomic profiles might

exhibit similarities during the LGIN and HGIN stages, with full

heterogeneity manifested among different HSCC patients within

tumor tissues (20). We analyzed chromosome copy number

variants (CNVs) to delineate tumor cells within these clusters.

Several cells from normal samples exhibited CNVs, possibly due

to algorithmic properties, sample collection methodologies, or cell

post-processing. However, three clusters from tumor cells displayed
B C

D

A

FIGURE 1

Single-cell landscape profiling across various stages of hypopharyngeal carcinogenesis. A schematic diagram depicts the workflow for sample
selection and analysis of HSCC and its precancerous lesions (A). A UMAP diagram displays the annotated cell clusters from our study (B). A bar chart
illustrates the proportion of cell types present in each individual based on the scRNA-seq data (C). The expression levels of distinct marker genes
across the annotated cell types are presented (D).
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consistent chromosomal variation (Figure 2C). The CNVs scores

further illustrated significant differences between these three

clusters and the others (Supplementary Figure 2A). We identified

recognized cancer driver genes (EGFR, MTOR, CCND1, and MYC)
Frontiers in Immunology 06
within Epi_C1_SPARC and Epi_C6_TCIM subclusters, observing

high variability of CNVs in cell proliferation-related genes (TOP2A,

MKI67) (Supplementary Figure 2B) . Epi_C1_SPARC,

Epi_C6_TCIM, and Epi_C7_SPINK6 demonstrated elevated
B

C

D

E

F

G

A

FIGURE 2

Heterogeneity of Epithelial Cells Across Different HSCC Lesion Stages. A dot plot illustrated the subclusters of epithelial cells across various HSCC
lesion stages (A). A bar graph depicted the proportion of cell types within each epithelial cell cluster (B). A heatmap displayed large-scale CNVs for
epithelial cells from 9 samples, with CNVs being inferred based on the average expression of 100 genes for each chromosomal position. Gains were
indicated in red, and losses in blue (C). Gene expression data was visualized as a heatmap, where high expression was encoded in yellow, and low
expression in blue, relative to the mean expression (black) (D). Another heatmap presented different blocks of DEGs along the pseudotime trajectory,
with selected KEGG pathways related to the corresponding DEGs on the right. The box highlighted the expression trend and the number of genes in
each cluster, showcasing Epi_C4_KRT78 on the left and Epi_C1_SPARC on the right (E). Kaplan-Meier survival curves for HNSCC from The Cancer
Genome Atlas were displayed. Intratumoral heterogeneity, based on detected signals for alternative subtypes, was categorized into groups with high
and low Epi_C1_KRT (F). The relative mRNA expression of MAGEA3 in paracancerous and HSCC tissues was analyzed using qRT-PCR, where PT
represented paracancerous tissue, HSCC represented hypopharyngeal cancer tissue, * represented p-value less than 0.05 (G).
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expression of tumor and proliferation-related genes, indicating the

high proliferative potential and active cytokinesis of the tumor

cells (Figure 2D).

To understand the transformation from normal epithelial cells

to tumor cells, we charted the cell differentiation trajectory from

Epi_C4_KRT78 to Epi_C1_SPARC (Supplementary Figure 2C) and

illustrated gene alterations via a heatmap (Figure 2E). The

expression of tumor-associated genes like PTK7 and MAGEA3

escalated, implying a potential increase in metabolic activities and

nuclear functions during cellular transformation, correlating with

elevated proliferation and enhanced viability in tumor cells.

Conversely, the expression of genes like FLEC and HGC22

diminished, reflecting a potential loss of normal epithelial cell

functions, correlating with abnormal growth and differentiation in

tumor cells.

Using data from 523 patients with HNSCC from TCGA, we

found a significant correlation between the expression of the

Epi_C1_SPARC cluster in tumor tissues and overall survival

(OS); higher expression was indicative of poorer prognosis

(Figure 2F). This implied that this cluster could be a specific

marker and a potential therapeutic target for HSCC. When we

conducted independent prognostic analysis on its markers, we

found that HMGA2 is significantly associated with prognosis and

shows great potential in immunotherapy (Supplementary Figure 3;

Supplementary Data 1). In various cancers such as nasopharyngeal

carcinoma and lung cancer, HMGA2 is often overexpressed or

undergoes gene mutations, which are correlated with cell

transformation, tumor proliferation, invasion, and metastasis (21,

22). Validation of the differentially expressed genes (DEGs) of

Epi_C1 through qRT-PCR confirmed significant expression of

MAGEA3 in HSCC tissues (Figure 2G). MAGEA3 is a known

tumor-associated antigen and is considered a potential therapeutic

target for various tumors (22).
3.3 The dynamic multidimensional features
of T cells and the diversity of TCR in the
development of HSCC

To investigate the presence and anti-tumor functions of T and

NK cells at different HSCC stages, we examined the functional

subtypes of these cells and analyzed corresponding alterations in

TCR. We segregated 23,019 T and NK cells into 20 distinct

subgroups, primarily encompassing CD4+ and CD8+ T cells

(Figure 3A; Supplementary Figure 4A). Across all samples of

HSCC, we pinpointed a total of 5,278 T/NK cells. Based on the

expression of markers, we organized them into 20 clusters, which

included: five CD4 clusters (two Naïve clusters: CD4_C1_CCR7

and CD4_C3_IL32, one highly prol i ferat ive c lus ter :

CD4_C5_MKI67, one Th cell: Th_1_CXCL13, and five Treg

clusters: Treg_C1_IL1R1, Treg_C2_FOXP3, Treg_C3_PLCL1,

Treg_C4_LAIR2, Treg_C5_CCR8); six CD8 clusters (three

exhausted T-cell clusters: CD8_C3_CXCL13, CD8_C5_HAVCR2,

CD8_C6_MS4A6A, and one effector memory cluster :

CD8_C1_GZMK); and NK cell subsets, categorized into resting

NK cells: NK_C1_XCL1 and cytotoxic NK cells: NK_C2_FGFBP2.
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Initially, we categorized the cells into CD4+ T cells, CD8+ T

cells, and double-negative cells, based on the expression levels of

CD4 and CD8 genes. CD4_C1_CCR7 and CD4_C3_IL32 were

identified as Naive T cells due to the expression of characteristic

markers such as CCR7, SELL, and CD27. Th_1_CXCL13 was

identified as a typical Th1 cell, expressing CXCL13, BHLHE40,

and CXCR3. Within the immunoprofile, we discerned five Treg

clusters, expressing not only Treg markers like FOXP3, TNFRSF18,

and TNFRSF4 but also various exhaustion markers including

LAG3, TIGIT, PDCD1, HAVCR2, and CTLA4. CD8_C4_IFIT1

and Treg_C4_LAIR2 predominantly originated from tumor

samples, while CD8_C3_CXCL13 and CD8_C6_MS4A6A were

primarily derived from both tumor and HGIN samples

(Supplementary Figure 4C).

To identify uniquely expressed genes in specific cell types, we

performed a DEGs analysis on T cell clusters and presented the

results using a heatmap (Figure 3B). The tumor-derived cluster

CD8_C4_IFIT1 showed expression of genes related to the IFIT and

IFI families, which were crucial for antiviral responses and were

closely related to interferon immune responses and immune

microenvironment regulation (23).

The CD4_C5_MKI67 cluster was highly proliferative,

suggesting active cell division and a positive response to tumor

antigen-specific stimuli, making them potential immunotherapy

targets. Treg cells, crucial for mitigating immune responses and

maintaining immune homeostasis (24), predominantly expressed

key immunosuppressive molecules like CTLA-4, PDL1, and TIGIT.

Exhausted T cel l s such as CD8_C3_CXCL13 and

CD8_C5_HAVCR2 expressed markers including LAG3, PDCD1,

and HAVCR2. We also identified a cluster, CD8_C6_MS4A6A,

related to antigen recognition activation and T cell clonal

proliferation. The Treg_C5_CCR8 cell cluster showed significant

immunosuppressive functionality due to elevated expression of

TNFRSF family genes and CCR8, facilitating immune evasion and

cancer progression (Figure 3C). Disrupting CCR8 signaling could

potentially inhibit tumor growth by attenuating the suppression of

cytotoxic lymphocytes (25).

We examined TCR a-chain and b-chain sequences, identifying

19,365 T cells or clonotypes with TCR a-b pairings (Supplementary

Table 3). Clonotypes in T cells showed an ascending trend from

normal samples to LGIN (Figure 3D). In exploring T cell clonality in

HSCC’s TME, we observed signs of clonal expansion in tumor-

infiltrating T lymphocytes (Figure 3E). Interestingly, no identical

TCR clonotypes were identified among most samples

(Supplementary Figure 4B), with identical ones observed only in

samples from the same patient at different lesion stages

(Supplementary Figure 4D). One of the most variable shared CDR3

sequences had partial associations with the Epstein-Barr virus and

cytomegalovirus (Supplementary Table 2). We also discovered that

the majority of TCRs detectable in T cells is TRB, with 82.7% of T

cells exhibiting TCR expression. TCR expression is present across

most cell cluster, however, it was also observed that NK cell clusters,

NK_C1_XCL1 and NK_C2_FGFBP2, rarely express TCR.

Additionally, CD8_C5_HAVCR2 and CD8_C6_MS4A6A

show increased TCR expression during the HGIN and tumor

stages. Overall, the trend indicates that TCR variations in T cells
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intensify with the progression of the lesion, yet a significant

functional subcluster transition occurs during the tumor stage

(Supplementary Figure 4E).
3.4 The dynamic multidimensional features
of B cells and the diversity of BCR in the
development of HSCC

We identified a total of 4,908 B cells and classified them into three

distinct clusters: plasma cells, memory B cells, and germinal center
Frontiers in Immunology 08
(GC) cells. The marker genes for plasma cells included MZB1, SDC1,

IGHG1, and IGHA1; for memory B cells included TNFRSF13B,

AIM2, MS4A1, and CD19; and for GC cells included CD79A,

CD79B, IL4R, LRMP, TCL1A, and SUGCT (Figure 4A). As

hypopharyngeal tissues progressed to a diseased state, memory

B-cell and T-cell subsets showed a substantial increase from

normal tissue to LGIN, while plasma cells experienced a significant

proportional decrease (Figure 4A).

We subsequently performed GSVA pathway enrichment analysis

on the three B cell clusters. The analysis showed that GC B cells were

primarily enriched in pathways associated with cell proliferation and
B C

D

E

A

FIGURE 3

T Cell Heterogeneity Across Different HSCC Lesion Stages. A dot plot illustrated the subclusters of T cells across various HSCC lesion stages (A).
Gene expression data was visualized as a heatmap, where high expression was encoded in yellow, and low expression in blue, relative to the mean
expression (black) (B). Box plots depicted the TNFRSF scores across different Treg subgroups, including TNFRSF4/8/9/18 (C). A bar plot showcased
clonotype diversity in samples from different HSCC lesion stages, calculated using the Inverse Simpson index method (D). Another bar plot
presented the counts of clone type frequency groups within different T cell clusters (E). *** represents p<0.001
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growth, including Mitotic_spindle and G2m_checkpoint. Plasma

cells and memory B cells shared similarities in multiple pathways,

but plasma cells had a stronger association with angiogenesis and

prominently expressed pathways linked to cancer cell proliferation

and growth, such as P53_pathway and Kras_signaling_up.

Conversely, memory B cells had a stronger relation to WNT beta

catenin_signaling, PI3k AKT_mtor_signaling, and DNA_repair
Frontiers in Immunology 09
pathways (Figure 4B). Analysis of their differential genes revealed

that plasma cells mainly enriched in processes ensuring correct

antibody folding and modification in the endoplasmic reticulum,

including unfolded protein response, translation, and protein folding.

Memory B cells predominantly enriched in antigen receptor-

mediated signaling pathway, leukocyte proliferation, and interferon

gamma signaling, highlighting their capability to swiftly respond to
B

C D

E

F

G

A

FIGURE 4

B cell heterogeneity in different HSCC lesion stages. The UMAP on the left showed the B-cell clusters present in different HSCC lesion stages, and
the gene expression data on the right were displayed as a heatmap, with high expression in yellow and low expression in blue relative to the average
expression (black) (A). Box plots suggested cell occupancy in plasma cells versus memory B cells in different HSCC lesion stages (B). A heatmap
showed scaled GSVA enrichment scores for pathways associated with tumors among different B cell subclusters (C). Another heatmap displayed
scaled GSVA enrichment scores for pathways associated with tumors in plasma cells in different HSCC lesion stages (D). A bar plot showed
clonotype diversity in different HSCC lesion stages, calculated using the Inverse Simpson index method (E). Another bar plot displayed the counts of
clone type frequency groups in different clusters of B cells (F). Analysis of IGH gene fragment usage in different HSCC lesion stages was
presented (G).
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re-encountered antigens and collaborate with other immune cells for

crucial immune regulation (Supplementary Figures 5A, B).

GSVA pathway enrichment analysis demonstrated that GC B

cells primarily enriched in pathways associated with cell

proliferation and growth, plasma cells in angiogenesis and cancer

cell proliferation, and memory B cells in WNT beta catenin

signaling, PI3k AKT mtor signaling, and DNA repair pathways,
Frontiers in Immunology 10
reflecting their distinct roles in immune regulation, antigen

response, and collaboration with other immune cells.

Subsequently, we analyzed plasma cells at different stages

through GSVA pathway enrichment analysis. Certain pathways,

notably interferon gamma_response, Kras_signaling_up, and

interferon alpha_response, displayed consistently high activity

(Figure 4C), suggesting a dynamic and evolving immune system
B C
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FIGURE 5

Myeloid cell heterogeneity in different HSCC lesion stages. The UMAP on the left showed the myeloid cell clusters present in different HSCC lesion
stages, and the bar graph showed the proportion of cell types contained in each epithelial cell cluster (A). Feature plots of canonical marker genes
were displayed (B). The gene expression data on the right were shown as a heatmap, with high expression in yellow and low expression in blue
relative to the average expression (black) (C). Box plots suggested cell occupancy in plasma cells versus memory B cells in different HSCC lesion
stages (B). A heatmap showed scaled GSVA enrichment scores for pathways associated with tumors among different B cell subclusters (C). Another
heatmap displayed scaled GSVA enrichment scores for pathways associated with tumors in Mono_FCGR3B in different HSCC lesion stages (D). A
further heatmap depicted DEGs in different HSCC lesion stages in the Mono_FCGR3B cluster; boxes showed expression trends and the number of
genes in the cluster (E).
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response in HSCC lesions. The immune response appears to

escalate its counteraction against the tumor with the progression

of the lesion. In the LGIN stage, four pathways in the plasma cell

cluster—MYC_targets_v2, MYC_targets_v1, G2m_checkpoint, and

E2f_targets—reached peak activity (Figure 4D). Here, plasma cells

seemed to be combating initial tumor development, but as the

lesion advances, these efforts appeared insufficient to curb the

ongoing tumor growth.

Additionally, we examined the BCR library for IGH and IGL

chain sequences of the B-cell receptor. Post stringent screening, we

identified 5,282 B cells with BCR IGH-IGL pairs or clonotypes

(Supplementary Table 1). A significant increase in specific

clonotypes from normal samples to LGINs was observed

(Figure 4E), implying that such clonal expansion could be a

specialized tumor response. The degree and pattern of clonal

expansion differed across cell clusters, with plasma cells showing

more clonal expansion than memory B cells, which were pivotal in

tumor response and whose expansion might correlate with the

generation of specific anti-tumor antibodies (Figure 4F). This is

consistent with prior observations. We found no identical BCR

clonotypes between most samples (Supplementary Figure 5C). The

CDR3 length in IGH mainly varied from 12 to 22 bases, and in IGL

from 11 to 16 bases (Supplementary Figure 5D). The frequency and

count of IGH-V genes decreased with lesion onset and progression,

indicating enhanced B-cell specific responses to certain antigens.

This implies selective amplification of some V genes and reduction

of others, resulting in a decreased overall frequency and count of V

genes utilized (Figure 4G). We also found that 81.7% of B cells

express BCR. Plasma cells significantly overexpress IGH, while

memory B cells predominantly express IGK. There are significant

differences in BCR expression among different B cell subclusters.

Overall, the trend indicates that plasma cells and memory B cells are

continuously activated with the occurrence of lesions, leading to an

enhanced immune response (Supplementary Figure 5E).
3.5 The dynamic multidimensional features
of myeloid cells in the development
of HSCC

In the TME of HSCC, we identified 12,614 myeloid cells. After

annotation, we outlined four monocyte clusters: the prevalent

Mono_FCGR3B, the classical double-positive Mono_CD14/CD16,

and the single-positive Mono_CD14 and Mono_CD16. We also

identified three classical dendritic cell clusters: cDC2_CD1C,

DC3_LAMP3, and pDC_IRF7. The distribution of these clusters

was generally stable across lesion stages, except for tumor-derived

pDC_IRF7, DC3_LAMP3, and Mono_CD16 clusters (Figure 5A).

Monocytes, characterized by genes like S100A11, S100A9,

CXCL8, and LYZ, were subdivided based on selective expression

of CD14 and CD16 (Figure 5B). For dendritic cells, emphasis was

on the DC3 cluster, recognizing three main clusters marked by

genes such as LAMP3, CCL19, and IDO1 (Figure 5C). This cluster

exhibited genes related to high mutation (e.g., LAMP3,

MARCKSL1, IDO1, UBD), migration (e.g., CCR7, FSCN1), and
Frontiers in Immunology 11
immunosuppression (e.g., PD-L1, PD-L2, CD200, SOCS1, SOCS2,

CTLA4, IGIT).

Next, we concentrated on the predominant Mono_FCGR3B

cluster within myeloid cells. In the cancer stage, this cluster showed

elevated expression in cancer-related pathways like inflammatory

response, Hedgehog signaling, and IL6 jak stat3 signaling. Notably,

in the LGIN stage, some functions such as mitotic spindle,

apoptosis, hypoxia, and angiogenesis, saw a significant decline

(Figure 5D). In FCRG3B_Mono, we classified gene expression

trends into four categories based on the lesion progression of

HSCC. In the normal tissue stage, monocytes execute immune

surveillance, responding to potential pathogens or injury signals,

marked by elevated expression of SLA, FPR1, SLC11A1, and

C5AR1. In the LGIN stage, tissues control excessive inflammatory

responses, indicated by elevated expression of CD55. In the HGIN

stage, monocytes respond to increased inflammatory signals and

activate in TME, indicated by elevated expression of ITGAX. In the

tumor tissue stage, monocytes remain active in the TME,

interacting with tumor cells and other immune cells, marked by

elevated express ion of CXCL8, NAMPT, AQP9, and

BCL2A1 (Figure 5E).
3.6 The dynamic multidimensional features
of endothelial cells in the development
of HSCC

Endothelial cells were integral to the TME in HSCC, crucially

influencing tumor angiogenesis, growth, and metastasis.

Investigating these cells provided insights into the interactions

and functions between the TME and tumor cells. After rigorous

quality control, we classified 2,346 cells into five endothelial cell

clusters, including four vascular (vEC_C1_SELE, vEC_C2_KRT13,

vEC_C3_CMPK2, vEC_C4_ACTA2) and one lymphatic

endothelial cell (IEC_PROX1) (Figure 6A). FLT1 marked vascular

endothelial cells, while PROX1 and CCL21 marked lymphatic ones.

Tracking lesion progression, we discerned three distinct cell

clusters. The proportion of vEC_C1_SELE increased from normal

to HGIN stage but decreased in the tumor stage. Enrichment

analysis of this cluster indicated Ras protein signaling and MHC

II antigen presentation, implying enhanced cell signaling and

antigen presentation in early-stage lesions to bolster immune

response. However, in the tumor stage, these cells’ functions

might have been suppressed or overtaken by other clusters.

vEC_C2_KRT13 demonstrated a decline in the tumor stage.

Enrichment analysis associated this cluster with pathways related to

cell migration, proliferation, and skin development, highlighting its

role in sustaining tissue structure and function in normal tissues.

vEC_C3_CMPK2, primarily from tumor samples, was enriched in

tumor-related pathways like cell cycle and nuclear division,

indicating its active and proliferative state during tumor

development (Figures 6B, C).

Using TCGA data, we found significant correlations between

these three clusters and prognosis. High expression of

vEC_C1_SELE and vEC_C2_KRT13 correlated with better
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prognosis, while low expression of vEC_C3_CMPK2 indicated a

good prognosis (Figure 6D). The association of low expression of

vEC_C3_CMPK2 with a good prognosis may signify its role in

facilitating tumor progression, representing tumors in a state of

high proliferation and activation, correlating with poor prognosis.
3.7 The dynamic multidimensional features
of fibroblasts in the development of HSCC

After stringent quality control, we isolated 2968 fibroblasts and

identified two primary fibroblast classes through unsupervised

clustering: tumor-associated fibroblasts (CAF_C1_CLU,

CAF_C2_MME) and tumor-associated myofibroblasts

(myCAF_C1_MYH11, myCAF_C2_PDGFA) (Figure 7A). CAF

was characterized by FAP and PDPN, with ACTA2 and PDGFA

distinctive for myCAF. (Figure 7C). Analysis showed that

CAF_C2_MME and myCAF_C2_PDGFA mainly originated from

tumor samples (Figure 7B; Supplementary Figure 6A).
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Our annotations correlated with the results of the pathway

enrichment analysis. myCAF_C1_MYH11 was enriched in muscle

system processes and muscle contraction pathways, while the others

were associated with extracellular matrix organization and structure,

aligning with the primary function offibroblasts in maintaining tissue

structure and function. CAF_C1_CLU was enriched in pathways

related to negative chemotaxis and intrinsic apoptosis regulation,

suggesting a role in inhibiting immune cell migration and enhancing

cell survival. CAF_C2_MME was associated with epithelial cell and

fibroblast proliferation, implying a role in promoting tumor cell and

fibroblast proliferation. myCAF_C1_MYH11 was enriched in muscle

contraction pathways, aligning with the function of myofibroblasts in

tissue contraction. myCAF_C2_PDGFA was enriched in integrin-

mediated signaling pathways, implying a role in tissue remodeling

and repair (Figure 7D, Supplementary Figure 6B).

Focusing on CAF_C2_MME in HSCC, where low expression

correlated with better prognosis, we explored its functional genes

and identified two key genes: MMP3 and MMP7 (Supplementary

Figures 6C, D), involved in the degradation and remodeling of the
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FIGURE 6

Endothelial cell heterogeneity in different HSCC lesion stages. The UMAP on the left showed the endothelial cell clusters present in different HSCC
lesion stages (A). The heatmap on the left displayed the differentially expressed genes (DEGs) of different endocytic clusters, and the GO-BP, KEGG,
Reactome enrichment results of each cluster were shown on the right (B). A line graph depicted the change in the percentage of cell clusters in
different lesion types (C). Kaplan-Meier survival curves were displayed for HNSCC from the Cancer Genome Atlas. Intratumoral heterogeneity was
estimated based on detected signals for alternative subtypes and was divided into two groups with high and low vEC_C1-C3 (D).
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extracellular matrix. Validation through the HPA database and

qRT-PCR revealed significant expression of MMP3 in normal

human fibroblasts and higher expression in HSCC tissues

(Figures 7E F). In the TCGA database, MMP3 showed

significantly higher expression in HNSCC samples, emphasizing

the importance of MMP3 in HSCC (Supplementary Figure 6E). We

propose that MMP3 is a marker for tumor-associated fibroblasts

and a specific biomarker for HSCC.
3.8 Communication and interaction
between cell subclusters in HSCC

We conducted an intercellular communication analysis on all

cell subpopulations, which was divided into three dimensions. In

the secreted signaling dimension, intercellular communication was

most abundant, with extensive connections existing between T cells,

B cells, epithelial cells, endothelial cells, and fibroblasts. Within the

ECM-Receptor interaction, the exchange was most significant
Frontiers in Immunology 13
among stromal cells such as epithelial cells, endothelial cells, and

fibroblasts, including self-regulation mechanisms. In the cell-cell

contact dimension, the connection between endothelial cells and

epithelial cells was particularly notable (Figure 8A). We further

revealed the links between T cells, serving as ligands, and epithelial

cells as well as myeloid cells, discovering significant ligand-receptor

pairs such as MIF-(CD74+CD44) with epithelial cells and MIF-

ACKR3 with myeloid cells (Figure 8B).
4 Discussion

HSCC is the most aggressive subtype of HNSCC. Therefore,

exploring the mechanisms of HSCC, especially the transformation

from precancerous lesions to tumors, is vital for developing early

diagnostics and innovative treatments to enhance survival and life

quality for patients. Precancerous lesions, present before cancer

onset, can accelerate cancer progression (26). Clinically, patients

with HSCC often have visible precancerous lesions in the mucosal
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FIGURE 7

Fibroblast cell heterogeneity in different HSCC lesion stages. The UMAP showed the fibroblast cell clusters present in different HSCC lesion stages
(A). The bar graph displayed the proportion of cell types contained in each fibroblast cell cluster. Feature plots of canonical marker genes were
presented (B). Violin plots showed the normalized expression of markers (rows) in each fibroblast cell cluster (columns). Cell clusters and the
expression level of a gene were indicated at the x- and y-axis, respectively (C). A Dotplot displayed GO-BP, KEGG, Reactome enrichment results for
each fibroblast cluster (D). Immunofluorescence showed positive expression of MMP in human fibroblasts. MMP: green; microtubules: red; nucleoli:
blue (E). The relative expression of mRNA for MMP3 in the paracancerous and HSCC tissues was analyzed using qRT-PCR, where PT represented
paracancerous tissue, HC represented hypopharyngeal cancer tissue, NS represented no significance, and ** represented p-value less than 0.01 (F).
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layer, appearing as erythematous patches, near areas with visible

cancerous changes (27). These lesions can develop into invasive

cancers. Traditional sequencing often fails to precisely differentiate

the characteristics of diverse cell populations in HSCC and its

precancerous stages (28). The introduction of the first scRNA-seq

method by Tang et al. allows for detailed examination of cellular

composition and molecular characterization, providing insights

into transcriptional states at a single-cell level for unbiased cell

population analysis (29).

Tumor cells exhibit aneuploidy and chromosomal CNVs,

indicative of significant heterogeneity in HSCC cells. This

heterogeneity is subtle in initial stages like HGIN, where tumor

cells have not undergone extensive mutations and selections (30).

However, it becomes pronounced as the disease progresses to the

neoplastic stage, due to the accumulation of mutations and

adaptations (31). Our observations indicate that during

tumorigenesis, tumors experience structured and consistent

transcriptional state diversification, with epithelial cells

developing new states while preserving the old ones, contrasting

the embryonic developmental process where new states are

acquired and old ones are discarded (32). These insights suggest

that tumor cells disrupt the normal epithelial functional program to

acquire new states, which, once established, tend to dominate

overwhelmingly in proportion.

The epithelial to tumor transition is characterized by increased

proliferation and survival capabilities and loss of normal functions.

We identified MAGEA3, a classical oncogene, as significantly

upregulated during carcinogenesis, with substantial prognostic

significance. MAGEA3, a cancer-testis antigen, is present in

various cancers, the testis, and the placenta, but absent in other

somatic cells. It interacts with numerous transcription factors and
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co-regulators, impacting gene expression regulation, and is a

reliable target for immunotherapy (33). Clinical trials have

demonstrated the therapeutic efficacy of targeting MAGEA3,

highlighting its potential as a therapeutic target for HSCC (20).

In our study, immune cells, making up over 75% of cell clusters

in HSCC, were central due to their role in cancer development

within the TME. The variety and amount of immune cells in this

environment significantly affect tumorigenesis and immunotherapy

effectiveness. Both intrinsic and adaptive immune cells in the TME

contribute to tumorigenesis, highlighting the important interaction

between different cell types in cancer progression (34).

CD8+ T cells, essential for antitumor immunity, can destroy tumor

cells (35). Our study in HSCC found many tumor-infiltrating CD8+ T

cells showing clonal expansion and suppression by tumor neoantigens,

aligning with findings in other cancers (36), indicating a universal

immunosuppressive state of CD8+ T cells during tumorigenesis.

Integrating immunobanking and transcriptomic analyses, we

identified the most significant immunostimulatory response during

the transition from normal hypopharyngeal tissue to LGIN,

characterized by increased diversity and abundance of TCR and

BCR clonotypes. This phase experiences a rise in memory B cells

and a decrease in plasma cells. The expansion of memory B cells,

capable of a rapid immune response to a known antigen, may

represent the body’s effort to combat mutant cells in response to

tumor antigens (37). In contrast, the reduction in plasma cells,

responsible for antibody secretion, may signify a suppressed

sustained immune response, possibly due to immunosuppressive

factors released by epithelial cells or the tumor inhibiting normal

immune cell function (38).

FCRG3B_Mono, the predominant cell within the myeloid

cluster (>49%), maintains stable numerical proportions at the
B
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FIGURE 8

Communication and interaction between cell subclusters in HSCC. Circos plots displaying interactions and connections between cell
subpopulations. Divided into Secreted Signaling, ECM-Receptor, and Cell-Cell Contact dimensions. Interactions are divided into incoming and
outgoing events. The brand links pairs of interacting cell types, and its width is proportional to the number of events (A). Dot plot showing ligand-
receptor analysis between T cells and myeloid and epithelial cells (B).
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lesion onset but undergoes significant functional changes. In

the phase of LGIN, it shows suppressed proliferation and a

reduced response to injury, suggesting its immunosuppressive

state may aid the progression of HSCC (39). Modulating the

immune state of FCRG3B_Mono may offer control over the

cancer’s progression (40).

cDC1_CD1C, a crucial DC subtype, initiates anti-tumor CD8+

T cells and is vital for anti-tumor immunity (41). In contrast,

DC3_LAMP3 expresses markers of DC activation and attracts naïve

T cells and other DCs through CCL19 interaction with CCR7 (42).

This suggests DC3_LAMP3 is a regulatory and tolerogenic DC, with

high expression of migratory and maturation-related genes, playing

a role in immune response modulation within the tumor

environment (43).

Endothelial cells play a crucial role in cancer occurrence and

treatment. We identified four distinct vascular endothelial cell

clusters, three of which have significant prognostic value in

HNSCC. The vEC_C1_SELE cluster, enhancing cell signaling and

antigen presentation in early lesions, decreases substantially in the

cancer stage, suggesting its contribution to inhibiting tumor

progression (44). In contrast, the vEC_C2_KRT13 cluster, crucial

for maintaining normal vascular structure, shows a continuous

decline, indicating a potential correlation with tumor angiogenesis

and growth (45). The vEC_C3_CMPK2 cluster is associated with

tumor cells and may contribute to the formation of vascular

mimicry, facilitating tumor growth and metastasis (46).

Fibroblasts, integral components of the TME, interact with

various cells influencing tumor progression (47). They can

transform into CAFs, secreting substances that facilitate tumor

activities and suppress immune responses (48). Given CAFs’

significant role in tumorigenesis, they are becoming promising

therapeutic targets, with strategies focusing on their interactions

offering innovative therapeutic approaches (49). In our study, we

discovered a unique CAF cluster in HSCC, CAF_C2_MME,

originating from tumor samples, with MMP3 as its associated

gene, predominantly expressed in fibroblasts and significantly

overexpressed in HSCC tissues. The matrix metalloproteinase

(MMP) family, including MMP3, influences tumorigenesis by

impacting fibroblasts and degrading the extracellular matrix,

potentially facilitating tumor cell invasion and migration (50). In

HSCC, MMP3 expression may correlate with the activation and

aggregation of CAF, impacting tumor progression and prognosis.

Thus, MMP3 could be a marker for CAF and a therapeutic target in

HSCC. Exploring the role and mechanism of MMP3 may lead to

innovative therapies to inhibit tumor invasion and metastasis

effectively, enhancing patient survival and quality of life.

We also discovered that T cells interact with the CD74+CD44

complex on epithelial cells and the ACKR3 receptor on myeloid cells

through the secretion of MIF (macrophage migration inhibitory

factor), revealing a complex and refined communication

mechanism between the immune system and other cell types (51).

MIF, a critical immune regulatory factor, can modulate inflammatory

responses, immune responses, and cell migration and survival across

various cell types through binding to different receptors. In

interactions with epithelial cells, the binding of MIF to CD74 and

CD44 may affect cell proliferation, migration, and functions in
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pathological states, such as promoting tumor cell growth and

metastasis in the tumor microenvironment (52). Conversely,

interaction with the ACKR3 receptor on myeloid cells may be

involved in regulating the recruitment and migration of immune

cells, as well as intercellular signal transmission in diseases like

inflammation and cancer (53, 54). These findings not only further

confirm the diverse roles of T cells in maintaining immune balance

and participating in disease responses but also highlight the

importance of intercellular communication in immune surveillance

and pathological state regulation, providing critical insights for

understanding the complexity of the immune system and

developing new therapeutic strategies.

However, our study has its limitations. The limited size of our

cohort prevents us from drawing definitive conclusions about the

correlation between cellular composition and clinical outcomes.

Additionally, we have not considered the spatial distribution of cell

clusters, which is crucial given the heterogeneous distribution of

immune cells within the tumor. Future research should explore the

spatial heterogeneity of the TME in HSCC, potentially employing

advanced technologies such as spatial transcriptomics for more

comprehensive insights. Another limitation of our study is the lack

of experimental validation of the proportions of cell subpopulations

within each sample. We have adopted advanced statistical methods

and conducted indirect validations through existing datasets. While

these methods cannot replace direct validation techniques such as

multiplexed immunohistochemistry (mIHC) or fluorescence-

activated cell sorting (FACS), they do enhance the reliability of

our research findings. We also plan to perform mIHC and FACS

validations in our future research efforts and intend to significantly

increase our sample size to improve the robustness and

generalizability of our results. Lastly, although we have identified

and validated key molecules through bioinformatics and qRT-PCR

experiments, further functional experiments are necessary to

explore their biological significance and the mechanisms involved.

In conclusion, our study has revealed dynamic changes in the

TME during the progression of HSCC. We have identified key cells

and molecules that drive the progression of HSCC, thereby gaining

insights into its underlying mechanisms and paving the way for new

therapeutic strategies.
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