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Objective: The choice of neoadjuvant therapy for esophageal squamous cell

carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical

treatment selection by establishing a predictive model for the efficacy of

neoadjuvant immunochemotherapy (NICT).

Methods: A retrospective analysis of 30 patients was conducted, divided into

Response and Non-response groups based on whether they achieved major

pathological remission (MPR). Differences in genes and immune

microenvironment between the two groups were analyzed through next-

generation sequencing (NGS) and multiplex immunofluorescence (mIF).

Variables most closely related to therapeutic efficacy were selected through

LASSO regression and ROC curves to establish a predictive model. An additional

48 patients were prospectively collected as a validation set to verify the

model’s effectiveness.

Results: NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5,

MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF

indicated significant differences in the quantity and location of CD3+, PD-L1+,

CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the

two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that

CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a

more significant increase in CD8+ and CD20+ in the Response group (P < 0.05),

and a more significant decrease in PD-L1+ (P < 0.05). The three variables most

closely related to therapeutic efficacy were selected through LASSO regression

and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833),
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and CD3+ (AUC= 0.826), and a predictive model was established. The model

showed high performance in both the training set (AUC= 0.938) and the

validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria,

the model showed significant improvements in accuracy (83.3% vs 70.8%),

sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906).

Conclusion: NICT treatment may exert anti-tumor effects by enriching immune

cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-

L1+ are closely related to therapeutic efficacy. The model containing these three

variables can accurately predict treatment outcomes, providing a reliable basis

for the selection of neoadjuvant treatment plans.
KEYWORDS

esophageal squamous cell carcinoma (ESCC), neoadjuvant immunochemotherapy
(NICT), response, tumor immune microenvironment (TIME), predictive model
1 Introduction

China accounts for about half of the world’s esophageal cancer

cases, predominantly squamous cell carcinoma. Unfortunately,

most of these cases are identified at an advanced stage (1).

Combining neoadjuvant therapy with surgery has shown benefits

for these patients. The adoption of neoadjuvant chemoradiotherapy

as a standard preoperative treatment has been influenced by the

results of the CROSS and 5010 studies (2, 3). Recently, the advent of

immunotherapy, highlighted by the CheckMate-648 and Keynote-

590 studies, has introduced neoadjuvant immunochemotherapy

(NICT) as an effective alternative, demonstrating comparable

rates of pathological remission to neoadjuvant chemoradiation

therapy (NCRT) without increasing surgical complexity or side

effects, positioning NICT as a potentially superior option (4, 5).

Given this context, accurately predicting NICT’s effectiveness is

crucial, with major pathological remission (MPR) being a key

metric for assessing NICT’s success. Accurate MPR prediction is

vital for selecting appropriate neoadjuvant treatments (6).

Research has explored various biomarkers, such as PD-L1 score,

tumormutation burden (TMB), tumor-infiltrating lymphocytes (TILs),

and microsatellite instability (MSI), to predict immunotherapy

outcomes in solid tumors like those in the esophagus, breast, and

intestines (7–9). However, inconsistent and sometimes contradictory

clinical trial results indicate significant variability in individual and

tumor-specific responses to immunotherapy, likely due to the tumor

immune microenvironment’s complexity.

The tumor’s immune microenvironment, shaped by the

quantity, distribution, and function of immune cells, plays a

crucial role in the anti-tumor response. Studies, including the

CLEOPATRA study, suggest that a high presence of TILs can

enhance the immune system’s ability to attack cancer cells
02
(10–12). The spatial arrangement of immune cells, as observed in

lung cancer, and the interaction among different types of immune

cells can significantly influence the treatment outcome.

Recent advancements, such as multiplex immunofluorescence

technology (mIF), combined with machine learning, offer new ways

to analyze the immune microenvironment by quantifying and

characterizing immune cells. This approach aims to identify key

features that can predict the effectiveness of neoadjuvant

treatments, thereby aiding clinical decision-making.
2 Study subjects and methods

2.1 Subjects

The research objects were derived from the surgical resection

specimens of esophageal squamous cell carcinoma admitted to

Sichuan Cancer Hospital from December 2020 to December 2022.

Inclusion criteria: (1) primary advanced esophageal squamous cell

carcinoma, (2) no other malignant tumors, (3) NICT treatment

before surgery, (4) radical resection of esophageal cancer after NICT

treatment, Exclusion criteria (1) with immunodeficiency

related diseases.

A total of 78 patients were enrolled in the study. Patients were

treated with neoadjuvant chemotherapy combined with

immunotherapy before surgery. Albumin paclitaxel, carboplatin,

cisplatin, docetaxel, oxaliplatin and other single or double drugs

were used for chemotherapy, and Nivolumab, Tislelizumab,

Pembrolizumab and Sintilizumab were used for immunotherapy.

All patients received 1-4 cycles of treatment, with an average of

2.13 ± 0.58 cycles. Detailed experimental procedures can be found

in the research roadmap (Figure 1).
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2.2 Methods

2.2.1 Sample treatment
The study involved detailed tissue processing and analysis

techniques. Specimens were preserved in 10% neutral buffered

formalin and then encased in paraffin. Following standard

procedures, these were then sectioned and subjected to hematoxylin

and eosin (H&E) staining for basic histological examination.

For immunohistochemistry (IHC), the Streptavidin-peroxidase

(SP) method was employed, utilizing an automatic IHC instrument

to ensure precision and consistency. This method involved a series of

carefully controlled staining steps as per the instrument’s guidelines.

Multiplex immunofluorescence (mIF) staining was outsourced to

Genecast Biotechnology Co., Ltd. This advanced technique was applied

to detect a comprehensive set of 10 biomarkers, divided into two

panels. Panel 1 included markers CD4, CD8, PD-1, TIM3, and LAG-3,

while Panel 2 comprised CD3, CD20, CD21, PD-L1, and PCK. These

markers are crucial for identifying various immune cells and their

states, with CD3, CD20, and CD21 specifically highlighting tertiary

lymphoid structures (TLS).The process for each panel began with

preparing 4-mm thick sections from formalin-fixed paraffin-embedded

(FFPE) esophageal squamous cell carcinoma (ESCC) tissues. These

sections were then deparaffinized, rehydrated, and subjected to epitope

retrieval by boiling in Tris-EDTA buffer. To prevent nonspecific

binding, endogenous peroxidase activity was blocked, followed by

protein blockage in a Tween solution. The antigens in each panel

were detected through cyclic staining, which involves the sequential

application of primary and secondary antibodies, visualization using

tyramine signal amplification (TSA), and the removal of the TSA-

antibody complex. This cycle was repeated for each marker, with

epitope retrieval and protein blocking conducted in each round to
Frontiers in Immunology 03
ensure specificity and clarity of staining. Finally, each slide was

counterstained with DAPI to mark the cell nuclei and mounted with

an antifade mountant to preserve the fluorescence, facilitating detailed

microscopic examination and analysis of the tissue samples.

2.2.2 Quantitative image analysis
The imaging and analysis of the tissue samples were performed

using the TissueFAXS panoramic tissue cell imaging quantitative

analysis system (TissueFAXS SL Plus S, Austria, Tissue Gnostics).

The process began with a low-magnification (2.5X) preview of the

entire slide to locate the tissue sections. Optimal imaging

conditions, including exposure time and value, were then adjusted

based on the expression of targets in each dye channel, ensuring the

best quality scans. The areas of interest were selected from the

preview and scanned at a 20Xmagnification under these conditions.

For the analysis, Strata Quest software (version 7.1.129, Austria,

Tissue Gnostics) was utilized to segment and identify cells and

tissue types within the scanned images. This software employs

intelligent algorithms to segment cells based on nuclear staining

and integrates manual training with machine learning for accurate

tissue type classification into categories like tumor and stroma.

Protein expression levels were quantified by setting average

fluorescence thresholds for each marker, with cells exceeding

these thresholds considered positive for the respective markers.

2.2.3 Genetic testing technique
In addition to imaging, genetic testing techniques were applied

to the study. DNA extracted from formalin-fixed paraffin-

embedded (FFPE) samples was fragmented and prepared into

libraries using the KAPA Hyper Preparation Kit. These libraries

were then assessed and quantified, with targeted regions selected for
FIGURE 1

The flow chart of the study.
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further analysis. Hybridization and washing protocols were

followed as per the manufacturer’s guidelines, with sequencing

conducted on the Illumina Novaseq 6000 system. The sequencing

data were processed using established bioinformatics tools for

alignment, sorting, and variant calling.

2.2.4 Statistical analysis
was conducted using logistic regression, Wilcoxon test, and the

least absolute shrinkage and selection operator (LASSO) regression

to analyze the data. The study utilized a split-sample approach, with

thirty retrospective samples forming the training set and forty-eight

prospective samples serving as the validation set. The model’s

performance was evaluated using receiver operating characteristic

(ROC) curves. All statistical analyses were carried out using R

statistical software and the FreeStatistics platform, with a p-value of

less than 0.05 considered indicative of statistical significance.
3 Results

3.1 Pathological and clinical characteristics

The 30 patients were aged 59.00 [55.25, 65.75] years, with 27

(90%) being male and 28 (93.3%) at clinical stages III-IV. They

received 2.17 ± 0.58 cycles of chemotherapy combined with

immunotherapy, with 6 (20%) achieving Response (MPR)

(Figure 2A). There were no statistically significant differences in

gender, age, medical history, stage, differentiation, and location

between the Response and Non-response groups (Table 1).
Frontiers in Immunology 04
3.2 Gene testing results

A total of 191 mutated genes were detected in the 30 patients,

with the most frequently mutated genes being TP53 (97%),

NOTCH1 (43%), KMT2D (37%), PIK3CA (23%), and CREBBP

(20%) (Figure 2B). Three (10%) patients were TMB-H, and one

(3.3%) patient was MSI-H. TMB-H, MSI-H was more present in the

Response group, but it was not statistically significant. Seven genes,

ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR,

had significantly higher mutation rates in the Response group than

in the Non-response group (P < 0.05) (Figure 2C). The density of

Tumor area PD-L1+, CD3+PD-L1+, CD3+, CD20+, CD4+PD-1+

cells was significantly higher in the population with the above seven

gene mutations than in the population without these mutations

(P < 0.05) (Figure 2D).
3.3 Multiplex immunofluorescence
immune microenvironment test results

3.3.1 Pre-treatment immune
microenvironment analysis

The study utilized two panels of detection markers to analyze

tumor immune environments. In Panel 1, the markers included CD4,

CD8, PD-1, TIM3, LAG-3, and DAPI. The findings, illustrated in

Figure 3A, revealed distinct immune responses within the tumor

microenvironments. The Response group displayed dense clusters of

CD4+ and CD8+ T cells within and surrounding the tumor,

indicative of a highly active (“hotter”) immune response.
B

C

D

A

FIGURE 2

Clinical and pathological information of patients (A). Patient mutation information (B). Differential mutations were detected in Response and Non-
response groups (C). Differences in immune microenvironment between Mutate and Not-mutate groups (D).
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Conversely, the Non-response group showed fewer and more

scattered T cells, suggestive of a less active (“colder”) immune

environment (Figure 3A). Quantitative analyses further confirmed

these observations, showing significantly greater densities of

CD4+PD-1+ and CD8+PD-1+ cells in the Response group

compared to the Non-response group within the tumor region.

Additionally, the Response group exhibited higher densities of

various T cell markers, indicating a more robust immune presence

(Figure 3B, Supplementary Figure 1).

Panel 2 focused onmarkers CD3, CD20, CD21, PD-L1, PCK, and

DAPI, with an emphasis on identifying tertiary lymphoid structures

(TLS). Figure 3C presents the comparative immune landscapes,

where the Response group showed denser distributions of CD3+ T

cells and higher PD-L1 expression in both T cells and tumor cells,

suggesting potential TLS presence (Figure 3C). The Non-response

group, however, displayed sparser CD3+ T cells and lower PD-L1

expression, with an absence of TLS. Quantitative data supported

these visual findings, with the Response group showing significantly

higher densities of CD3+, PD-L1+, and CD3+PD-L1+ cells within the

tumor. Moreover, the Response group exhibited a trend toward

higher densities of CK+PD-L1+ cells across all examined regions.

While the TLS density was somewhat higher in the Response group,

the difference was not statistically significant (Figure 3D,

Supplementary Figure 2).

These analyses underscore the complex interplay within the

tumor microenvironment and highlight the potential of immune

markers in predicting treatment responses.

3.3.2 Dynamic analysis of the immune
microenvironment before and after treatment

The densities of CD3+, CD8+, and CD20+ cells in both the

Response and Non-response groups increased after treatment, with

a more significant increase in CD8+ and CD20+ in the Response

group (P < 0.05). The density of PD-L1+ cells significantly increased

after treatment in the Non-response group (P < 0.05), while it

decreased after treatment in the Response group, with a significant

difference in the change values between the two groups (P < 0.05).

The density of CD3+ PD-L1+ cells significantly increased after

treatment in the Non-response group (P < 0.05), while the change

was not significant after treatment in the Response group (Figure 4).

The densities of PD-1+, TIM3+, LAG-3+, CD4+PD-1+, CD4+

LAG-3+, CD8+PD-1+, CD8+TIM3+, CD8+LAG-3+ cells showed

a trend of being basically unchanged or decreased after treatment

(Supplementary Figure 3), and the change values were not

statistically significant (P > 0.05) (Supplementary Figure 4).
3.4 Establishment and verification of the
prediction model

The 10 variables in Panel 1 and 2 with significant differences

between the Non-response and Response groups were analyzed by

ROC curve to evaluate their value in predicting the response to

neoadjuvant therapy. The AUC values were ranked from high to low

as follows: Tumor and Total area PD-L1+ (AUC= 0.881), Tumor area
TABLE 1 Clinicopathological characteristics.

Characteristic Total
(n = 30)

Response
(n = 6)

Non-
response
(n = 24)

p

Gender, n (%) 1

Female 3 (10.0) 0 (0) 3 (12.5)

Male 27 (90.0) 6 (100) 21 (87.5)

Age, n (%) 0.3

≤65 22 (73.3) 3 (50) 19 (79.2)

>65 8 (26.7) 3 (50) 5 (20.8)

Cigarette smoking
history, n (%)

1

No 7 (23.3) 1 (16.7) 6 (25)

Yes 23 (76.7) 5 (83.3) 18 (75)

Alcohol drinking
history, n (%)

1

No 9 (30.0) 2 (33.3) 7 (29.2)

Yes 21 (70.0) 4 (66.7) 17 (70.8)

Family history,
n (%)

1

No 25 (83.3) 5 (83.3) 20 (83.3)

Yes 5 (16.7) 1 (16.7) 4 (16.7)

cT, n (%) 1

T2 3 (10.0) 0 (0) 3 (12.5)

T3 20 (66.7) 5 (83.3) 15 (62.5)

T4 7 (23.3) 1 (16.7) 6 (25)

cN, n (%) 0.766

0 2 (6.7) 0 (0) 2 (8.3)

1 20 (66.7) 5 (83.3) 15 (62.5)

2 8 (26.7) 1 (16.7) 7 (29.2)

stage, n (%) 1

II 2 (6.7) 0 (0) 2 (8.3)

III 21 (70.0) 5 (83.3) 16 (66.7)

IV 7 (23.3) 1 (16.7) 6 (25)

Differentiation,
n (%)

0.574

Well 6 (20.0) 1 (16.7) 5 (20.8)

Middle 18 (60.0) 5 (83.3) 13 (54.2)

Poor 6 (20.0) 0 (0) 6 (25)

Primary tumor
location, n (%)

0.166

Lower 18 (60.0) 3 (50) 15 (62.5)

Middle 9 (30.0) 1 (16.7) 8 (33.3)

Upper 3 (10.0) 2 (33.3) 1 (4.2)
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C
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A

FIGURE 3

Multiple immunofluorescence technology was used to analyze the immune microenvironment. Panel 1.2 Schematic diagram (A, C) and image
quantitative analysis results (B, D).
FIGURE 4

Dynamic analysis of immune microenvironment before and after treatment.
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CD3+PD-L1+ (AUC= 0.833), Tumor area CD3+ (AUC= 0.826),

Tumor area CD4+PD-1+ (AUC= 0.812), Total area CD4+LAG-3+

(AUC= 0.798), Total area CD8+LAG-3+ (AUC= 0.791), Total area

CD3+PD-L1+ (AUC= 0.791), Total area LAG-3+ (AUC= 0.777),

Tumor area CD8+PD-1 (AUC= 0.729). All variables were analyzed

by LASSO regression, and when the l coefficient decreased to the

optimum as the number of variables increased (Figure 3B), four

variables with non-zero coefficients were selected: Tumor area CD3+,

PDL1+, CD3+PD-L1+, CD4+PD-1+ (Figure 5A). The intersection of

the 10 variables with significant differences between the two groups,

the top 3 variables in ROC, the 4 variables screened by LASSO

regression, and the 5 variables with significant differences between the

mutation and non-mutation groups were taken to make a Venn

diagram (Figure 5B). Finally, three variables were selected to establish

a model with high clinical accessibility, and a nomogram was

obtained to predict the patient’s Response. The nomogram

reflected the predictive value of CD3+, PD-L1+ and CD3+PD-L1+

for the occurrence of MPR. The scoring system was developed based

on the densities of CD3+, PD-L1+, and CD3+PD-L1+ cells within the

tissue samples. Specifically, the density of CD3+ cells ranged from 0

to 1400 cells per square millimeter, which was translated into a score

ranging from 0 to 15 points. Similarly, the density of PD-L1+ cells

spanned from 0 to 5500 cells per square millimeter, corresponding to

a score range of 0 to 100 points. For the combined presence of CD3+

and PD-L1+ cells, densities from 0 to 450 cells per square millimeter

were assigned scores from 0 to 35 points. Densities exceeding these

maximum thresholds were allocated the highest possible score for

each category. The aggregation of these three individual scores

yielded a composite score, which was directly associated with the

likelihood of the patient achieving a Major Pathological Response

(MPR), as illustrated in (Figure 6A). The AUC value of the model in
Frontiers in Immunology 07
the training set was higher than that of a single variable, reaching

0.938 (Figure 6B).

In the validation set, a more economical IHC method was used

for CD3 (red) and PD-L1 (brown) double staining. IHC showed

that Response patients had higher PD-L1 expression and more

CD3+T cell aggregation (Figure 7A the upper left), and the AI data

analysis platform showed that Response patients presented a

“hotter” microenvironment simulation map (Figure 7A the upper

right). And compared to the Non-response group, the Response

group had significantly higher densities of PD-L1+, CD3, CD3+PD-

L1+ cells (P < 0.05) (Figure 7B). The AUC value of the model in the

validation set reached 0.832 (Figure 6B). Model scores (linear

predictors) were significantly associated with treatment response

(MPR) (OR=2.72, 95%CI 1.36-5.43, P = 0.005). Through the

hosmer-lemeshow model fitting test, it was considered that there

was no significant difference between the model prediction result

and the actual result (P = 0.183). Compared with the traditional PD-

L1 CPS score standard (13), the prediction model showed some

improvement in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs

0.312), and specificity (0.937 vs 0.906) (Figure 7C).
4 Discussion

Our study employed advanced multiplex immunofluorescence

and quantitative imaging techniques to explore the immune

landscape in esophageal squamous cell carcinoma (ESCC)

patients prior to treatment. We discovered significant differences

in the immune environments between patients who responded to

neoadjuvant immunotherapy (NICT) and those who didn’t,

particularly in terms of the presence and activity of immune cells.
BA

FIGURE 5

ROC curves for each variable [upper of (A)]. Lasso regression screened variables [lower of (A)]. Intersection of variables selected by multiple
methods (B).
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Key indicators for predicting NICT outcomes included the

concentration of CD3+ T cells, CD3+PD-L1+ T cells, and overall

PD-L1+ cells within the tumor. A predictive model based on these

indicators showed promising accuracy in distinguishing between

response outcomes, and importantly, it can be replicated using cost-

effective immunohistochemistry, offering a practical tool for clinical

predictions of NICT success.

Initially, our search for molecular markers linked to treatment

responses involved extensive next-generation sequencing. Although

high tumor mutational burden (TMB-H) and microsatellite

instability (MSI-H) were more common in responders, the

differences weren’t statistically significant. We also identified

variations in several genes, including MAP3K1 (14) and ERCC5

(15), known to influence chemotherapy sensitivity, and ATM, ATR

(16)and RBM10 (17), which are involved in DNA repair and tumor

immunity. Immunogenic cell death (ICD) -related genes are of

great significance for the prognosis and microenvironment

regulation of lung adenocarcinoma (18). However, more research

is needed for esophageal cancer. While these molecular markers
Frontiers in Immunology 08
hint at potential immunochemotherapy benefits, their predictive

value for NICT efficacy in ESCC remains to be further explored.

Our research highlights the crucial role of immune cell quantity,

distribution, and functionality within the tumor microenvironment.

We found a higher count of various immune cells, such as B cells,

helper, and cytotoxic T cells in responders, suggesting a robust

immune response (19–21). Interestingly, the distribution of

immune cells within the tumor, rather than the surrounding

stroma, was particularly indicative of treatment efficacy. This aligns

with previous findings where the presence of immune cells within

tumors correlated with better outcomes in other cancers (22, 23).

Furthermore, the study sheds light on the functional aspects of

immune cells, emphasizing the importance of CD20+ B cells and

their role in forming tertiary lymphoid structures, which are

beneficial for immunotherapy (24). The density of T cells,

particularly CD3+ cells, was significantly higher in responders,

underscoring their potential for predicting pathological remission

(25–28). Of course, numerous immune checkpoint-related

biomarkers are potentially valuable for efficacy evaluation (29–36).
B

C

A

FIGURE 7

Immunohistochemistry and machine learning analysis were used to analyze the immune microenvironment of the validation set. Response [upper of
(A)], Non-response [lower of (A)]. Image quantitative analysis results (B). The predictive effects of the prediction model and CPS scoring system were
compared (C).
BA

FIGURE 6

Nomogram of the prediction model (A). ROC curve of training set and validation set (B).
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The dynamic analysis of samples before and after NICT

treatment revealed an increase in immune cell populations,

especially in responders, reinforcing the link between immune cell

accumulation and treatment success (37, 38). Interestingly, PD-L1

expression decreased in responders but increased in non-

responders post-treatment, suggesting NICT may reinvigorate

exhausted T cells, enhancing the immune response (39, 40).

There are many indicators related to prognosis (41–43). The

immune characteristic risk model genophenotype predicts

efficacy (44), and BMI-LMR scores and pan-immune-

inflammation value (PIV) predict prognosis through systemic

indicators (45, 46). This is one of the few studies to develop a

predictive model by analyzing the immune microenvironment.

This model is simple and inexpensive, and therefore has high

clinical accessibility. Despite the promising results, our study

acknowledges the need for broader validation and recognizes the

limitations of relying solely on local microenvironment analysis.

Combining systemic immune status indicators with local

analysis could enhance predictive accuracy. Our model, while

specific and less costly than some alternatives (45, 46), still

requires further validation to confirm its applicability and

reliability in clinical settings.
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Dáder MJ, et al. Pharmacogenetic predictors of toxicity to platinum based
chemotherapy in non-small cell lung cancer patients. Pharmacol Res. (2016)
111:877–84. doi: 10.1016/j.phrs.2016.08.002

16. Shiotani B, Zou L. Single-stranded DNA orchestrates an ATM-to-ATR switch at
DNA breaks. Mol Cell. (2009) 33:547–58. doi: 10.1016/j.molcel.2009.01.024

17. Liu B, Wang Y, Wang H, Li Z, Yang L, Yan S, et al. RBM10 deficiency is
associated with increased immune activity in lung adenocarcinoma. Front Oncol.
(2021) 11:677826. doi: 10.3389/fonc.2021.677826

18. Zhang P, Zhang H, Tang J, Ren Q, Zhang J, Chi H, et al. The integrated single-
cell analysis developed an immunogenic cell death signature to predict lung
adenocarcinoma prognosis and immunotherapy. Aging (Albany NY). (2023) 15
(19):10305–29. doi: 10.18632/aging.v15i19

19. Vihervuori H, Autere TA, Repo H, Kurki S, Kallio L, Lintunen MM, et al.
Tumor-infiltrating lymphocytes and CD8+ T cells predict survival of triple-negative
breast cancer. J Cancer Res Clin. (2019) 145:3105–14. doi: 10.1007/s00432-019-03036-5
Frontiers in Immunology 10
20. Zhu Y, Li M, Mu D, Kong L, Zhang J, Zhao F, et al. CD8+/FOXP3+ ratio and
PD-L1 expression associated with survival in pT3N0M0 stage esophageal squamous
cell cancer. Oncotarget. (2016) 7:71455–65. doi: 10.18632/oncotarget.v7i44

21. Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE, Schenk M. Tumor-
infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front
Immunol. (2020) 11:2105. doi: 10.3389/fimmu.2020.02105

22. Liang H, Li H, Xie Z, Jin T, Chen Y, Lv Z, et al. Quantitative multiplex
immunofluorescence analysis identifies infiltrating PD1+ CD8+ and CD8+ T cells as
predictive of response to neoadjuvant chemotherapy in breast cancer. Thorac Cancer.
(2020) 11:2941–54. doi: 10.1111/1759-7714.13639

23. Chen Y, Jia K, Sun Y, Zhang C, Li Y, Zhang L, et al. Predicting response to
immunotherapy in gastric cancer via multi-dimensional analyses of the tumour
immune microenvironment. Nat Commun. (2022) 13:4851. doi: 10.1038/s41467-022-
32570-z

24. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup L, Mathilde M, et al. Tertiary
lymphoid structures improve immunotherapy and survival in melanoma. Nature.
(2020) 577:561–5. doi: 10.1038/s41586-019-1914-8

25. Zhang P, Dong S, SunW, ZhongW, Xiong J, Gong X, et al. Deciphering Treg cell
roles in esophageal squamous cell carcinoma: a comprehensive prognostic and
immunotherapeutic analysis. Front Mol Biosci. (2023) 10. doi: 10.3389/
fmolb.2023.1277530
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