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Augmenting regulatory T cells:
new therapeutic strategy for
rheumatoid arthritis
Jiaqian Zhang1, Hongjiang Liu1, Yuehong Chen1, Huan Liu1,
Shengxiao Zhang2, Geng Yin3* and Qibing Xie1*

1Department of Rheumatology and Immunology, West China Hospital, Sichuan University,
Chengdu, China, 2Department of Rheumatology, The Second Hospital of Shanxi Medical University,
Taiyuan, China, 3Department of General Practice, General Practice Medical Center, West China
Hospital, Sichuan University, Chengdu, China
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked

by inflammation of the joints, degradation of the articular cartilage, and bone

resorption. Recent studies found the absolute and relative decreases in

circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of

cells exhibiting immunosuppressive functions, known for expressing the Foxp3

gene. They are instrumental in maintaining immunological tolerance and

preventing autoimmunity. Increasing the absolute number and/or enhancing

the function of Tregs are effective strategies for treating RA. This article reviews

the studies on themechanisms and targeted therapies related to Tregs in RA, with

a view to provide better ideas for the treatment of RA.
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PTEN, Phosphatase and tensin homolog; VIP, Vasoactive intestinal peptide; IgD, Immunoglobulin D; CARs,
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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease

characterized by symmetric arthritis in distal joints, leading to joint

degradation and functional impairment. It often presents with

extra-articular manifestations, involving multiple systems, severely

impacting overall bodily function and reducing the quality of life

for patients (1). Nonsteroidal anti-inflammatory drugs,

glucocorticoids, and rheumatoid arthritis medications are

commonly used to treat RA to alleviate inflammation and reduce

pain. However, the use of these drugs carries the risk of liver,

kidney, and gastrointestinal damage (2). The emergence of early

diagnosis, novel treatment methods, and effective therapeutic

strategies has garnered widespread attention. Currently, the

etiology of RA is not fully elucidated, but the immune processes

occurring in the synovium and synovial fluid, including synovial

cell proliferation and fibrosis, vascular membrane formation, and

cartilage and bone erosion, are noteworthy. Naive CD4+ T cells can

differentiate into various cell types under antigen-presenting cell

stimulation. Dysregulation in the function and/or quantity of these

cells can lead to abnormalities in cellular and humoral immunity

(3). Regulatory T cells (Tregs) play a crucial role in maintaining

immune tolerance and preventing autoimmunity (4, 5). Abnormal

quantity and/or functional deficiencies in Tregs have been reported

in RA (6–9). Therefore, manipulating and regulating Tregs

represent effective therapeutic strategies for many such diseases.
2 Characteristics and functions
of Tregs

2.1 Origin and classification of Tregs

Tregs, initially identified in animal models and subsequently in

humans, have offered a novel viewpoint on the establishment and

preservation of self-tolerance (4). In 1995, Sakaguchi first

discovered a CD4+CD25+ T cell subset with autoimmune

tolerance capability further named Tregs (10). In 2003, forkhead

box protein 3 (Foxp3) was established as a critical transcription

factor for Tregs, indispensable for their formation and suppressive

functionality. Considering their origin and biological traits, Tregs

are classified into two subgroups: thymus-derived regulatory T cells

(tTregs), also referred to as natural regulatory T cells (nTregs), and

induced regulatory T cells (iTregs), or peripheral regulatory T cells

(pTregs). Despite significant differences in origin, gene expression

profiles, and biological characteristics between nTregs and iTregs

(11), both types are dependent on antigen stimulation and

activation in the presence of IL-2 (12). nTregs are strictly

controlled by the thymic microenvironment and characteristically

express the nuclear transcription factor Foxp3, along with CD25

and CD4 on their cell surface. Induced Tregs, or iTregs, primarily

originate from immature CD4+ cells in peripheral lymphoid tissues

or from in vitro culture, stimulated by transforming growth factor

(TGF)-b and IL-2. The induction of iTregs does not require strong

T cell receptor (TCR) stimulation, but rather an appropriate antigen
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stimulation. Overactivation of downstream TCR signals may

interfere with iTreg development. Similarly, strong co-stimulation

negatively impacts the generation of iTregs. Conversely, blocking

the CD28 co-stimulatory pathway or improving signal transduction

through the activation of cytotoxic T lymphocyte-associated protein

4 (CTLA4) and ICOS promotes the development of iTregs (13).

Although both nTregs and iTregs express Foxp3, CD25, CTLA-4,

and other Treg function-related molecules, the stability of Foxp3

expression in iTregs is much lower than in nTregs. Under certain in

vivo conditions, iTregs can be driven to differentiate into effector T

cells (14). In nTregs, the DNA in the regulatory T cell-specific

demethylated region (TSDR) of the Foxp3 enhancer is

demethylated, while in iTregs, the TSDR is only partially

demethylated (15). This incomplete demethylation renders iTregs

more susceptible to loss of Foxp3 expression and functionality.

nTregs represent a stable lineage of cells specific to antigens

expressed in the thymus, whereas iTregs constitute a more

dynamic population, ensuring tolerance to new antigens

encountered in peripheral areas. Collectively, these two

populations are vital for maintaining immune tolerance.
2.2 Structure and function of Foxp3

Foxp3, located on the p11.23-13.3 region of the X chromosome,

consists of 11 coding exons, 3 non-coding exons, and 104 introns. It

serves as the main transcription factor dictating the development

and function of Tregs (16). Within the Foxp3 locus, there are three

conserved non-coding sequences (CNSs): a promoter (CNS1) and

two enhancers (CNS2, CNS3) (17). CNS1 is essential for the

induction of peripheral Tregs, and its knockout significantly

reduces the number of Tregs in gut-associated lymphoid tissues

(18). CNS3 plays a crucial role in the genesis of Tregs, and its

deletion leads to a severe reduction in the thymic output of Tregs.

CNS2, also known as TSDR, contains a CpG island that is highly

demethylated only in functional Tregs. The methylation status of

this highly conserved CpG island is pivotal in determining the

expression level of Foxp3 and the stability of Tregs, and is deemed

the most definitive marker of the Treg lineage (18). Two primary

epigenetic mechanisms: DNA methylation and histone

modifications play crucial roles in establishing and maintaining

Foxp3 expression in Tregs (19, 20). Methylation of the TSDR can

lead to chromatin condensation, which decreases the DNA

sequence’s accessibility and inhibits the transcription of Foxp3.

The partial methylation of TSDR underlies the instability of Foxp3

expression in Tregs. Conversely, the demethylation of TSDR is vital

for the stability of Foxp3 expression, promoting transcription in

Tregs. Moreover, Foxp3 is also regulated by ubiquitination and

phosphorylation processes. Ubiquitination encourages Foxp3

degradation, while the impacts of Foxp3 phosphorylation can

vary depending on the modification site. Protein phosphatase 1

acts on Foxp3 at the Ser418 site, removing a phosphate group - a

process known as dephosphorylation. On the other hand, PIM1

adds a phosphate group to the Ser422 site of Foxp3, a process

known as phosphorylation, which inhibits the function of Foxp3. In

a contrasting manner, the lymphocyte-specific protein tyrosine
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kinase phosphorylates Foxp3 at the Tyr342 site, which augments its

function. Therefore, the expression of Foxp3 must be strictly

regulated to maintain the homeostasis of T cell-mediated immune

responses. Tregs expressing Foxp3 play a significant role in

suppressing immune responses (21). Constitutive expression of

Foxp3 is a decisive factor in driving immune-suppressive

functions (16). Mice with Foxp3 defects develop fatal

autoimmune diseases (22), whereas lifelong continuous

expression of Foxp3 prevents the occurrence of autoimmunity

(23). Tregs with downregulated Foxp3 expression lose their

suppressive function and can even produce pro-inflammatory

cytokines, such as effector cells (24). Therefore, the stable

expression of Foxp3 plays an important role in the balance

between autoimmunity and tolerance, as well as the therapeutic

effect based on Tregs.
2.3 Immunosuppressive mechanism
of Tregs

RA is a systemic, inflammatory autoimmune disease. Aberrant

activation of innate immune cells, including dendritic cells (DCs),

innate lymphoid cells, and adaptive immune cells, may lead to

excessive production of pro-inflammatory cytokines, ultimately

resulting in the destruction of bone tissue and cartilage (25).Tregs

play an irreplaceable role in maintaining self-tolerance and

homeostasis, presenting noticeable differences between healthy

individuals and those with autoimmune diseases (26, 27). They

regulate the immune response through intercellular interactions or

by inhibiting cytokine release and inducing negative regulatory
Frontiers in Immunology 03
signaling molecules to suppress excessive immunity. The potential

mechanisms through which Tregs mediate inhibition are as

follows: (Figure 1).
2.3.1 Cell-to-cell contact-dependent

Tregs exercise their suppressive function via direct engagement

with DCs or effector T cells (Teffs). This regulation of immune

responses is facilitated through a mechanism that relies on cell-to-

cell contact and is characterized by the expression of the nuclear

transcription factor Foxp3, in conjunction with the elevated

presence of CD25, CTLA4, Lymphocyte activation gene 3 (LAG-

3), and glucocorticoid-induced TNFR-related protein (GITR) on

the cell membrane. CTLA-4, an inhibitory molecule, is abundantly

expressed on the Tregs’ surface and is instrumental in their

function. Tregs with CTLA-4 deficiency exhibit significantly

weakened suppressive effects (28). CTLA-4 curbs T-cell activation

by either competitively binding to or downregulating CD80/CD86

present on the surface of DCs (29, 30). Additionally, Tregs can

deplete CD80 and CD86 from the surface of antigen-presenting

cells (APCs) through a process of endocytosis mediated by CTLA-4,

thereby further modulating the stimulatory capacity of APCs (31).

CTLA-4 can also induce indoleamine 2,3-dioxygenase (IDO) in

dendritic cells. IDO degrades tryptophan into the immunotoxic

metabolite kynurenine, inhibiting the proliferation of Teffs. LAG-3

mitigates the costimulatory capacity of dendritic cells (DCs) and the

immune response of T cells by binding to MHC-II (32). The surface

Programmed Cell Death Protein 1(PD-1), also known as CD279, on

Tregs binds to its ligands PD-L1 and PD-L2 on DCs, leading to the
FIGURE 1

Immunosuppressive mechanism of Tregs. Teffs, effector T cells; DC, dendritic cells; CTLA-4, Cytotoxic T lymphocyte-associated antigen4; LAG-3,
Lymphocyte activation gene 3; PD-1, Programmed cell death protein 1; APC, antigen presenting cells; TBX21, T-box transcription factor; Th, T helper cell.
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inhibition of effector T cell function (33). Additionally, Foxp3+

Tregs expressing the transcription factors TBX21, GATA-3, or

retinoic acid receptor-related orphan receptor (ROR) gt can

respectively suppress the functions of helper T cells 1 (Th1), 2

(Th2), or 17 (Th17) (34).
2.3.2 Cell contact-independent

Tregs wield a potent immunosuppressive influence on the

proliferation and cytokine production of effector T cells. By

depleting and generating key cytokines, Tregs regulate immune

responses and the maintenance of immune homeostasis. The high

level of CD25 expression on the surface of Tregs contributes to the

massive consumption of IL-2. This cytokine is required for Teffs

proliferation and activation. Therefore, Tregs may competitively

deplete this growth factor from pathogenic Teffs, thereby indirectly

inhibiting their activity (35). The suppressive effects of Tregs may

also occur through the secretion of soluble immunosuppressive

cytokines, including IL-10, TGF-b, and IL-35 (36). These cytokines

further contribute to the immunomodulatory effects of Tregs. For

example, B-lymphocyte-induced maturation protein 1 promotes

the differentiation of Tregs, upregulates IL-10, and inhibits CD4+ T

cell-induced activation of fibroblast-like synoviocytes (37). In

mouse models of collagen-induced arthritis and inflammatory

bowel disease, Tregs lacking IL-35 are unable to control disease

progression, highlighting the importance of this cytokine in

immune regulation (38). Serum IL-35 levels are reduced in

rheumatoid arthritis (RA) patients, demonstrating potential as a

biomarker for active RA (39). Tregs can kill responsive T cells

through the secretion of granzyme B and perforin-1 (40). In

addition to their local effects, Tregs can “sense” cytokines or

chemokines in the environment and migrate to sites of

inflammation. During the active immune response, stimulation of

TCR and cytokines guide Tregs to migrate to the site of

inflammation. Once there, they suppress the inflammatory

response, limit tissue damage, and promote resolution of

inflammation (41).
3 Characteristics of Tregs in RA

Under normal circumstances, Tregs regulate immune tolerance

status. Studies have shown that the occurrence and development of

RA are related to various changes in anti-inflammatory Tregs and

their counter-regulatory effects. Abnormal number and functional

defects of Tregs play a relevant role in the pathogenesis and

development of RA (7, 9, 42).
3.1 Deficiency of Tregs in RA

A deficiency of Tregs has been observed in both RA animal

models and patients. In collagen-induced arthritis (CIA), a

commonly used model for RA that involves immunizing mice

with heterologous CII, an abnormal number of Tregs has been
Frontiers in Immunology 04
shown to influence the disease. In CIA mice, increased Treg counts

were closely associated with reduced joint swelling, lower arthritis

scores, reduced cartilage surface damage, and reduced joint cavity

desmoplasia (43). Transfer of CD4+CD25+ cells into immunized

mice during induction of antigen-induced arthritis resulted in

reduced arthritis severity. Effective depletion of Tregs at any point

in the life of a healthy individual triggers a rapid autoimmune and

inflammatory response, resulting in multi-organ autoimmunity

(44). The role of Tregs in pathogenesis is not fully understood,

and the number of Tregs reported over the years to be increased,

decreased, or unchanged in synovial fluid and peripheral blood is

controversial (Table 1). The controversy surrounding the reported

fluctuations in regulatory T cells (Tregs) numbers in the synovial

fluid and peripheral blood of rheumatoid arthritis (RA) patients can

be attributed to several factors. Variations in the local immune

microenvironment within the joint may contribute to differences

observed in Tregs numbers. The heterogeneous nature of the RA

patient population, including diverse disease progressions, clinical

manifestations, and treatment responses, may lead to inconsistent

findings across studies. Methodological disparities, such as

differences in detection methods, criteria for defining Tregs and

different statistical counting methods (absolute value or percentage

of Tregs), further contribute to the discrepancies. Therapeutic

interventions, ranging from immunosuppressive agents to anti-

inflammatory medications, may impact Tregs numbers and

function in RA patients. Additionally, the variability in sample

collection timing and individual differences, including genetic

variations, play roles in shaping the observed differences in Tregs

numbers among RA patients. Therefore, a comprehensive

understanding of Tregs’ role in RA necessitates consideration of

study design, sample sources, detection methods, and other

influencing factors. Although the proportion of Tregs in the

peripheral blood of RA patients is reported differently, most

studies consistently report an abundance of Tregs in SF. The low

frequency of Tregs in the peripheral blood of RA patients may be

due to these cells migrating to local inflammatory tissues such as

synovial fluid by expressing specific chemokine receptors. Some

investigations of the absolute number of lymphocyte subsets in RA

patients and its clinical significance found that the absolute number

of Treg subsets can better reflect the true state of RA patients,

making it more clinically significant (64, 67). In patients with

rheumatic diseases, the proportion of Tregs varies according to

the cell identification method used. A more stringent definition of

Tregs is needed when assessing the status of such patients.
3.2 Malfunction of Tregs in RA

In the CIA model of Sprague Dawley rats, there is a significant

decrease in the expression level of Foxp3, a key transcription factor

in Tregs. This finding further underscores the importance of Foxp3

in maintaining immune homeostasis and preventing autoimmune

diseases (68). During the pathological process of RA, the levels of

pro-inflammatory cytokines in the serum, such as interleukin-6 (IL-

6) and tumor necrosis factor-a (TNF-a), are significantly elevated.
These factors play a crucial role in the initiation and progression of
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the disease (69). Through complex signaling pathways, these factors

impact the stability of Foxp3 in Tregs, altering their functionality

and reducing their efficacy in suppressing immune responses. At

the gene transcription level, IL-6 promotes DNA methylation at the

CpG site of the upstream enhancer in nTreg, a process that weakens

the transcriptional activity of the Foxp3 gene. At the protein level,

IL-6 activates the enzyme PIM1, which specifically phosphorylates

the S422 site of Foxp3. This process negatively regulates the

chromatin binding activity of Foxp3, thereby inhibiting the

function of Tregs (70). On the other hand, IL-1b can

downregulate Foxp3 expression induced by TGF-b, while TNF-a
activates protein phosphatase 1 to dephosphorylate the Ser418 site

of Foxp3. Both mechanisms could potentially reduce the

suppressive function of Tregs (71, 72). Moreover, inflammatory
Frontiers in Immunology 05
cytokines can regulate the expression of the Foxp3 transcription

factor directly through nuclear factor-kB, thereby affecting the

development and function of Tregs (73).

Inflammatory cytokines, beyond their direct regulation of

Foxp3, wield an indirect influence on the functionality of Tregs

by modulating the behavior of other cellular entities. For instance, a

constellation of inflammatory cytokines, including but not limited

to IL-1b, IL-6, and TNF-a, orchestrate a complex interplay that

indirectly governs the proliferation of Tregs. This regulation occurs

through the modulation of DCs, pivotal players in our immune

response. The intricate dance of cell signaling also involves IL-21, a

cytokine found in conventional T cells. It indirectly maintains the

balance - or homeostasis - of Tregs by curtailing the availability of

another cytokine, IL-2 (74). Adding another layer to this complex
TABLE 1 Treg numbers in RA patients.

References Cell Types Position Treg numbers Years

(45) CD25brightCD4+ T cells SF>PB increase 2003

(46) CD25brightCD4+ T cells
SF increase

2004
PB decrease

(47–49) CD4+ CD25+ T cells
SF>PB increase

2004-2005
PB normal

(50) CD4+CD25+ Tregs PB increase 2006

(51) CD4+CD25+ Foxp3+
SF increase

2007
PB decrease

(52) CD4+CD25high Tregs PB increase 2008

(53) CD4+CD25high, CD4+CD25int, CD4+CD25int/highFoxP3+ PB decrease 2009

(54) CD4+CD25highCD127low/- Tregs PB decrease/normal 2011

(55) CD4+CD25+ Tregs PB decrease 2011

(56) CD4+CD25highFoxp3+ Tregs PB decrease 2011

(57) CD4+CD25high Foxp3+ Tregs PB decrease 2012

(58) CD4+ Foxp3+ T cells PB normal 2013

(59) CD4+CD45RO+CD25+CD127lowTregs
PB normal

2013
SF>PB –

(60) CD4+CD25
+

/highCD127low/- Tregs

SM

increase 2014SF

PB

(61) CD3+CD4+CD25+CD127low Tregs PB normal 2016

(62) CD4+CD25+FoxP3+ Tregs
PB decrease

2016
SF increase

(63) CD4+CD25highCD127− Tregs PB decrease 2018

(64) CD4+CD25+FoxP3+ Tregs refractory RA PB decrease 2022

(65) CD4 + Foxp3+Tregs PB decrease 2023

(66) CD4+CD25+FoxP3+ Tregs
early RA PB normal

2023
treated RA PB decrease
PB, peripheral blood; SF, synovial fluid; SM, Synovial membrane.
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picture, Sun et al. (75) has traced the functional impairments seen in

Tregs in the context of RA back to a reduction in the expression of a

particular protein - T-cell immunoglobulin and mucin-domain

containing-3 (62). In a separate but related discovery, Wang L.

and his team found that exosomes derived from RA can inhibit the

induction of Tregs. They achieve this by transferring a specific

microRNA, miR-17, which subsequently suppresses the

differentiation of Tregs by targeting the expression of TGFBR II, a

crucial receptor in this process (76). In the battlefield of RA, Tregs

are often unable to halt the onslaught of abnormal immune

responses and the relentless progression of the disease. The

question remains: is this inability linked to an early aging process

in Tregs, which could lead to alterations in their phenotype and

function? This is still an elusive piece of the puzzle that researchers

are striving to understand (77).
3.3 Imbalance of Tregs/Teffs in RA

In RA patients, the number and function of peripheral Tregs are

defective, leading to excessive activation of Teffs and promoting the

onset of RA. This phenomenon is particularly evident during the

active phase of RA (57, 68). The expression of Th17 cells, Th1, and

Th17-related cytokines, and RORgt in peripheral blood of patients

with active RA is increased, and the expression of Tregs and Foxp3

is decreased (78). The etiology and pathogenesis of RA remain

unclear, but T cell dysfunction, particularly the abnormal activation

of helper CD4+T cells, is a primary driver in the occurrence and

development of RA (79). These T cells differentiate into different

subsets: Th1, Th2, Th17, and Tregs, under the regulation of specific

transcription factors (80).

The imbalance of Th1/Th2 cells plays a crucial role in the

occurrence and development of RA (81). Th1 is primarily

characterized by the secretion of high-level g interferon, and also

secrete granulocyte-macrophage colony-stimulating factor, IL-2,

TNF-a, etc, to mediate cellular immunity. The characteristic

cytokines of Th2 is IL-4, which also secretes IL-5、IL-6、 IL-

10、IL-13, etc., to mediate humoral immunity (82, 83). Studies have

shown that the joint inflammation in RA is dominated by Th1 (84).

The Th1/Th2 ratio increased during RA activity (85), and

improving the Th1/Th2 balance positively influences RA therapy.

Th1 and Th2 are also derived from CD4+T cells induced to

differentiate under specific cytokine conditions. Therefore, Tregs-

targeted RA therapy may also influence Th1/Th2 balance. The

imbalance between anti-inflammatory Tregs and pro-

inflammatory Th17 accelerates RA progress (55, 86). Tregs

primarily maintain self-tolerance and further suppress

autoimmunity, while proinflammatory Th17 induces and

propagates inflammation. Studies have found that the number

and function of Th17 and Tregs in the peripheral blood of RA

patients dramatically change, and the Th17/Tregs ratio increases

(66, 87–89). During the pathogenesis of RA, Th17, as a pro-

inflammatory helper T cell subset, can induce osteoblast nuclear

factor-kB receptor activator ligand (RANKL) expression by
Frontiers in Immunology 06
upregulating osteoclast formation, leading to bone erosion (90).

The initial differentiation of Th17 depends on TGF-b and IL-6, and

IL-23 promotes functional maturation of Th17 (90). Interleukin-6-

triggered Janus kinase (JAK) 2-STAT3 pathway is required for Th17

development. The STAT3 signaling pathway directly regulates

RORgt (91), the master molecule of Th17. IL-17A is a

characteristic cytokine of Th17 that is abundantly expressed in

arthritic joints. It can directly stimulate RANKL expression and

mediate cartilage proteoglycan loss and bone resorption, leading to

the destruction of articular cartilage and bone (92). In addition, IL-

17A is a potent instigator in the inflammatory response, capable of

inducing pro-inflammatory cytokines such as TNF-a and IL-6. This

leads to a cascade of inflammation and cell infiltration into local

joints, contributing to the hallmark symptoms of arthritis (93, 94).

These pro-inflammatory cytokines, including TNF-a and IL-6,

along with other inflammatory mediators like IL-17, play a

pivotal role in the pathogenesis of RA. They act in additive or

synergistic ways, amplifying the inflammatory response and driving

the progression of RA (93). This suggests a heightened immune

response, with the body’s own defenses turned against itself, leading

to the chronic inflammation and joint damage characteristic of RA.

In active RA patients, there is an observed elevation in the levels of

Th17 cells and IL-17A in peripheral blood. Tregs and Th17

antagonize each other in RA, forming a dynamic balance. The

imbalance of this immune balance is a significant cause of RA (66,

95, 96) Therefore, increasing peripheral blood Tregs in RA patients,

reducing Th17 or IL-17A levels, and improving the Treg/Th17 cell

imbalance may be key to RA treatment (Figure 2).
4 Tregs-targeted therapies in RA

The search for new, safe, and effective drugs specifically

activating Tregs is a significant aspect of cellular immunotherapy.

In humans, disease-modifying antirheumatic drugs (DMARDs) are

the primary therapeutic agents for RA, reducing synovitis and

systemic inflammation, and improving function. Biological agents

are employed when arthritis is uncontrolled or when DMARDs

induce toxic effects. The therapeutic efficacy of biologics, such as

monoclonal antibodies used to neutralize inflammatory cytokines

or block cytokine receptors, has been established in halting the

progression of rheumatic diseases. However, the risk of infection

and high costs limit the prescription of these biological agents.

Given the powerful immunosuppressive ability of Tregs,

immunotherapy targeting Tregs has become a major direction for

the research of autoimmune diseases, including RA. This

specialized treatment strives to reinstate physiological self-

tolerance by boosting the inherent suppression of pathogenic

autoreactive T cells by Tregs, circumventing the side effects

typically associated with prolonged immunosuppression or

biotherapy. Recently, clinical trials have been initiated to evaluate

therapies focused on fostering the expansion of Tregs in

autoimmune diseases. In the following sections, we will

summarize Treg-targeted therapies in RA (Figures 2, 3).
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4.1 Glucocorticoids

Glucocorticoids, a frequently used class of drugs, can enhance

the presence of Tregs by upregulating Foxp3 expression (97). These

drugs can interact with specific receptors present in T cells, leading

to a disruption in the communication between TCR signal

transduction and the pathways that follow (98). The interaction

of glucocorticoids with the exterior of T cells can obstruct the vital

interaction between T cells and APCs, a process crucial for an

effective immune response. This interaction also downregulates the

rolling and adhesion of leukocytes, a key step in immune cell

migration, and disrupts the cytoskeleton of T cells, effectively

inhibiting their migratory capabilities (99). Moreover,

glucocorticoids can shift the balance within the T cell population,

favoring the predominance of Th2 cells and Tregs, both of which

play crucial roles in immune regulation (100). Notably, patients

with autoimmune and atopic disorders, who are treated with

glucocorticoids, have demonstrated an increased proportion of

Tregs within their T cell subsets (101). Glucocorticoids can also

spur the generation of pTregs by boosting the expression of the

glucocorticoid-induced leucine zipper (GILZ). This protein further

stimulates TGF-b signaling and Foxp3 expression (102).

Interestingly, while GILZ appears to be a potent catalyst for

Foxp3+ expression, the absence of GILZ does not entirely obstruct

Foxp3+ expression in Tregs. This observation implies that

glucocorticoids may enhance Tregs through several, concurrent

mechanisms (103). Lilla et al. (104) found that regulatory T cells

were less sensitive to glucocorticoid-induced apoptosis than CD4+
Frontiers in Immunology 07
T cells and better understood the changes in GC-induced apoptosis-

related proteins. Studies have reported that dexamethasone given in

the absence of Tregs completely loses its ability to control

inflammation, and the Tregs themselves lack glucocorticoid

receptors, resulting in rapid loss of therapeutic ability.

Glucocorticoids Anti-inflammatory effects are mediated by Foxp3
+ T cell regulation through an MR-342-dependent mechanism

(105). In conclusion, glucocorticoids could potentially amplify the

prevalence and activity of Tregs. Moreover, they can shape a

favorable immune environment for Tregs by adjusting local

cytokine expression.
4.2 DMARDs

In terms of therapeutic strategies, studies have evaluated the

immune responses in mice immunized with ovalbumin and treated

with Methotrexate (MTX), Cyclophosphamide (CTX), or a

combination of both. Observations have shown that combination

therapy of MTX and CTX, as opposed to monotherapy with either

drug, induces a bias towards Tregs and inhibits Th17 by interfering

with the maturation and antigen-presenting abilities of DCs (106).

Upon interaction with this compound, there is a prolonged

upregulation of Foxp3, TGF-b, and IL-10 in CD4+ cells, an

augmentation of Treg suppressive function, and a reduction in

IL-17 mRNA (107). In the context of hydroxychloroquine, when

this compound is introduced to peripheral blood mononuclear

cells from RA patients in vitro, there is a decrease in the secretion
FIGURE 2

Effects of Th17/Treg balance and the main pathological changes of synovial membrane of RA. In the initial Th0 cells, in the presence of TGF-b, they
differentiate into Tregs. However, when IL-6 is present simultaneously, it induces the expression of RORgt, promoting the differentiation into Th17 cells.
Tregs have the ability to downregulate the expression of IL-17, thereby inhibiting the differentiation of Th17 cells. Conversely, inhibiting the production of
Th17 cells helps promote the development of Tregs. In the joints, synovial cells and chondrocytes are the major local cell populations affected by
rheumatoid arthritis. Synovial cells can be classified as fibroblast-like and macrophage-like synoviocytes. In affected joints, synovium swells due to
infiltration by fibroblast-like synoviocytes, various T cell subsets, macrophages, and B cells. Interactions among these cells lead to the excessive
production of numerous cytokines, sustaining synovial inflammation and joint damage. Red arrows indicate inhibition, and blue arrows indicate
promotion. Green font marks drugs. RANKL, nuclear factor-kB ligand; M-CSF, macrophage colony-stimulating factor; TNF, tumor necrosis factor; IL,
interleukin; TGF, transforming growth factor; RF, rheumatoid factor; CCP, cyclic citrullinated peptide; CTLA-4, Cytotoxic T lymphocyte-associated
antigen4; Th17, T helper cell type 17; DMARDs, disease modifying antirheumatic drugs; ATRA, All-trans retinoic acid; VIP, Vasoactive intestinal peptide.
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of IL-17, IL-6, and IL-22 in the culture supernatant (108). Treating

early, untreated RA patients with methotrexate can increase the

proportion and absolute number of Tregs with high levels of

activation markers, indicating an enhancement of their functional

capabilities (109). A study evaluated the effect of MTX treatment on

the percentage and absolute number of CD4+Foxp3+ Tregs in the

peripheral blood of untreated patients with early-stage RA and

found that increases and phenotypic changes in Treg cells were

associated with MTX treatment closely (109). MTX-loaded

nanoparticles reduced the severity of experimental arthritis

models in mice and reciprocally regulated Th17 and Tregs in

vivo. Nanoparticles are promising therapeutics due to their ability

to deliver and release drugs (110). Patients battling autoimmune

diseases often necessitate lifelong immunotherapy, a regimen that

can result in severe adverse reactions and medicinal side effects.

Initiating drug treatment at an early stage can effectively impede the

disease’s progression and decrease the rate of advancement. Given

the numerous reports on the regenerative capabilities of Tregs, the

most effective therapeutic strategy is to induce self-tolerance prior

to the onset of significant tissue damage.
4.3 Low-dose interleukin-2

Interleukin-2 (IL-2) is crucial for Treg-mediated tolerance and

it plays a pivotal role in the generation, expansion, survival, and

function of Tregs (111, 112). IL-2 receptor signaling can facilitate

the expansion and differentiation of T cells and activate a series of
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signaling pathways in T cells, including MAPK, PI3K, STAT5, and

so on (113). Among them, the STAT5 signaling pathway is an

important pathway for Tregs (114). STAT5 activation can directly

regulate the expression of Foxp3 and inhibit the methylation of

CpG islands in the CNS2 region by binding to Foxp3 promoter and

CNS2 region. Simultaneously, Tregs intrinsically express high-

affinity CD25 (IL-2 receptor alpha chain) along with unique IL-2-

inducing signals and downstream genes (115). They exhibit a

preferential response to low doses of IL-2 in comparison to other

immune cells (116). The administration of low-dose IL-2 has been

significantly effective in reducing disease activity (117). Thus, IL-2

helps tip the immune balance toward regulation rather than

inflammation. Research by Scott N. Furlan et al. (118) found that

compared to infusing Tregs alone with rapamycin, adding IL-2 in

vivo to rapamycin supports the logarithmic growth of Tregs and

effectively increases the number of Tregs in peripheral blood

compartments. Therefore, low-dose IL-2, which is well-tolerated,

can induce Tregs and mediate clinical improvements in

autoimmune and inflammatory diseases. Employing exogenous

low-dose IL-2 to selectively stimulate Tregs appears advantageous

for the body, and it holds substantial potential for the treatment of

immune diseases. Currently, the development of human anti-IL-2

monoclonal antibodies is underway (119, 120). Scientists have

engineered a specific IL-2 monoclonal antibody (mAb), JES6-1,

that selectively proliferates Tregs and demonstrates superior disease

management in a mouse model of colitis, in comparison to a non-

covalently linked complex of IL-2 and JES6-1 (121). In a

prospective, open-label, Phase I to IIa study in patients with RA,
FIGURE 3

Diagram of signal transduction pathway of T cell activation and drug therapeutic Targets of RA. The activation of Teffs and Tregs is mediated by
combined signaling through the TCR and co-stimulatory molecules such as CD28, and through the interleukin-2 receptor (IL-2R). Black font marks
molecules expressed by T cells and APC. Green font marks drugs. Blue arrows indicate signaling pathways and red T-bars point to targets of
immunosuppressive drugs. APC, antigen-presenting cell; Teffs, effector T cells; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; mTOR,
mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; mAbs, CD3 monoclonal antibodies; CTLA-4, Cytotoxic T lymphocyte-associated
antigen 4; PD-1, Programmed cell death protein 1; GITR, glucocorticoid-induced TNFR-related protein; AP-1, activator protein 1; PP1, protein
phosphatase 1; PTEN, Phosphatase and tensin homolog; RAPA, Rapamycin.
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low-dose IL-2 was shown to be well tolerated and effective,

activating and expanding specific Tregs without activating effector

T cells, thereby increasing The Treg/Teff ratio (122). Low-dose IL-2

therapy has been tried to treat a variety of autoimmune diseases and

is a promising approach for the treatment of RA.
4.4 Rapamycin and all-trans retinoic acid

Initially discovered as a powerful antifungal agent derived from

Streptomyces hygroscopicus, Rapamycin (RAPA) was subsequently

acknowledged for its significant immunosuppressive qualities. It

accomplishes this immunosuppression by inhibiting the serine/

threonine kinase mTOR, a downstream effector in the

phosphatidylinositol 3-kinase (PI3K) and Akt signaling pathway

(123, 124). mTOR exerts its effect through two unique complexes,

specifically mTOR complex 1 (mTORC1) and mTOR complex 2

(mTORC2). Rapamycin exhibits a stronger inhibitory effect on

mTORC1 and only suppresses mTORC2 after prolonged

exposure. These mTOR complexes play a crucial role in

mediating a myriad of cellular activities. The differentiation of

Th1 and Th17 cells from CD4+ T cells is directed by mTORC1,

while mTORC2 plays an indispensable role in the differentiation of

Th2 cells (125). Interestingly, Tregs exhibit resistance to the growth-

inhibitory effects mediated by rapamycin. Studies have indicated

that rapamycin promotes the proliferation and survival of Tregs,

while simultaneously inhibiting the growth, migration, and

cytokine production of Th1 and Th17 cells (126–128). Initially,

Bruyn et al. (129) found that the clinical efficacy of methotrexate

combined with rapamycin analog everolimus in the treatment of

RA was much better than that of methotrexate alone. Subsequently,

more and more studies have shown that rapamycin is safe and

effective in the treatment of RA. The original research group

evaluated the effect of rapamycin on CD4 + CD25 + Foxp3 +

Tregs in RA patients, suggesting that rapamycin can promote the

proliferation of Tregs in low-activity RA patients, thereby balancing

Th17/Tregs. Balance of cell ratios increases the likelihood of clinical

remission in RA and reduces the risk of disease recurrence (130).

Wen et al. (128) found that rapamycin immunomodulatory therapy

can not only effectively reverse the reduced Tregs and suppress

effector T cells, but also alleviate the clinical symptoms of patients

with active RA and reduce the application of immunosuppression.

It can be seen that the use of rapamycin can not only control clinical

symptoms, but also greatly reduce the dosage of hormones and

immunosuppressants in patients. The PI3K-Akt-mTOR signaling

axis tightly governs the development, homeostasis, and

functionality of Tregs (131). However, due to the widespread

expression of the PI3K-Akt-mTOR signaling pathway, the effects

of rapamycin can be observed in a variety of immune and non-

immune cells. It’s still unclear whether rapamycin selectively

inhibits the proliferation of non-Tregs, thereby indirectly

promoting the expansion of Foxp3+ Tregs (132). Despite a

significant increase in Treg levels, rapamycin leads to a transient

deterioration of b-cell function in patients with Type 1 Diabetes

Mellitus (T1DM) (133). Hence, the negative impacts of this

approach in clinical practice cannot be overlooked, and its
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Comparative studies have shown that both rapamycin and all-trans

retinoic acid (ATRA) have similar promoting and stabilizing effects

during the expansion process of Tregs (134), and under

inflammatory conditions, ATRA exhibits superior stability in

nTregs compared to rapamycin (135). ATRA enhances the

differentiation and stability of iTregs without altering DNA

methylation (136). ATRA significantly activates the ERK1/2

signaling pathway, promoting Foxp3 expression (136). DNA

methylation at the Foxp3 gene locus plays an important role in

the expression and maintenance of Foxp3 in subpopulations (137).

In the presence of inflammatory factors, ATRA can inhibit the

methylation of the Foxp3 gene in nTregs (135). This may be one of

the molecular mechanisms by which ATRA plays a role in diseases

of the immune system. Therefore, ATRA can be used as

monotherapy or adjuvant therapy for autoimmune diseases.
4.5 Biological agents

4.5.1 Anti-TNF agents
In the past 10 years, more and more studies have emphasized

the impact of biological agents on Tregs in RA patients. Ehrenstein

et al. initially observed that infliximab (a chimeric monoclonal

antibody against TNF) treatment increased the proportion of

circulating CD4 + Foxp3+ cells and restored the inhibitory activity

of CD25high Tregs (138). Studies suggest that the expression of

Foxp3 in CD4+ lymphocytes escalates in patients treated with

etanercept, a fusion protein that functions as a TNF inhibitor

(139). Patients treated with TNF-a blockers had a higher

proportion of Tregs than patients treated with methotrexate

(MTX) (140). Anti-TNF-a treatment increases the Tregs/effector

T cell ratio, indicating that it can restore the suppressive function of

Tregs (57, 141). Furthermore, Tregs isolated from RA patients who

have responded favorably to adalimumab monotherapy seem to

display more pronounced suppressive activity (142, 143).However,

some studies did not observe any difference in the percentage of

Tregs before and after treatment with the human monoclonal

antibody adalimumab (50, 144). Some have shown that blocking

TNF affects the number and function of Tregs in mouse arthritis

models and RA patients (145, 146). Recent studies by Tseng et al.

found that TNFR2 is required for Treg development and function

under homeostatic and inflammatory conditions. They further

verified that TNFR2 is required to prevent Foxp3 promoter DNA

methylation, emphasizing the importance of TNFR2. TNFR2

signaling plays an important role in the maintenance of Tregs

stability, and TNFR2 deficiency results in a Th17-like phenotype

(147). Valencia et al. found that TNF is mediated by TNFRII, which

is constitutively expressed by Tregs, and that downregulation of

expression results in a reduction of Foxp3 mRNA, directly

impairing the inhibitory activity of RA CD25high Tregs (148). The

expansion and activation of TNFRII+ Tregs may be one of the

mechanisms by which anti-TNF drugs control RA inflammation

(149). A recent investigation also demonstrated that TNF-a
modulates the balance between Tregs and pathogenic Th17 and

Th1 cells in the synovium of RA patients via Foxp3
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dephosphorylation (72, 148). In RA patients, TNF blocker

treatment restored the suppressive activity of Tregs, which was

associated with reduced protein phosphatase 1 (PP1) expression

and increased Foxp3 phosphorylation in Tregs. The critical

phosphorylation site Ser418 in the c-terminal DNA-binding

domain of Foxp3 is a critical site for the inhibitory function of

Tregs. In RA-derived Tregs, TNF-a amplifies the expression of

protein phosphatase 1 (PP1) via the IKK-NF-kB pathway, which

results in the dephosphorylation of the crucial Ser418 site of Foxp3.

This action subsequently leads to the inactivation of Foxp3, causing

damage (150). Interestingly, animal model studies have shown that

ntregs require the presence of TNFa to function effectively, but

iTregs do not require this stimulation (151). Therefore, TNF-a is a

major driver of inflammation in RA patients, and TNF blockers are

an effective treatment for RA.

4.5.2 CTLA-4-immunologlobulin-G1
The fusion protein linked with the cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4-Ig), which tactically adjusts the

costimulatory signaling between CD28 and CD80/86, appears to

function as a biological DMARDs. Notably, this substance has a

dual role: it not only engages with T cells, but also has a significant

interaction with other cell populations that play a critical role in the

development and progression of RA (152). The first description of

CTLA-4 abnormalities in RA-deficient Tregs dates back to 2008,

when RA patients had lower CTLA-4 levels and higher

internalization rates in Tregs than healthy subjects (153).

Considering that the forced expression of CTLA-4 on Tregs in

the context of RA can rejuvenate their inhibitory function, and

conversely, the blockade of CTLA-4 on healthy Tregs can impair

their functionality, researchers theorize that CTLA-4 present on RA

Tregs could be a prospective therapeutic target for direct

manipulation within these cells. The contribution of CTLA4-Ig in

the treatment of RA extends beyond merely curtailing T cell

activation. One of the protective mechanisms of CTLA4-Ig is to

directly inhibit the formation of osteoclasts. In fact, CTLA-4

expressed by normal Tregs binds to CD80/CD86 on dendritic

cells, inducing the activation of IDO, and leading to the apoptosis

of osteoclast precursors (154). Although anti-CTLA‐4 antibodies

have been used in autoimmune therapy, their underlying

mechanisms have not been fully elucidated. One study showed

that CTLA4-Ig inhibited CIA by modifying CIA mouse DCs and

converting them into tolerant DCs, thereby increasing the number

of CD4+CD25+Foxp3+ Tregs. This may be a new immune

regulatory mechanism of CTLA4-Ig (155). CTLA-4-Ig, in

conjunction with TCR ligation, possesses the added capacity to

transform naive CD4+CD25- T cells into Foxp3+Tregs and amplify

their population (156). Abatacept is a biological treatment that

employs the extracellular domain of the CTLA-4 protein, fused with

the Fc portion of IgG1, to safely disrupt the costimulatory signal of

APC (157). RA patients who carry the CTLA-4 G polymorphism

demonstrated a superior EULAR response and a reduced disease

activity rate following treatment with abatacept (158). In the

European Union, the use of abatacept has been granted approval

for patients with highly active and progressive RA who have not
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the exact mechanism of the drug’s efficacy and its effects on the cells

that most commonly utilize the CTLA-4 protein (tregs) is unclear

and may be conflicting. It has been reported that abatacept has a

very complex effect on Treg population number and suppressive

function (157). For instance, administering abatacept for RA seems

to revive, at least partially, the impaired suppressive action of

circulating Tregs (160, 161). However, this finding has not been

corroborated by in vitro studies involving Tregs from synovial fluid

(162). In addition, one study has shown that CTLA-4Ig treatment

significantly reduced the proportions of Tregs (163).

4.5.3 IL-6 receptor blocker
IL-6 is a key cytokine determining whether naive T lymphocytes

differentiate into Tregs or Th17 cells (164). This understanding has

inspired us to delve deeper into the effect of inhibiting IL-6 on the

Treg/Th17 cell balance in autoimmune diseases like RA. Evidence

from experimental RA models suggests that early intervention with

anti-IL-6 receptor antibodies can decrease the prevalence of

circulating Th17 cells, thereby mitigating clinical symptoms (165).

Consistent with these studies, treatment of early-stage RA with the

IL-6 receptor blocker tocilizumab for 3 months resulted in a similar

reduction in the number of Th17 (166). This reduction was

demonstrated in another study that counted Th17 percentages at

4 months after tocilizumab treatment (57). Other studies did not

observe any difference in Th17 percentage 6 months after treatment

(167, 168). IL-6 is related to the plasticity of Tregs. Data from RA

patients treated with tocilizumab show an increase in Treg numbers

after treatment, consistent with a good clinical response (57, 168,

169). IL-6 is a major driver of increased inflammation in RA

patients, and tocilizumab has been shown to treat RA patients

and alleviate their disease (170–172).
4.6 Treg-based cellular therapies

In recent years, cell therapy centered around Tregs has emerged

as a novel target for treating RA, garnering widespread attention

(173–177). One strategy for Tregs therapy in RA involves isolating

Tregs from patients and then expanding them in vitro. The goal is to

enhance immune suppression by increasing the number of Tregs,

thereby preventing excessive immune responses leading to arthritis

inflammation. Studies have confirmed that adoptively transferred

Tregs in the CIA model quickly appear in synovial tissue after

injection, blocking T-cell proliferation and type II collagen-specific

proliferation, significantly reducing disease severity and slowing

disease progression (178). Transfer of Tregs into T-cell-deficient

mice has been shown to increase bone volume (179). While various

Tregs populations exist in peripheral blood with predictable

functional and phenotypic differences based on cell surface

markers (180), their clinical application is limited due to their

scarcity, lack of reactivity, and unclear specificity. Successful Tregs

transfer therapy for RA patients requires inputting a sufficient

number of cells and effectively expanding antigen-specific Tregs

without losing their specificity or function. Researchers are
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exploring methods to enhance the specificity of Tregs through

genetic engineering, aiming to improve their inhibitory effect on

specific autoantigens. This can be achieved by introducing specific

antigen receptors (such as TCRs (181, 182) or chimeric antigen

receptors (CARs) (183–185), allowing Tregs to more precisely

target and suppress inflammation in the joint area. The adoptive

transfer of these antigen-specific Tregs has been shown to be stable

in vivo and reverse CIA progression by inhibiting CD4+ T cell

proliferation and the key inflammatory cytokine TNF-a (186).

Compared to non-specific TCR transduction or polyclonal Tregs,

TCR Tregs exhibit enhanced inhibitory functions, making them

more capable of restoring dominant immune tolerance and

completely alleviating targeted autoimmune diseases (187). CAR

Tregs have stronger signaling capabilities than TCR Tregs (188).

Recently, Safari and colleagues (189) revealed the potential of the

clustered regularly interspaced short palindromic repeat (CRISPR)

genome editing technique combined with the CRISPR-associated

(Cas) 9 system to modify Tregs (189).

In another realm, research is exploring the combination of

Tregs therapy with other immune-modulating therapies to enhance

efficacy. This may involve the co-application of Tregs with

immunomodulatory drugs or other cell therapies, regulating the

immune system at multiple levels to achieve a more comprehensive

treatment outcome. An ongoing phase I clinical trial

(NCT02772679) is investigating the combined administration of

IL-2 and polyclonal Tregs. As mentioned earlier, low-dose IL-2

treatment itself has the effect of expanding Tregs in vivo. The

combined administration of polyclonal Tregs with low-dose IL-2 is

expected to enhance the number and function of Tregs after

infusion. Immunosuppressive drugs commonly used to treat

autoimmune diseases have been shown to dose-dependently

reduce Treg proliferation and survival (190, 191). Combining

Tregs with other cell therapy methods may produce synergistic

effects in the treatment of autoimmune diseases, and such

approaches are yet to be explored (192). Adoptive transfer of

Tregs, whether used in treating autoimmune diseases or

employing a strategy of increasing Tregs, aims not only to correct

the balance between Tregs and Teff but also faces challenges. One

challenge is maintaining the stability and functionality of Tregs

during in vitro expansion (193, 194). Research on how to isolate

phenotypically stable, highly active, and functionally suppressed

Tregs and designing strategies to increase their numbers while

maintaining their characteristics is crucial for developing Treg-

based therapies for autoimmune diseases. Additionally, factors such

as individual differences and potential adverse reactions during the

treatment process need to be carefully considered. Therefore, while

Tregs therapy brings new therapeutic prospects for RA patients,

further in-depth research and clinical trials are needed to validate its

safety and effectiveness.
4.7 Others

Phosphatase and tensin homolog (PTEN), a tumor suppressor

and a phosphatase specific to the 3’ position of phosphatidylinositol
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3,4,5-triphosphate (195), has a pivotal role in cell metabolism and

motility (196). Research indicates that PTEN exhibits therapeutic

potential in CIA rats and has associations with RA (197, 198).

PTEN can enhance the stability of Tregs, while its absence can

trigger autoinflammatory conditions (199, 200). Systemic

administration of PTEN attenuated arthritis severity in CIA mice,

and an increased expression of PTEN curtailed T-cell activation and

ameliorated the imbalance between Th17 cells and Tregs (200).

PTEN operates as an intracellular phosphatase, putting the brakes

on the PI3K-Akt-mTOR signaling pathway. Excessive stimulation

of this pathway, a scenario observed in PTEN-deficient Tregs, can

incite Treg instability due to the hyperactivation of mTORC2 (199,

201). A hallmark of synovial fibroblast activation in RA patients is

the downregulation of PTEN expression (202). These studies have

shown that PTEN plays a key role in the occurrence and

development of immune responses, and it may be used to modify

Tregs function. Overexpression of PTEN can inhibit the severity of

CIA, thereby reducing the inflammatory response and osteoclast

generation. Significantly, the absence of p53 is linked with a

reduction in PTEN gene expression, which in turn triggers the

phosphorylation of STAT3, thereby exacerbating autoimmune

arthritis. Consequently, this discovery implies that PTEN could

potentially be harnessed to alter the function of Tregs (200). In

addition, studies have shown that TGF-b, vasoactive intestinal

peptide (VIP) and immunoglobulin D (Immunoglobulin D, IgD)-

Fc-Ig play an important role in targeting Tregs to restore immune

tolerance in RA. TGF-b is an important growth factor that

promotes Th17 and Treg differentiation. In the context of

experimental arthritis, while the local suppression of TGF-b1
signaling can enhance the Th17/Treg equilibrium, it does not

yield improvements in joint pathology (203). VIP is a

neuropeptide with anti-inflammatory effects and has therapeutic

potential in a variety of immune diseases. It is involved in

maintaining immune tolerance through a novel mechanism that

induces the generation of Tregs (204). IgD-fc-ig selectively

interferes with the interaction between IgD and IgDR, putting a

halt to the abnormal proliferation and activation of T cells provoked

by IgD. It corrects the imbalance between Th17 and Tregs, lessens

the production of inflammatory cytokines (205). The composition

of the gut microbiota in patients with RA undergoes changes,

potentially exacerbating immune dysregulation (206, 207). Fecal

microbiota transplantation, involving the introduction of specific

bacteria, may become an adjunctive approach in treating RA. Short-

chain fatty acids, produced by certain gut bacteria, have

demonstrated anti-inflammatory effects (208).They can upregulate

anti-inflammatory genes in dendritic cells, enhance histone

acetylation of the Foxp3 locus, and increase the stability of the

Foxp3 transcription factor (209). Other molecules produced by

bacteria, such as Bifidobacterium’s polysaccharide A, can induce the

generation of Tregs (210). Due to safety concerns, fecal

transplantation therapy has not yet been approved clinically.

However, once this therapy becomes viable, it could be

considered as a potential Treg-promoting strategy, synergizing

with Tregs-based therapies or other methods promoting Tregs to

enhance their therapeutic efficacy.
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5 Summary

The maintenance of self-immune tolerance is greatly reliant on

Tregs. A decline in the number and/or function of Tregs in RA

patients indicates that abnormalities in Tregs are intimately

associated with the progression of RA. The transfer of Tregs and

preservation of Tregs functions present promising strategies to

mitigate joint inflammation in RA patients. CAR-Tregs could

potentially serve as a useful tool for treating, or even curing,

autoimmune diseases. However, the regulatory mechanisms of

Tregs are not yet fully comprehended and warrant further

investigation. There is a pressing need to bolster research in clinical

investigations and related animal experiments to explore the immune

mechanism of Tregs in the pathogenesis of RA. It is anticipated that

the scope for future treatment of RA will expand considerably.
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