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Background: Immunomodulatory processes exert steering functions throughout

pregnancy. Detecting diversions from this physiologic immune clock may help

identify pregnant women at risk for pregnancy-associated complications. We

present results from a data-driven selection process to develop a targeted panel

of mRNAs that may prove effective in detecting pregnancies diverting from

the norm.

Methods: Based on a de novo dataset from a resource-constrained setting and a

dataset from a resource-rich area readily available in the public domain, whole

blood gene expression profiles of uneventful pregnancies were captured at

multiple time points during pregnancy. BloodGen3, a fixed blood

transcriptional module repertoire, was employed to analyze and visualize gene

expression patterns in the two datasets. Differentially expressed genes were

identified by comparing their abundance to non-pregnant postpartum controls.

The selection process for a targeted gene panel considered (i) transcript

abundance in whole blood; (ii) degree of correlation with the BloodGen3

module; and (iii) pregnancy biology.

Results: We identified 176 transcripts that were complemented with eight

housekeeping genes. Changes in transcript abundance were seen in the early

stages of pregnancy and similar patterns were observed in both datasets.

Functional gene annotation suggested significant changes in the lymphoid,

prostaglandin and inflammation-associated compartments, when compared to

the postpartum controls.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1319949/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1319949/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1319949/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1319949/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1319949/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1319949&domain=pdf&date_stamp=2024-01-30
mailto:bkabeer@sidra.org
mailto:basir2020@gmail.com
https://doi.org/10.3389/fimmu.2024.1319949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1319949
https://www.frontiersin.org/journals/immunology


Brummaier et al. 10.3389/fimmu.2024.1319949

Frontiers in Immunology
Conclusion: The gene panel presented here holds promise for the development

of predictive, targeted, transcriptional profiling assays. Such assays might

become useful for monitoring of pregnant women, specifically to detect

potential adverse events early. Prospective validation of this targeted assay, in-

depth investigation of functional annotations of differentially expressed genes,

and assessment of common pregnancy-associated complications with the aim

to identify these early in pregnancy to improve pregnancy outcomes are the

next steps.
KEYWORDS

pregnancy-associated complications, whole blood gene expression, BloodGen3
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Introduction

There is a need for development of new assays and modalities to

improve our understanding of immune trajectories during

pregnancy. Indeed, pregnancy is a formative experience for

expecting mothers and its progression is thought to shape the health

and development of the fetus. Research in the emerging field of

developmental origins of health and disease (DOHaD) indicates that

there might be long-term consequences of pregnancy that affect the

lifespan beyond birth and the immediate postpartum period (1). The

role of the immune system affecting this process is increasingly

recognized. Pregnancy constitutes an evolutionary challenge for the

immune system, as there is a constant trade-off in balancing the need

for tolerance of the fetal allograft andmaintaining adequate protection

against environmental stressors (e.g., infections) (2). From conception

to birth, a plethora of physiological and immunological changes are

required to ensurea successful pregnancy (3).Recent evidence suggests

that immune responses play an essential role in all pregnancy stages,

from implantation to initiation of labor. A network of different

immune pacemakers that regulate and time the immune responses

during pregnancy, was termed “the human immune clock” of

pregnancy by Aghaeepour et al. (3, 4). A disruption of this immune

clock may lead to potentially severe pregnancy complications,

including fetal loss, preeclampsia, and preterm birth (5–7).

Various omics profiles (e.g., transcriptomics, epigenomics,

metabolomics, and microbiomics) exhibit significant temporal

changes during pregnancy. Recently the potential of machine

learning in predicting gestational age has been demonstrated,

with high degrees of correlation between actual and predicted

weeks of gestation being reported. These findings underscore the

importance of dynamic changes in maternal physiology over the

course of pregnancy and the potential utility of omic profiles in

understanding these changes and harnessing them for diagnostic

and predictive purposes (8–10).

Tarca et al. reported that whole blood gene expression can

accurately predict gestational ages in both uneventful and

complicated pregnancies (11). Blood samples collected during
02
pregnancy were also able to predict time to delivery in uneventful

pregnancies and those with spontaneous preterm birth, a critical

finding when considering the utility of omics in preterm birth

prediction. Another study identified specific genes (i.a., PAPPA2

and FABP1) as predictors in the gestational age model. This study

highlights the imbalance of cell-free RNA signatures between

pregnancy progression and pathology, offering insights into how

RNA profiles can be used to monitor and understand different

stages of pregnancy (12). Liang et al., developed a metabolic clock

using five metabolites that accurately predicted gestational age. The

study further identified metabolites that could predict the time to

delivery within specific time frames, representing a significant

advancement in the weekly characterization of human pregnancy

using omics approaches (13).

In this context, we aimed to develop a targeted panel of blood

transcripts to enable immune monitoring at high temporal resolution

in large cohorts of pregnant women for a wide range of study settings.

Profiling transcript abundance in bulk blood samples is relatively

straightforward and as such is amenable to clinical translation on the

following grounds. First, it does not require sample fractionation.

Second, profiles can be generated using small volumes of whole blood

collected using minimally invasive techniques [e.g., finger sticks (14)].

Third, it permits self-collection by the study subjects, and hence,

enables implementation of high frequency sampling protocols (15).

As shown in recent studies, immune monitoring at high temporal

frequencies contributes to higher resolution of different immune

response components, which allows precise mapping of inter-

individual differences among study participants (16). Hence, when

carried out prospectively, this approach may be suitable for a pre-

symptomatic detection of pregnancy associated comorbidities

(“disease interception”) (17). Against this background, we designed

and implemented themolecular signature in pregnancy (MSP) study, a

prospective, longitudinal cohort designed to investigate cross-omic

trajectories throughout pregnancy, at delivery and postpartum

(18, 19).

While blood transcriptome profiling by RNAseq has become

relatively cost-effective, the bioinformatics “overhead” (e.g.,
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infrastructure and expertise) remains high, especially when

undertaken on large scales. In our MSP study, for instance, the

study protocol required collection of 45 samples from each of the 400

mother and child pairs enrolled, corresponding to more than 16,000

samples. A sensible approach in such circumstances would consist in

developingadhoc/fit-for-purpose targeted transcriptpanels.Typically,

a targeted panel comprises tens or hundreds of transcripts, selected

from transcriptome profiling data. Cost-effective and scalable

technology platforms that require only a limited amount of sample

and data processing can be employed for the measurement of

transcript abundance for such a targeted panel of genes. Assays

implemented on these platforms are also more readily transferrable

to resource constrained settings, which is an objective of the MSP

study. Lastly, such a downscaling process is necessary when working

towards clinical implementation and diagnostic applications.

This paper describes the steps undertaken to inform the

development of a targeted blood transcriptional assay for

monitoring immune trajectories during pregnancy. We identified

gene signatures relevant to pregnancy progression that also reflect

inter-individual as well as temporal intra-individual differences in

blood transcript abundance in healthy pregnant women. First, we

applied transcriptome profiling data generated de novo for a subset

of healthy pregnant women enrolled in the MSP study. Second, we

leveraged a public blood transcriptome dataset that included

profiles generated at similar time points for healthy pregnant

women from a resource rich setting. Third, for the exploratory

gene selection process, both datasets were then analyzed by a well-

characterised fixed module repertoire as a framework for the

downstream gene selection process. The resulting 176-gene panel

will serve as the basis for the development of a multiplexed high

throughput polymerase chain reaction (PCR) assay.
Methods

De novo-generated MSP dataset

Setting and participants
We generated whole blood gene expression data from a cohort

(trial registration number NCT02797327), that was established in

cooperation between Shoklo Malaria Research Unit (SMRU; Mae

Sot, Thailand), and Sidra Medicine (Doha, Qatar). The main

objective of this prospective pregnancy-delivery-postpartum

cohort (“MSP cohort”) was to monitor trajectories of various

molecular signatures during the course of pregnancy, at delivery

and the early postpartum period. A detailed description of the

cohort setting, including definition and procedures, has been

published (18). Briefly, the cohort was established from

September 2016 to May 2019 in SMRU antenatal care clinics

located in a low resource setting on the Thailand-Myanmar

border. Pregnant women originating from a migrant population

were enrolled in the first trimester of their pregnancy, followed

throughout pregnancy, at delivery and in the early postpartum

period. At the outset, healthy women with an unremarkable medical

and obstetric history were prioritized, but they remained in the

cohort and continued to follow if they developed pregnancy-
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associated complications. Gestational age was confirmed by early

obstetric ultrasound and identical routine antenatal care (ANC)

procedures were provided to all women.

Sampling protocol
For the blood transcriptome profiling component of the study,

the sampling protocol consisted of two weekly finger-prick capillary

sampling. Fifty microliters of capillary blood were mixed with an

RNA stabilizing solution (Tempus™, ThermoFisher Scientific;

Waltham, MA, USA) at a 1:2 ratio, shaken vigorously to disrupt

and lyse the blood cells to release their RNA, which is then

precipitated in the Tempus™ solution and protected from

degradation by RNAses (14). Samples were stored at -20°C and

later transferred internationally to Sidra Medicine on dry ice in

styrofoam boxes equipped with temperature loggers.

Sample selection and processing
A group of 15 women with an uneventful pregnancy (i.e., normal

vaginal delivery at term, absence of common pregnancy-associated

complications, such as gestational diabetes, preeclampsia/eclampsia

and communicable diseases such as malaria during pregnancy) were

selected from the MSP cohort and for each of these whole blood RNA

profiles were generated for 6 timepoints: (i) first trimester; (ii) second

trimester; (iii) third trimester; (iv) delivery; (v) one month postpartum;

and (vi) three months postpartum (Figure 1). Demographic and

clinical information of study participants is provided in

Supplementary Table 1.

Total RNA was extracted from the whole blood lysates using

Tempus spin Blood RNA extraction kit (Thermo Fisher Scientific

Inc., Waltham, MA, USA). Sample integrity and concentration were

measured using the standard sensitivity RNA assay on the Perkin

Elmer Caliper Labchip GXII (PerkinElmer Inc., Waltham,

MA, USA).
Sequencing procedures
The Illumina Truseq Stranded mRNA kits (Illumina Inc., San

Diego, USA) were used to prepare libraries with 500 ng of total

RNA. To obtain mRNA libraries, poly-A RNA selection was

performed using an Oligo-dT magnetic bead system, followed by

fragmentation, first strand synthesis using Superscript IV and then

second strand synthesis. The cDNA obtained after reverse

transcription was ligated with IDT for Illumina UD Indexes and

amplified for 15 cycles. Library quality and concentrations were

assessed using the DNA 1k assay on a Perkin Elmer GX2

(PerkinElmer Inc., Waltham, USA) and quantified using the

KAPA HiFi Library quantification kit on a Roche LightCycler 480

(Hoffmann-La Roche AG, Basel, Switzerland). Cluster generation

was performed on a cBot 1.0 or 2.0 using the HiSeq® 3000/4000 PE

Cluster Kit and HiSeq® 3000/4000 SBS Kit (300 cycles). Flow cells

were loaded at a cluster density between 1,310 and 1,524 K/mm2

and sequenced to a depth of 20-50 M reads/sample on an Illumina

Hiseq 4000 instrument (Illumina Inc., San Diego, USA).

Processing of RNA-Seq data was done using bcbio rnaseq

pipeline, bcbio version 1.2.3. Prior to alignment, a quality check

of raw data was performed using FastQC version 0.11.9. Alignments
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were made using STAR version 2.6.1d and reads were mapped to

the hg38 genome. After alignment, Samtools 1.3 was used to collect

metrics on bam, which were used further to generate a

multiqc report.
Publicly available PROMISSE dataset

Rationale
We sought to identify transcriptome profiling datasets generated

from women with uncomplicated pregnancies obtained in the context

of studies conducted in a high-resource setting. Selection criteria

included the availability of non-pregnant reference samples, a control

group of uneventful pregnancies and sampling at multiple timepoints.

Transcriptome data from the PROMISSE study (Predictors of

pRegnancy Outcome: bio- Markers In antiphospholipid antibody

Syndrome and Systemic lupus Erythematosus) contributed by Hong

et al. were identified as most suitable and downloaded from the GEO

browser (GSE 108497) (20).

Setting and participants
Details of the PROMISSE study have been described by Hong et

al. (20). In brief, the PROMISSE cohort followed a multicentre

observational study design and included pregnant women with

systemic lupus erythematosus (SLE) and healthy pregnant controls.

All participants originated from a high-resource setting (i.e. Canada

and USA). Blood was drawn at 5 prespecified timepoints: (i) <16

weeks’ gestation (WG); (ii) 16-23 WG; (iii) 24-31 WG; (iv) 32-40

WG; and (v) between 8 and 20 weeks postpartum. PAXgene Blood

RNA Kit (Qiagen, Venlo, The Netherlands), a system for collection,

stabilization and purification of RNA was used to obtain

transcriptome trajectories.
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Sample selection and processing
Healthy pregnant controls (n=38) were selected from the

PROMISSE cohort. Sample processing differed from the de novo

MSP dataset as after extraction and amplification, RNA was

hybridized to Illumina HT-12 V4 beadchips (Illumina Inc., San

Diego, USA) that contained 47,231 probes. Once scanned on an

Illumina Beadstation 500, signal intensities were generated,

background was subtracted, and data were normalized by using

Illumina’s GenomeStudio. This microarray dataset was then

downloaded from the GEO browser and gene expression data

were extracted for downstream analysis.
Data analysis and visualization

BloodGen3 repertoire
Analysis for both datasets was carried out using the BloodGen3

fixed blood transcriptional module repertoire, for which detailed

information is published (21). Briefly, the approach is based on the

delineation of co-expressed sets of genes (“modules”) for a given

system (e.g., the whole blood transcriptome). The BloodGen3

module repertoire was constructed based on 16 distinct datasets

spanning over different pathological and physiological conditions,

including a wide range of autoimmune and infectious diseases, as

well as transplantation, cancer and pregnancy. It is based on a total

of 985 individual transcriptome profiles. Dimensions were reduced

to 382 sets of co-expressed genes, which were identified via

construction and mining of a weighted co-clustering network. In

a second step, k-means clustering was employed to further reduce

dimensions and define a set of 38 “module aggregates”. The module

repertoire is fixed in that it is re-used for analysis and interpretation

of datasets that were not employed for its construction.
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FIGURE 1

Study overview: The MSP cohort involves blood sampling at three antenatal time points (T1, T2, T3), at delivery (D), and two postpartum time points
(P1, P2), analyzed via NGS-based mRNA sequencing with an approximate read count of 50 million. For the PROMISSE cohort, a single postpartum
sample (P1) is collected and analyzed using microarray technology, specifically utilizing Illumina HT-12 V4 beadchips. The two transcriptome
datasets were used for the development of a targeted gene panel to monitor the pregnancy.
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An extensive functional annotation and interpretation framework

for the BloodGen3 repertoire was established based on, for instance,

gene ontology, pathway or literature term enrichment and

transcript profiles. An R package was developed to support

module-level data analysis and visualization employing the

BloodGen3 repertoire (22). Finally, web applications associated

with recent publications provide access to analyzed results for

different blood transcriptome dataset collections (for 16 reference

cohorts (21), and 6 respiratory syncytial virus (RSV) infections (23).

Overall, the use of this fixed repertoire helped streamline the

analysis and visualization of blood transcriptional data and to

contextualize its interpretation (24).

Data analysis
The code used for module repertoire analysis and visualization

is available as an open source R package (i.e., BloodGen3Module

Package) at https://github.com/Drinchai/BloodGen3Module or

ht tps : / /b ioconductor .org/packages / re l ease /b ioc/html/

BloodGen3Module.html and is described in detail elsewhere (22).

The workflow consists in the following steps. First, annotating the

expression matrix (DESeq2 normalized counts in the case of the

MSP dataset, background subtracted and quantile normalized

expression values in the case of the PROMISSE dataset) with

module repertoire information (mapping transcripts to

BloodGen3 modules). Second, identifying differentially expressed

genes, which can be done at either the group-level or individual

sample-level. P-value and false discovery rate cut-offs were applied

(DESeq2 FDR <0.1). When determining changes at the individual

sample level the module response is determined by employing fixed

fold-change and expression difference cut-offs (|FC|>1.5 and |DIFF|

>10). Third, assessing the “module response” that is defined as the

percentage of constitutive genes found to be differentially expressed

between two study groups, or for the same individual in comparison

to a given baseline. The values, therefore, can range from +100% (all

constitutive transcripts increased) to −100% (all constitutive

transcripts decreased). The dominant trend (i.e., increase or

decrease in abundance over control/baseline) was retained for

visualization purposes.

For our study, the average absolute, normalized expression

values of all 3-month postpartum samples were calculated and

used as reference for each analyzed gene in the MSP dataset. An

identical approach was chosen for the PROMISSE dataset using the

respective postpartum samples. To determine whether a gene was

significantly up- or downregulated, levels of gene abundance at

different sampling timepoints were compared against the mean

expression at the postpartum reference timepoint using t-test. A

fold-change of at least 1.5 and a p-value of less than 0.1 was

determined as cut-off for significance.
Data visualization
To enable visual interpretation of the transcriptome

fingerprints, modules were arranged on a 2-dimensional grid and

assigned to a fixed position. Direction of gene expression compared

to the postpartum reference sample was represented by a binary

color code: upregulated modules are depicted in red, downregulated
Frontiers in Immunology 05
modules in blue (Figure 2). A variable degree of color saturation

illustrates the magnitude of the difference in expression. The level of

saturation is dependent on the percentage of up- or downregulated

genes within one module. For instance, module M13.26 consists of

40 genes. If all 40 genes (= 100%) of module M13.26 are

upregulated, a red spot with the highest saturation is depicted. If

no gene in a given module is up- or downregulated (= 0%), the
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FIGURE 2

Design of targeted blood transcript panels for pregnancy profiling.
The first selection steps are data-driven (A–C). They consist in
identifying co-expressed sets of transcripts to constitute selection
pools. The last selection step is knowledge-driven (D). It consists in
identifying transcripts among each of the pools which are relevant
functionally for pregnancy based on a review of the literature. (A)
Pre-determined module repertoire. The process primarily relies on a
generic collection of co-expressed gene sets (transcriptional
modules). Two dimension reduction levels are built into this
modular repertoire. The most reduced level has 38 variables
(module aggregates). The least reduced level has 382 variables
(modules). (B) Selection of module aggregates. Analysis of
expression trajectories within the module aggregates from the first
trimester to postpartum was the foundation for selecting 22 of the
38 module aggregates in the first step of dimension reduction. (C)
Delineation of homogeneous pregnancy module sets. The next step
identifies within each of the 40 aggregates subsets of modules that
show high degree of expression similarity across pregnancy, at
delivery and the postpartum period. (D) Candidate transcript
selection. The last steps involves expert curation and consists in
identifying at least one transcript within each module set. Criteria for
selection can be adapted based on needs (e.g. enrichment in
candidates that are immune relevant and/or relevant to
pregnancy biology).
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respective spot on the heatmap is blank. The modules were then

further grouped into “aggregates” via a second round of clustering,

resulting in a lower level of granularity and thus permitting a

refined level of interpretation of observed gene expression patterns.

Perturbations of transcript signatures in module aggregates follow

the same color coding as laid out above.

Web application
The R package Shiny was used to build an interactive tool

(available at: https://immunology-research.shinyapps.io/

BloodGen3_Pregnancy) to explore, compare and visualize gene

expression patterns from both datasets (25). Additional

information describing the composition of aggregates and

modules, gene ontologies, expression profiles, functional

annotation, among others, are accessible via links to interactive

presentations created by the visual communication software Prezi

(Budapest, Hungary).

Gene selection process
For the selection of a targeted panel, genes represented in the 382

modules forming the BloodGen3 repertoire were condensed through a

data- and knowledge-driven selection process that combined test

statistics and a review of the literature to identify genes that have

been shown to play a role in pregnancy biology. Selection is first

conducted at the module aggregate-level. Next, within each of the

selected aggregates, modules that show a high degree of collinearity in

pregnancy were grouped in “module sets” (i.e., each aggregate could

encompass multiple sets, but those do not cross over to other

aggregates). Genes are then selected to represent each of these sets,

which permits to capture the breadth of the changes in transcript

composition observed during the course of pregnancy.

Module aggregate selection
The first filter removed module aggregates showing no or only

modest changes throughout the course of pregnancy. If the average

response of all the modules constituting an aggregate was <10%, this

aggregate was not retained in the downstream selection process. As

described above, the % response is defined as the proportion of

transcripts for a given module up- or downregulated in comparison

to the post-partum baseline.

Module set selection
The next step was to select only modules showing the highest

level of changes throughout pregnancy (i.e., modules with an

absolute response of >10%). If >10 modules met this criterion,

only the top 10 modules were selected.

Next, we identified homogenous module sets exhibiting

coherent expression patterns. Within the selected aggregates, we

aimed to identify homogenous module sets exhibiting coherent

expression patterns. The top 10 modules within each aggregate,

ranked by average response, underwent hierarchical clustering for

both the MSP and PROMISSE cohorts independently. Consistent

co-clustering across both cohorts was the primary criterion for

defining a module set, ensuring that the identified patterns were not

cohort-specific artifacts but rather reflected underlying biological
Frontiers in Immunology 06
processes occurring across diverse populations. This approach has

previously been tested and is reported elsewhere (26).

Modules within an aggregate that consistently clustered

together in both cohorts were designated as a set. For instance, in

the case of aggregate A28, the largest cluster of co-clustering

modules in both cohorts was defined as set 1 (A28/S1), and

subsequent clusters as set 2 (A28/S2), and so on (Supplementary

Figure 1). To maintain clarity and facilitate interpretability, a

maximum of three module sets per aggregate was established.

This parameter was guided by the need to ensure that each set

represented a distinct biological signal without becoming unwieldy

for practical assay development.

In instances where a cluster was observed to form a distinct group

within a single cohort but did not align with clusters from the other

cohort, it was categorized separately to preserve the integrity of the

biological signal it may represent. Non-clustered modules, defined as

those not demonstrating a consistent pattern across datasets, were

aggregated into a non-co-clustered set, ensuring that these variable

patterns were still captured for potential biological insight.
Gene set selection
Representative genes were next selected for each of the selected

module sets in a staggered 3-step process factoring in (i) transcript

abundance in whole blood; (ii) degree of correlation with the

module average; and (iii) pregnancy biology. A maximum of four

representative genes were allowed for each of the module sets.

Step GS1: The first selection step took transcript abundance into

account. The median count of each gene was calculated. All genes

with a median count <50 were excluded in this step. This selection

could operate only for the MSP dataset since the PROMISSE study

dataset was generated using microarrays.

Step GS2: Second, correlation of the gene expression trajectories

of individual genes within a module set was compared to the

average expression value of the module set and linear correlation

coefficients (r) were generated for each gene (Supplementary

Figure 2). The genes with an “r” value <0.5 and/or p-value >0.05

in one or both the datasets (i.e., MSP and PROMISSE) were

excluded in this step. The average “r” value for a given gene in

both datasets was considered as its “R score”. For example, if the “r”

value of Gene A is 0.8 and 0.6 in MSP and PROMISSE datasets

respectively, then the “R score” for Gene A is 0.7.

Step GS3: Lastly, the relevance to pregnancy biology was

assessed for transcripts selected in the previous steps. Literature

profiles of individual genes were obtained by searching the

PubMed/Medline database using the following search algorithm:

“gene symbol [tiab] AND [pregnancy (tiab) OR pregnant (tiab) OR

gravid (tiab)]”. If the gene name appeared in the manuscript title a

“literature score” amounting to 2 points was given to that gene. If

the gene name appeared only in the abstract, then the literature

score for that gene was 1. For all other genes, the literature score was

0. The sum of literature score and R score determined the final

score. Genes with highest final scores in each module set were

selected for TFA panel design (Supplementary Figure 2).

To obtain the desired number of gene targets for validation

experiments (n=176 test and 8 housekeeping (HK) genes), at least
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one gene was added from each aggregate that was not yet

represented in the gene panel based on a similar process of

expression magnitude and literature profiling.

To select the 8 HK genes, (i) four genes were included as HK

genes in a generic 272 gene panel that we have designed and

implemented previously (27); (ii) two genes were selected based

on low coefficients of variation (%CV) in the MSP and PROMISSE

datasets; and (iii) the last two genes were selected based on earlier

publication reports.
Statistical analysis

The statistical environment R (version, 4.2.2; Vienna, Austria)

was used for all test statistics (28). The R package BloodGen3Module

was used for module repertoire analysis and visualization (23). The R

package Shiny was used to build the interactive online tool for

visualization and comparison of expression patterns (26).
Ethics statement

The de novo generated dataset (i.e., MSP) was derived from a

prospective study that was approved by the ethics committee of

the Faculty of Tropical Medicine, Mahidol University, Bangkok,

Thailand (reference no. TMEC 15–062, initial approval 1

December 2015), the Oxford Tropical Research Ethics

Committee (reference no. OxTREC: 33–15, initial approval 16

December 2015) and reviewed by the local Tak Province

Community Ethics Advisory Board (29). The study was

conducted in full conformity with the Declaration of Helsinki

and followed regulations of the ICH Guidelines for Good

Clinical Practice.

The publicly available dataset was derived from the PROMISSE

study, which was reviewed and approved by recruiting

organizations institutional review committees: Hospital for Special

Surgery Institutional Review Board (IRB), Intermountain Health

Care Urban Central Region IRB (Utah, USA), NYU School of

Medicine IRB, Oklahoma Medical Research Foundation IRB, The

Johns Hopkins Medical Institutions (Western IRB), The University

of Chicago IRB, Mt. Sinai Hospital’s Research Ethics Committee

(Toronto, Canada), and University of Utah IRB (20).
Results

Establishing reference blood
transcriptome datasets

The data-driven design for the transcriptional panel

incorporated the de novo MSP study dataset and the publicly

available PROMISEE dataset. The MSP study enrolled 430

pregnant women during their first trimester, recruited between

September 2016 and July 2018. For 88.6% (381/430) of these

women, an outcome was available (19). Fifteen women with

uneventful pregnancies were selected for inclusion in this
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secondary analysis, and 88 RNAseq profiles were generated from

samples collected via capillary finger stick sampling at 6 timepoints:

first trimester (n=15), second trimester (n=15), third trimester

(n=15), delivery (n=15), 1-month postpartum (n=13) and 3-

month postpartum (n=15). The resulting MSP dataset was

deposited in the NCBI GEO/SRA database (accession number

PRJNA898879) and is available for re-use by third parties.

The reference PROMISSE transcriptome dataset was established by

Hong et al. and deposited under the ID GSE108497 in the Gene

Expression Omnibus (20). Overall, 155 pregnant women were enrolled

in the PROMISSE study, of which 43 were healthy controls (i.e., non-

SLE). From the four predefined sampling timepoints, the following

numbers were available for each timepoint: estimated gestational age

(EGA) <16 weeks (n= 38), EGA16-23 weeks (n= 37), EGA 24-31 weeks

(n= 37), EGA 32-40 weeks (n= 35) and postpartum (n= 17). A

comparison of the basic characteristics of the two cohorts is

presented in Supplementary Table 2.

Thus we first obtained the reference transcriptome dataset that

included both, the de novo generated and publicly available dataset,

to inform the design of a targeted blood transcriptional profiling

assay for pregnancy monitoring.
Module repertoire analyses and high-level
interpretation of the pregnancy
transcriptome fingerprint

BloodGen3 module repertoire analyses were carried out using a

custom R package (see methods for details) and results made available

via an interactive web application (https://immunology-

research.shinyapps.io/BloodGen3_Pregnancy/#). Changes in

transcript abundance at different time points were mapped against a

fingerprint grid where BloodGen3 modules are arranged in rows based

on module aggregate membership (the first row corresponding to

modules comprised in module aggregate A1, the second row

corresponding to modules in aggregate A2, and so on). Fingerprint

grid maps for each data point can be accessed via the web application.

The pregnancy blood transcriptome fingerprint thus obtained will be

the object of more in depth investigations in a follow-up paper. Several

observations were made when examining the fingerprint grid map,

from a high-level perspective. First, fingerprint grid maps show

extensive changes in transcript abundance throughout pregnancy

when compared to the postpartum controls (Figure 3A). These

changes are already evident in the first trimester of pregnancy

(Supplementary Figure 3) supporting previous reports that highly

dynamic immunological changes are present in all stages of

pregnancy (2). Second, analogous expression patterns were noticed

when comparing data from the low-resource (MSP dataset) to the

high-income setting (PROMISSE dataset), suggesting a corresponding

immunophysiology in both populations (Supplementary Figure 3).

Third, changes in aggregates A1-A3 were observed for modules

associated with the lymphoid compartment. In aggregate A1, this

includes modules M15.33, M12.6, M15.38 and M14.42 that are

associated with T-cells and modules M13.27, M15.4, M16.78, M13.18

and M12.8 that are associated with B-cells. These modules exhibited a

decrease in transcript abundance compared to the postpartum control.
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When focusing on a more granular level of the module repertoire,

module M12.6 (from aggregate A1) associated with T-cell functions, a

steady decline from the first trimester through to delivery was noted,

especially in the MSP cohort. The extent of the decrease in transcript

abundance ofmoduleM12.6was in the -40% range, which corroborates

that the abundance of the transcripts constituting M12.6 is lower when

compared to non-pregnant controls (Figure 3B). Fourth, gradual

increase in expression of module M16.64 (aggregate A31) was noted

from the first to the third trimester of pregnancy. This observation is

morepronounced in theMSPdatasetwhencompared to thePROMISSE

dataset. M16.64 is broadly associated with platelet and prostaglandin

activity, whereas prostaglandins play an important role at later stages in

pregnancy for cervical ripeningand inductionof labour (Figure3C) (30).

Fifth, robust changes were observed for aggregates A33 and A35, both

associated with inflammation. Detailed examination of aggregates A33

and A35 from the MSP dataset, shows that the number of modules in

which 100%of the comprising genes (i.e., red colorwith the highest level

of saturation) are upregulated, increases from one in the first trimester

(moduleM14.19) to 8 in the second (modulesM13.16,M14.19,M14.26,

M14.50, M14.66, M14.76, M14.74 and M15.78) and third (modules

M13.16, M14.19, M14.26, M14.50, M14.76, M15.90, M14.74 and

M15.78) trimester (Figure 3D).
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Selection of module aggregates and
identification of coherent sets of
pregnancy-relevant modules

To select a panel of relevant genes from a pool of thousands of

candidate genes, the first filter (see “MA selection”) retained 22

module aggregates, for which at least one constitutive module met a

cut-off of 10% for the average response measured across all MSP

samples. These aggregates (Figure 4) were used for subsequent

selection within each aggregate of homogeneous module sets (“MS

selection”). Hierarchical clustering was employed to group the top

10 modules (ranked by average % response) for both the MSP and

PROMISSE cohorts. Modules from a given aggregate were selected

when consistent co-clustering was observed in both cohorts. For

instance, as illustrated in Supplementary Figure 1, the largest

number of modules found to co-cluster in both the MSP and

PROMISSE cohorts for aggregate A28 was assigned to set 1 for

this aggregate (noted as A28/S1): these are modules M15.65 and

M13.17. In turn, one module was assigned to set 2 (A28/S2): M8.3.

The rest of the modules that did not display consistent co-clustering

patterns were included in a third set (A28/NS: M15.86, M10.1 and

M15.127). After the first filter, 46 module sets were retained.
A

B DC

FIGURE 3

Fingerprint grid plots and functional annotations. (A) Fingerprint grid plot comparing the third trimester gene expression pattern to the postpartum
control. Red spots showing increase in transcript abundance and blue spot decreases. The position of the modules on the grid is fixed. The black
boxes indicate modules discussed in detail below. (B) A steady decrease in T-cell function as represented by module M12.6 (position A1.28 on the
grid map) is seen throughout pregnancy. (C) An increase of prostaglandins from the first to the third trimester is seen in module M16.64 (position
A31.4 on the grid map). (D) Aggregates associated with inflammation, represented by module M14.50 (position A33.6 on the grid map), show a
steady increase from the first trimester to the delivery. 1PP, 1-month postpartum; 3PP, 3-month postpartum; D, delivery; MSP, molecular signature in
pregnancy; ns, non-significant; T1, first trimester; T2, second trimester; T3, third trimester. * p<0.1, ** p<0.05, **** p<0.0001.
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Selection of genes and design of a
targeted panel

The last filter at the gene-level (“GS selection”), involved a

staggered 3-step screening process, which identified a maximum of

four genes per module set. This approach was applied to the pool of

46 pregnancy module sets delineated earlier that encompass 2,530

gene transcripts. Of these, 894 (35.3%) were removed in the first

GS1 selection process, as they exhibited a median count smaller

than 50. In the second step (GS2), the correlation of each individual

gene with the mean of their respective module set was assessed

using correlation plots. Correlation analyses compared expression

trajectories of selected genes over the course of pregnancy to the

average of the module set containing the corresponding gene

(Figure 5). This step excluded 1,788 genes, which had r values

<0.5 or p-values >0.05. For the remaining 742 genes, literature

scores were generated which permitted the prioritization of

candidates based on their degree of association with pregnancy in

the biomedical literature (GS3: see methods as well as

Supplementary Figure 2 for details). This final knowledge-driven

step identified 152 genes, which were then selected after ranking

according to literature and correlation scores (i.e., with the GS

selection step eliminating 94% of the 2,530 potential candidates).

Figure 5 depicts a graphical summary of the number of genes

included/excluded at each step of the gene selection process. The
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maximum allowable number of four genes per module set was

selected from 33 module sets (132 genes), three genes were selected

from 6 module sets (18 genes) and two genes from one module set

(2 genes), resulting in 152 target genes (Figure 4). For 6 module sets,

no genes were identified as the defined criteria were not met. Our

intent is to implement this assay on the fluidigm BioMark high

throughput microfluidics PCR platform. The format of the

microfluidics chip used by this instrument supports simultaneous

measurement of the abundance for 96 transcripts. Hence, 24

additional targets were selected, along with 8 HK genes to raise

the number of transcripts included in this pregnancy blood

transcriptome fingerprinting assay to 184. One representative

gene was selected for each aggregate excluded in the first step

(n=16), one for each module set for which no target gene was

identified (n=6) and two genes represented in module set A38/1

were added, i.e., CEACAM6 and MPO (Figure 4).

As expected, there was a strong correlation observed between

the average expression of all genes within a module and the

expression patterns of the selected genes from that module

(Supplementary Figure 4). The genes selected from aggregates A1,

A2, A3, A4, A5, A6, A15, and A29 exhibited a linear

downregulation from the first trimester to delivery, followed by a

marked upregulation postpartum. Conversely, genes from

aggregates A28, A30, A31, A32, A33, A34, A35, A36, A37, and

A38 showed an upregulation trend, peaking in the third trimester.
Aggregate Set 1 Set 2 Set 3
Gene 1 Gene 2 Gene 3 Gene 4 Gene 1 Gene 2 Gene 3 Gene 4 Gene 1 Gene 2 Gene 3 Gene 4

A1 CD5 CD40LG IL7R ITGB7 GNG7 CXCR5 CD19 CD79B
A2 NIPA1 ATMIN SBDS GLT8D1 FASLG EOMES CLIC3 PRF1 CYP2R1 ANXA6 SUPV3L1 MAGEH1
A3 TRAF5 PUS1 PPP1R13B IL23A
A4 ENG LGMN DPP3 SMPD1 KIR3DL2 TYSND1 UBTF PDZD4 TUBGCP6
A5 TNFRSF21 OGG1 SNX25 SLC25A42 NR3C2
A6 IDE UAP1 GFPT1 ATF1 TSPAN3 LCK NCL GIPC1
A7 ALDH1A1 RASSF4 RNH1 NAGA
A8 CDK2
A9 LAIR1

A10 ALOX15
A11 S100A8
A12 HUWE1
A13 SASH1
A14 ERBB4
A15 ZNF248 FCRL5 ADAM28
A16 APOL1
A17 EMP1
A18 BRD4
A19 MAS1
A20 IGF2BP1
A21 CASP3
A22 PLK1
A23 SERPINB7
A24 CACYBP BCCIP PSMG1 SNRPC
A25 CD200R1
A26 ALDH2
A27 CCR5 STMN1 MCM2 PRC1 FEN1
A28 IFI16 NOD2 TAP1 CASP1 EPSTI1 OASL HES4 MX1 OAS1 MOV10 GBP1 STAT1
A29 KLF12 NR2C1 SLFN13 NFATC2IP NLRP1
A30 RAP1A VPS13C RASA2 NFAT5 IFNAR2 RAD21
A31 HSPA6 PTGS2 NDEL1 MME DAB2 MYLK PEAR1 MEIS1
A32 CD44 ARFGEF1 SYNJ1 PCMTD1 TNPO1 ARID4A PRKAA1 HELZ
A33 SNX10 CD46 PECAM1 UHRF1BP1L IL17RA JUNB CFLAR FRAT1 RTN3 MEGF9 NLRP12 PPP1R3B
A34 PTGS1 HIST1H3H GP6 PGRMC1 TUBB1 TSC22D1 PTCRA SPARC F13A1 ITGB3 ITGB5
A35 AQP9 CREB5 NLRC4 TLR8 LITAF C5AR1 SERPINA1 S100A11 CR1 TIFA SLC26A8 KREMEN1
A36 GNA12 SLC14A1 ANK1 BPGM ACP1
A37 HAGH TSPAN5 ADIPOR1 FOXO4 FURIN GCLC PIM1 SLC4A1 LGALS3 PRDX2 BCL2L1
A38 LTF DEFA3 CEACAM6 MPO SLC7A5 WDR45 TUBB2A

Legend
Included Module 
Aggregates (n=22)

Excluded Module 
Aggregates (n=16)

Genes selected via the 
data-driven selec�on 
process (n=152)

One representa�ve gene 
from each excluded 
Module Aggregate (n=16)

One representa�ve gene 
from each selected Module 
Set for which no gene 
qualified ini�ally

Addi�onal genes selected 
to reach the target number 
(n=2)

FIGURE 4

List of genes included in the targeted panel. According to the desired number (i.e., 176 genes and 8 housekeeping genes), target genes were
selected following the data-driven selection process described in the Method section. The initially identified 152 genes were complemented by
adding (i) one representative gene from each Module Aggregate that was excluded in the first step (n=16), (ii) one gene from the 6 Module Sets for
which no gene qualified initially (n=6) and (iii) additional genes from Module Sets for which the maximum number of allowed genes was not
reached (n=2).
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Discussion

There are an estimated 213 million pregnancies annually

worldwide (31). In absolute numbers most pregnancies occur in

low- and middle-income countries (LMICs) (32). Various

complications can affect pregnancy outcomes and lead to maternal

as well as fetal morbidity and mortality. Combined with an often

lacking of adequate ANC, pregnant women from LMICs are at higher

risk of adverse pregnancy outcomes. Simple and cost-effective tools

that enable universal pregnancy monitoring and support detection of

potential deviations from the expected norm are needed. Pregnant

womenwith a conspicuous screening result could be kept under closer

observation, referred to specialists and/or tertiary hospitals with

advanced neonatal care facilities.

The exploratory work presented here aimed to establish a

comprehensive panel of whole blood gene transcripts designed to

inform about the state of the pregnancy and enable monitoring for

potential complications. To determine whether a gene expression

signature is altered from the expected physiological pattern, a

baseline must be established. This can only be done by examining

uneventful pregnancies without pregnancy-associated complications

and comparing the genome-wide gene expression patterns to non-

pregnant controls. Comparison of physiological pregnancy-associated

changes to their own non-pregnant control reduces bias introduced by

inter-individual differences in expression patterns. In both datasets

employed in this study, pregnant women served as their own, non-

pregnant control after successful delivery. Combining datasets from

two distinct populations from two different socioeconomic and

environmental settings, increased the power of the analysis and

broadened interpretation and generalizability of the findings.

Effectively, transcriptome profiling measures the abundance of

tens of thousands of transcripts and interpretations down to individual

gene levels are strenuous and limit functional interpretation

substantially. Hence, selecting panels comprising only hundreds of

transcripts from this pool is a challenge. Using selection strategies

based on lists of differentially expressed genes tend to bias selection
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towards the most prominent signatures (with multiple genes from the

same signature displaying the highest fold changes and lowest p-

values). We employed a recently characterized fixed blood

transcriptional module repertoire as a framework for the selection of

a transcript panel designed for pregnancy monitoring. The 382

modules forming the BloodGen3 repertoire were constructed based

on co-expression patterns observed across a collection of 16 reference

cohorts, representing a wide range of pathologies and physiological

states, including pregnancy (21). The 382 BloodGen3 modules are

distributed across 38 “module aggregates”, which are constitutedbased

on co-expression patterns across modules, and hence, providing a

second level of dimension reduction (21).

The fixed, reusable blood transcriptional module repertoire

BloodGen3 has two advantages. First, it permits reduction of

dimensions. Second, it allows inference on biological functions of

mRNAproducts.Moreover, it is a robust tool that is under continuous

review and development, and has been used to analyse and interpret

gene expression studies in other pathophysiological states (26, 33).

The fixed grid plots allow grasping major differences between

different populations or sampling timepoints at a glance.

Accordingly, adaptations in the maternal immune system that are

required to host the human embryo can be demonstrated and

investigated throughout pregnancy. These adjustments in the

immune system start at the time when trophoblast cells breach

the epithelial lining of the decidua and create an interface between

the maternal immune system and fetal antigens (2). The

understanding of the underlying immune-physiological changes

in pregnancy are still under investigation. However, whole blood

gene expression patterns can be considered as unbiased, as no

preselection of parameters of interest is performed.

The data-driven selection of whole blood transcript panels for

pregnancy monitoring presented here, was based on two blood

transcriptome reference datasets from a low-resource (MSP) and

high-income setting (PROMISSE) (18, 20). Gene expression profiles

of uneventful, term pregnancies were generated at multiple time

points during pregnancy as well as postpartum and systematically
Stage 1 Stage 2 Stage 3

Number of Genes Excluded/selected in each Stage

Total=2530
894 Excluded
1636 Included

Total=2530

1788 Excluded
742 Included

Total=2530
1788 Excluded
626 L_Score=0
63 L_Score=1
53 L_Score=2

Final Panel

FIGURE 5

Selection of representative genes. Following Module Aggregate and Module Set delineation, number of genes excluded in the gene selection
process at each step. At the outset 2530 genes were contained in the 46 selected Module Sets. Following the staggered 3-step selection process,
152 gene were left.
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interpreted for selection of relevant genes. Selecting representative

genes may facilitate translation from bench to bedside as a small

number of genes could be printed on a chip or a targeted rtPCRbattery

could be developed, clearing the path for systematic application at

lower cost. Testing the robustness of the preliminary selected gene

panel is paramount; hence a pragmatic approach led to the

determination of the sample size of target genes, which was set to

176 test genes and 8 HK genes. This was based on the fact that the

Fluidigm 96.96 Dynamic Array™ test chip (Standard BioTools Inc.,

San Francisco, USA) will be used to run validation experiments and

one chip has 96 wells, 88 test samples and 8HK genes can be analyzed.

Since two chips will be used for each sample in the validation process,

there is space for 176 target genes and 8 HK genes (identical HK genes

will be used on both plates). It is expected that the number of targets

may be reduced following validation experiments. Downsizing of the

target panels may prove beneficial for translation into clinical service

and therefore increase availability in LMICs, as more widely available

real-time PCR systems could be used in the field.

The optimal number of sampling timepoints remains to be

determined. The work presented here is based on the analysis of

samples taken in each trimester; however, in the overheadMSP cohort

sampling frequency was much higher (i.e., 2-weekly). Whether

sampling in each trimester or a trade-off between a denser sampling

schedule [e.g., at each of the 8 recommended ANC visits by theWorld

HealthOrganization (WHO) (34)] but less gene targets providesmore

accurate results remains to be determined.

Lastly, while the main objective of this manuscript was to lay

out the selection process for a gene panel for potential pregnancy

monitoring, some functional annotations (e.g., downregulation of

the lymphoid compartment, steady increase of signatures associated

with inflammation) are highlighted. A detailed assessment and

interpretation of temporal changes throughout pregnancy and at

delivery is in preparation.

The main objective of identifying a panel of genes for potential

pregnancy monitoring is based on a gene selection process that has

certain methodological limitations. The assumption of co-

expression implies positive correlations within gene sets, however,

while a common practice, it may not fully capture the complexity of

gene regulatory networks. Additionally, our criteria for module

aggregate and set selection were influenced by practical constraints.

The integration of quantitative expression data with qualitative

literature-based relevance introduces potential biases. The literature

scoring system, designed to reflect the gene’s established relevance

in pregnancy biology, may inadvertently favor well-characterized

genes over less-known yet potentially significant ones. Furthermore,

the method of combining literature scores with R scores, intended

to balance empirical evidence with established biological

knowledge, was not optimized through a formal analytical

framework. We recognize that this aspect of the methodology as a

limitation that could be refined in future studies.
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