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Introduction

Pharmacological therapy has played a vital role in combating various diseases, with

dozens of novel drugs being approved each year. In the wake of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 outbreaks, scientists and researchers

have been in a race against time to develop vaccines, discover new drugs, and repurpose old

drugs for COVID-19. As of now, several drugs have been approved for the treatment of

COVID-19 (1). COVID-19 is anticipated to transition into an endemic state, signifying its

enduring presence within the population. However, this does not negate the potential for

the virus to undergo evolutionary changes that could lead to sporadic outbreaks or seasonal

surges. Even the World Health Organization (WHO) has recently issued standing

recommendations that outline critical actions supporting the transition from emergency

response to COVID-19 into strengthened and integrated infectious disease prevention and

control programs (2). The goal is to prepare for potential worsening situations caused by

new variants of the virus and to reduce the disease burden from COVID-19, which include

addressing post-COVID-19 conditions such as long COVID.

Apart from pharmacological therapy which is primarily based on medication, a non-

pharmacological intervention such as sleep improvement, dietary habits, exercise, and

fasting has been has been introduced in managing various diseases and accelerating

recovery (3). Fasting, with its historical roots dating back to the 5th century, is a practice

that carries significance not only from religious perspectives but also due to its potential for

enhancing overall well-being. Hippocrates, father of medicine of ancient Greece, advocated

fasting as a therapeutic intervention for specific diseases. Extensive research conducted in

the 20th century involving animals and humans has further illuminated the profound
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benefits associated with fasting, encompassing cancer prevention

(4), weight loss (5), improved insulin sensitivity (6), and even

increased lifespan (7). Notably, advancements in molecular

analysis have provided insights into the underlying mechanisms

through which these benefits are realized. Fasting has been found to

effectively suppress genes implicated in diseases such as cancer,

cardiovascular diseases, and metabolic disorders (7). This genetic

modulation plays a crucial role in mitigating the risk and

progression of these illnesses. Furthermore, fasting stimulates

molecular metabolic pathways associated with anti-aging

processes, particularly involving autophagy-related proteins that

facilitate cellular rejuvenation and maintenance (8). Ongoing

research is being conducted on drug development aimed at

replicating the effects of fasting and promoting life extension.

Compounds such as metformin, rapamycin, and nicotinamide are

among the most extensively studied drugs in this context,

demonstrating potential in enhancing longevity (9).

Despite the well-documented benefits of fasting, its potential as a

therapeutic approach for aiding in illness recovery often remains

unrecognized, leading to a dearth of research in clinical settings.

Studies have demonstrated the effectiveness of fasting in preventing

SARS-CoV-2 infection (10, 11). We propose that the accelerated

recovery from COVID-19 through fasting is likely mediated by the

increase in nicotinamide adenine dinucleotide (NAD+). We outline

several underlyingmechanisms to support this viewpoint. Our aim is to

stimulate further research on the utilization of fasting or fasting-

mimicking drugs as methods to enhance NAD+ levels, thereby

potentially countering viral infections, particularly SARS-CoV-2.
The essential role of NAD+ in immune
cells combating COVID-19

NAD+ is a coenzyme and cofactor pivotal for cellular energy

production, DNA repair, regulation of inflammation and oxidative

stress. Additionally, NAD+ serves as a crucial substrate in various

cellular signaling pathways, including those mediated by sirtuins,

which are best known for their anti-aging effects. Viral replication is

a complex process that demands significant energy and resources

from host cells. Viruses often exploit cellular machinery to replicate

their genetic material and produce new virus particles. NAD+ plays

a pivotal role in supporting these processes. It serves as a coenzyme

in numerous enzymatic reactions, including those essential for

DNA and RNA synthesis of the virus. Research suggests that

viruses, including coronaviruses like SARS-CoV-2, exploit NAD+

resources during their replication cycle. The virus can activate

specific enzymes that utilize NAD+ to facilitate various steps of

their replication (12, 13). This heightened demand for NAD+ could

potentially diminish cellular NAD+ levels, leading to consequences

beyond viral replication itself. Reduced NAD+ levels might

compromise cellular energy production and impair the

functioning of immune cells that are crucial for recognizing and

combating viral infections (14). Given that both cellular function

and viruses rely on NAD+ for their survival, the idea of increasing

NAD+ could have both positive and negative implications.
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However, previous study have shown that replenishing NAD+

accelerates recovery from COVID-19 in mouse models (15)..

During COVID-19 infection, the respiratory system is primarily

affected, leading to symptoms like persistent cough, shortness of breath,

and sore throat. Interestingly, a significant number of COVID-19

patients display immunosuppression or a hypoinflammatory state,

wherein immune cells like macrophages exhibit diminished

responsiveness to the infection, marked by lower pro-inflammatory

cytokines (16, 17). The function of immune cells, such as macrophages,

is akin to a double-edged sword. When their levels are too low, the

ability to combat infection worsen. Similarly, when their levels are too

high, there is potential harm to healthy cells due to the increase in pro-

inflammatory cytokines. Important to note that in the COVID 19, the

macrophages also contribute to hyperinflammation in the lungs,

further exacerbating the severity of the disease (18). The significance

of NAD+ is crucial in this context, as a decrease in NAD+ levels can

alter the polarization of macrophages towards a proinflammatory state

(19). Additionally, insufficient NAD+ levels within macrophages can

disrupt their metabolic processes, resulting in functional impairment

and ultimately leading to macrophage death (20). This outcome results

in an inadequate immune response against infections. Furthermore,

the accumulation of deceased macrophages in the lung mucosa

contributes to the buildup of extracellular matrix, potentially leading

to irreversible lung fibrosis over time (21). While speculative, these

mechanisms may offer insights into long COVID persistent symptoms

like shortness of breath and shallow breathing. Approaches aimed at

increasing NAD+ levels have been shown to restore proper functioning

to macrophages within the immune system, regulating inflammation

and the repair process (15, 22).

Lymphocytes, another essential component of the immune

system, play a pivotal role not only in COVID-19 but also in

overall viral infections. There are two types of lymphocytes: B cells

and T cells. In the adaptive immune response, lymphocytes play a

crucial role in recognizing and combating viruses, effectively

destroying them, and possessing the ability to retain a memory of

encountered viruses, ensuring a swift response upon future

infections. During a viral infection, innate immune cells such as

macrophages activate CD4+ T helper cells through antigen

presentation. These activated helper T cells then release cytokines

that activate cytotoxic CD8+ T cells. The activated helper T cells

also interact with B cells, causing the differentiation of B cells into

plasma cells capable of producing antibodies to combat the virus.

Meanwhile, CD8+ T cells can directly recognize virus antigens

expressed onMHC Imolecules on the surface of virus-infected cells,

leading to the induction of apoptosis in these infected cells. The

activated B cells and T cells can also differentiate into memory B

cells or memory T cells to ensure rapid neutralization of future

infections (23). In the case of COVID-19, lymphocyte levels are

decreased (24). Intriguingly, the count of lymphocytes serves as a

robust predictor of disease severity and mortality in COVID-19

(25). Similar to macrophages, lymphocytes also rely on NAD+ for

survival and normal function. Studies indicate that a decline in

NAD+ levels in lymphocytes can disrupt their response to

mitogens, leading to reduced proliferation and indicating

impaired functionality (26). While boosting NAD+ is likely to
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enhance lymphocyte counts and function, no studies have been

conducted to confirm this.
Susceptibility to COVID-19 in
elderly individuals and those with
diabetes might be associated with
low levels of NAD+

NAD+ levels decline with age, contributing to cellular

dysfunction and susceptibility to various diseases (27, 28).

Notably, aging is recognized as a significant risk factor for severe

COVID-19 manifestations (29). Diabetes, likewise, presents a

distinct challenge during COVID-19. Individuals with diabetes,

whether it is type 1 or type 2, exhibit compromised immune

responses and heightened inflammation, rendering them more

susceptible to severe outcomes (30). NAD+ plays a multifaceted

role in glucose metabolism, insulin sensitivity, and inflammation

regulation. In type 1 diabetes, the low level of NAD+ primarily

results from the activation of poly ADP‐ribose polymerase.

Meanwhile, in type 2 diabetes, a larger contributing factor is the

inhibition of adenine nucleotide monophosphate‐activated protein

kinase (AMPK) activation (31). Thus, diminished NAD+

availability could potentially contribute to metabolic imbalances,

further exacerbating the susceptibility of diabetic patients to severe

COVID-19 complications. Further complexity arises from the

interaction between SARS-CoV-2, the virus causing COVID-19,

and NAD+ metabolism. The virus’s replication process demands

NAD+ resources, potentially leading to a depletion of this vital

coenzyme in infected cells (12, 13). This depletion might trigger a

cascade of events, including compromised cellular functions and

heightened inflammation, potentially culminating in severe lung
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injury and respiratory distress – hallmarks of severe COVID-19

cases. Hence, for these reasons, elderly and diabetic individuals are

more prone to COVID-19.
Fasting as a way to boost NAD+ levels
and its potential to fight COVID-19

One intriguing aspect of fasting is its influence on cellular

metabolism and the modulation of key molecules, including NAD

+ (32). Moreover, fasting’s potential to mitigate the progression of

viral infections, including COVID-19 caused by the SARS-CoV-2

virus, has been demonstrated in several studies (10, 11, 33). During

fasting, cells undergo a metabolic switch from glucose metabolism

to fatty acid oxidation and ketone utilization. This metabolic

adaptation triggers pathways, such as sirtuins, that rely on NAD+

as a substrate. These result in postive feedback, wherein fasting can

increase cellular NAD+ levels, potentially conferring cellular

resilience to stress. The elevation of NAD+ induced by fasting

might enhance antiviral defenses by bolstering immune cell

function, which fights viral infection, and regulating inflammation

(Figure 1). Consequently, this could alleviate the severity of

COVID-19. However, translating the potential benefits of fasting

into clinical applications warrants careful consideration. Fasting

regimens vary widely, and their effects on different populations,

such as the elderly and young person, including those with existing

health conditions, are diverse. However, the effects of fasting in

COVID-19 patients without preexisting health conditions have

shown promising results (11). The potential of fasting to combat

COVID-19 aligns with the broader concept of therapeutic

interventions that target host cell mechanisms to control viral

replication. While antiviral drugs directly target the virus,

interventions that enhance host cell defenses could offer a
FIGURE 1

An illustration of boosting NAD+ levels through fasting to aid in COVID-19 recovery. NAD+ plays an essential role in immune cells combating
COVID-19. The NAD+ level decreases in patients infected with COVID-19, whether they are healthy individuals, diabetics, or elderly people. Fasting
is considered one of the strategies to increase NAD+ levels in combating COVID-19, thereby enhancing the immune system and metabolism. This
approach represents a potential adjuvant therapy against COVID-19 and could aid in managing long COVID.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1319106
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dongoran et al. 10.3389/fimmu.2024.1319106
complementary strategy. Fasting-induced elevation of NAD+ might

represents a unique approach in this regard.

In addition, fasting-induced elevation of NAD+ could be a

potential approach to address long COVID conditions. Long COVID

or post COVID condition refers to a prolonged condition characterized

by symptoms that persist or develop after the initial COVID-19

infection, affecting various organs with different underlying issues.

Long COVID tends to occur more frequently in cases of severe

COVID-19 infection, and to date, more than 200 different symptoms

have been identified. Furthermore, the number of long COVID cases is

on the rise, estimated to impact approximately 65 million individuals

worldwide (34). Long COVID can be extremely debilitating; with each

new infection or reinfection of COVID-19, there is a heightened risk of

developing this condition, which in turn increases the likelihood of

severe medical complications. It is important to note that current

diagnostic and treatment options are often inadequate in managing

long COVID. Nevertheless, researchers have made significant strides in

understanding the various pathophysiological changes associated with

long COVID, including a compromised immune system. In light of

these findings, fasting-induced elevation of NAD+ presents itself as a

potentially crucial strategy to bolster the immune system’s capacity to

combat long COVID (35).

It is important to acknowledge that fasting is not without

challenges. Prolonged fasting can lead to nutritional deficiencies

and may not be suitable for everyone. In addition, it is imperative to

acknowledge that fasting might not be tolerable for all individuals

due to the sensation of hunger it elicits. Moreover, intermittent

fasting regimens, which involve cycles of eating and fasting, might

yield different effects on NAD+ levels compared to more extended

fasts. Recent research indicates that adopting a dietary approach

involving reduced calorie intake and restricting meals to active

periods, particularly during daytime hours (i.e., breakfast and

lunch), may yield greater benefits for humans compared to

consuming food during nighttime hours (7).
Conclusion

Fasting’s potential to boost NAD+ levels and its implications for

combatting viral infections like COVID-19 present an intriguing
Frontiers in Immunology 04
intersection of ancient practices and modern medical research. The

link between NAD+ metabolism, fasting, and host cell responses to

viral infections is a complex landscape that necessitates further

investigation. Rigorous clinical studies are essential to ascertain the

safety, efficacy, and feasibility of fasting regimens as potential

adjuvant therapies against viral infections. If harnessed effectively,

fasting-induced NAD+ elevation could emerge as a valuable

strategy to augment host cell defenses and contribute to

managing viral diseases, particularly COVID-19.
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