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Medicine, Cheonan, Republic of Korea, 21Department of Neurology, Korea University Anam Hospital,
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Background: Myelin oligodendrocyte glycoprotein antibody (MOG)

immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and

pathophysiological features that are similar to but distinct from those of

aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum

disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1

subtype, can both activate the complement system. Therefore, we investigated

whether the levels of serum complement components, regulators, and activation
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products differ between MOGAD and AQP4-NMOSD, and if complement

analytes can be utilized to differentiate between these diseases.

Methods: The sera of patients with MOGAD (from during an attack and

remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17),

and healthy controls (N=38) were analyzed for C1q-binding circulating immune

complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble

terminal complement complex (sC5b-9).

Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the

MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9

was increased only in the NMOSD group. In MOGAD, there were no differences in

the concentrations of complement analytes based on disease status. However,

within AQP4-NMOSD, remission samples indicated a higher C1-INH level than

attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications

during attack showed lower levels of iC3b (p<0.001) and higher levels of C3

(p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on

medication. Among patients not on medication at the time of attack sampling,

serum MOG-IgG cell-based assay (CBA) score had a positive correlation with

iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049,

respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH

level (rho=0.836, p=0.003).

Conclusions: This study indicates a higher prominence of complement pathway

activation and subsequent C3 degradation in MOGAD compared to AQP4-

NMOSD. On the other hand, the production of terminal complement

complexes (TCC) was found to be more substantial in AQP4-NMOSD than in

MOGAD. These findings suggest a strong regulation of the complement system,

implying its potential involvement in the pathogenesis of MOGAD through

mechanisms that extend beyond TCC formation.
KEYWORDS

myelin oligodendrocyte glycoprotein, neuromyelitis optica spectrum disorder,
complement, terminal complement complex (sC5b-9), classical complement cascade,
alternative complement activity
Introduction

Neuromyelitis optica spectrum disorders (NMOSD) are chronic

inflammatory diseases of the central nervous system (CNS) that

preferentially affects the optic nerve, spinal cord, and certain brain

regions. The discovery of pathogenic antibodies that target

aquaporin-4 (AQP4-immunoglobulin G [IgG]) facilitated the

recognition of AQP4-IgG positive NMOSD (AQP4-NMOSD)

as a distinct disease entity (1). Antibodies against myelin

oligodendrocyte glycoprotein (MOG-IgG) were found more

recently in a group of patients with demyelinating disease whose

clinical features partially overlap with NMOSD and a new disease

entity associated with MOG-IgG, called MOG antibody-associated

disease (MOGAD), was suggested (2). The clinical phenotypes of
02
MOGAD overlap with those of NMOSD but include a wider range of

presenting phenotypes including acute disseminated encephalomyelitis

(ADEM), optic neuritis, myelitis, or demyelinating brain lesions;

however, its clinical course and prognosis differ from those of

AQP4-NMOSD (2, 3).

AQP4 is a major water channel protein in the CNS that is highly

expressed in the astrocytic foot processes. Complement-dependent

AQP4-IgG-mediated cytotoxicity is a major mechanism of astrocyte

damage with secondary oligodendrocyte loss, and these lesions are

associated with perivascular deposition of activated complements

and inflammatory cell infiltration (4). On the other hand, it has not

yet been determined how MOG-IgG contributes to MOGAD

pathogenesis. MOG is a minor myelin protein predominantly

localized at the outermost layer of the myelin sheaths and
frontiersin.org
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oligodendrocyte membranes (5). Recent MOGAD pathologic

studies found that ADEM-like perivenous demyelination was

predominant and that early-stage lesions included MOG-

dominant myelin loss with less oligodendrocyte damage than in

AQP4-NMOSD (6). Activated complement and IgG deposition

were also found in the active white-matter lesions of MOGAD;

however, the frequency and intensity of staining was much lower

than that in AQP4-NMOSD, especially in its early stage (6, 7).

These findings suggest that the clinical significance of immune

response including complement system activation differ between

the two diseases. The complexity arises from the blood complement

component levels’ potential to serve as indicators of CNS

pathobiology, particularly in the context of relapsing disorders.

Nevertheless, since antibody production lies within the peripheral

circulation, investigating the events occurring there holds the

promise of offering valuable insights into the pathophysiology.

In this study we aimed to elucidate differences in complement

activation between MOGAD and AQP4-NMOSD by comparing

serum levels of complement components, regulators, and

activation products.
Materials and methods

We collected the sera and clinical data of patients with AQP4-

NMOSD (8) or MOGAD (9) from 12 tertiary hospitals that

participated in the Korean nationwide registry for NMOSD

between December 2014 and December 2017. We included 52

NMOSD serum specimens (35 attack and 17 remission samples)

and 28 MOGAD serum specimens (19 attack and 9 remission

samples). Attack samples were defined as those drawn within 30

days of an attack and remission samples were taken more than 90

days after an attack. Patients were categorized as ‘on medication’ if

receiving treatment with steroids or other immunosuppressive

agents, irrespective of preventive or acute therapy, at the time of

sampling; otherwise, they were labeled as ‘not on medication’. Blood

sampling was performed prior to plasmapheresis or intravenous

immunoglobulin in all cases of attack samples. Serum samples from

38 healthy controls (HC) who did not have history of acute or

chronic disease and had not been taking any medication during the

previous 3 months were included as a control group. Control

serums were obtained from a single hospital. Only one blood

sample was obtained from each participant in this study. Whole

blood was collected into serum separating tube and centrifuged for

10 minutes at 2000 rpm. All samples were stored at −80°C within 4

hours after blood sampling prior to the analysis. We kept serum

samples on ice during pre-analytical sample handling and avoided

freeze-thawing.

AQP4-IgG was evaluated using a cell-based indirect

immunofluorescence assay (10). MOG-IgG was determined using

an in-house live cell-based immunofluorescence assay (CBA) with

an antihuman IgG1-Fc secondary antibody (11). Briefly, human

embryonic kidney 293 (HEK293) cells (Korean Cell Line Bank,

Seoul, South Korea) were transfected with plasmids encoding

human full-length a1-MOG using Lipofectamine 3000
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(Invitrogen, Carlsbad, CA, USA). The cells were incubated with

patient sera (1:20 dilution) for 1 hour at room temperature. MOG-

IgG was detected using mouse antihuman IgG1-Fc antibody

conjugated with Alexa Fluor 488 (Invitrogen) in 1:500 dilution.

Both assays used a semiquantitative scoring system: 0, no binding;

1, low-level binding; and 2–4, increasingly specific binding. A score

of ≥1 was considered positive.
Analysis of serum complement levels

The analysis included six complement analytes: C1q-binding

circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH),

factor H (FH), C3, iC3b, and soluble terminal complement complex

(TCC, sC5b-9). The CIC-C1q level represents the amount of

complement fixing CIC that binds to immobilized human C1q

protein. C1-INH and FH are the main regulators of the classical and

alternative pathways, respectively. C3 plays a central role in

complement system activation. Activation of either complement

pathway results in the assembly of C3 convertase enzymes that

cleave C3 into two fragments: C3a and C3b. iC3b is an inactivated

form of C3b that is formed by the two-site cleavage of C3b by factor

I with the cooperation of FH or complement receptor type 1 as

cofactors. Soluble C5b-9 is nonlytic TCC and is formed when

immune complexes at the C5b-7 assembly stage bind to naturally

occurring regulatory serum proteins (e.g., protein S [Q8IXD4]).

The concentrations of CIC-C1q (MicroVue CIC-C1q EIA,

Quidel, San Diego, CA, USA), C1-INH (MicroVue C1 Inhibitor

Plus EIA, Quidel), FH (ab252359, Abcam, Cambridge, MA, USA),

C3 (ab108822, Abcam), iC3b (MicroVue iC3b EIA, Quidel), and

sC5b-9 (MicroVue sC5b-9 Plus EIA, Quidel) were assessed using

commercially available enzyme immunoassays according to the

instructions of the manufacturer.

The reference ranges for C3 and FH assays were not available,

but mean levels among ten healthy adults were provided by the

manufacturer: 1177 mg/ml for C3 and 288 mg/ml (range=156.1–

466.5 mg/ml) for FH. For CIC-C1q, levels of at least 4.0 µg/ml are

considered positive for significant levels of CIC. C1-INH

concentrations less than or equal to 40% mean normal are

considered significantly lower than normal (borderline, 41%–67%

mean normal; normal, ≥68% mean normal). The reference values

for iC3b and sC5b-9 assays were not provided.
Statistical analysis

Group comparisons were performed using one-way ANOVA

with Bonferroni post-hoc test or the Kruskal-Wallis test with post-

hoc Dunn’s test for continuous variables and the chi-square test for

categorical variables. Correlations among concentrations of each

complement analyte and the CBA scores of either AQP4-IgG or

MOG-IgG were evaluated using Pearson or Spearman’s correlation

coefficients. IBM SPSS Statistics (version 22) and R software

(version 4.1.0) were used for statistical analysis and data

presentation. The criterion for significance was p<0.05.
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Results

The demographics and clinical features in the MOGAD (N=28),

AQP4-NMOSD (N=53), and HC (N=38) groups are listed in Table 1.

The NMOSD group was older than the HC group (p=0.002) and

included more females than the MOGAD (65% vs 54%, p=0.013) and

HC groups (65% vs 61%, p=0.019). The mean age and sex ratio did

not differ between theMOGAD andHC groups. The disease duration

was longer (median [IQR]=77 [11-182] months vs 3 [0.5-33] months,

p<0.001) and disabilities were more severe (median Expanded

Disability Status Scale [EDSS] score=2.5 vs 1.0, p=0.005) in the

NMOSD group than in the MOGAD group. Three patients with

NMOSD had coexisting autoimmune diseases, with two diagnosed

with Sjogren syndrome and one with systemic lupus erythematosus at

the time of blood sampling.

Among attack samples, more MOGAD samples were taken during

optic nerve relapses (84% vs 31%, p<0.001) while more NMOSD

samples were taken during spinal cord relapses (16% vs 66%, p<0.001)

(Table 1). The proportion of patients under steroid treatment during an

attack was not significantly different between the groups, but there were

fewer patients who received immunosuppressive treatments (IS) in

the MOGAD group than in the NMOSD group (16% vs 49%,

p=0.017). Among attack samples on medication, 33% (N=3/9) of

MOGAD patients and 41% (N=9/22) of NMOSD patients were

taking oral steroids before experiencing a relapse. Additionally,

blood was drawn either during or after high-dose intravenous

methylprednisolone treatment in 78% (N=7/9) of MOGAD patients

and 41% (N=9/22) of NMOSD patients. During the remission

period, most patients were on medication, with 78% (N=7/9) in the

MOGAD group and 88% (N=15/17) in the NMOSD group. At the

time of relapse sampling, four NMOSD patients, previously

seropositive for AQP4-IgG, showed seronegativity (CBA score of

0 or 0.5). In contrast, all MOGAD patients maintained seropositivity

for MOG-IgG (CBA score of more than 1).
Differences in complement analyte levels
among MOGAD, NMOSD, and HC groups

During attacks
There were higher levels of C1-INH (106.5% vs 89.6%, p<0.001)

and iC3b (34.8 mg/ml vs 9.3 mg/ml, p<0.001) and lower levels of

CIC-C1q (84.9 mg/ml vs 143.4 mg/ml, p=0.012) in the MOGAD

group than in the HC group, while the levels of C3, FH, and sC5b-9

did not differ between these groups. There were higher levels of

iC3b (26.1 mg/ml vs 9.3 mg/ml, p<0.001) and sC5b-9 (1516.6 ng/ml

vs 838.8 ng/ml, p<0.001) in the NMOSD group than in the HC

group, while the levels of CIC-C1q, C1-INH, FH and C3 did not

differ between these groups (Table 1; Figure 1A). The level of sC5b-

9 was significantly higher (p=0.006) in the NMOSD group than in

the MOGAD group, while C1-INH (p<0.001), FH (p<0.001), and

iC3b (p<0.001) were significantly higher in the MOGAD group than

in the NMOSD group (Figure 1A).
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During remission
There were higher levels of C1-INH (103.0% vs 89.6%, p=0.002)

and iC3b (34.5 mg/ml vs 9.3 mg/ml, p<0.001) in the MOGAD group

than in the HC group, while the levels of CIC-C1q, C1-INH, FH,

and C3 did not differ between these groups. There were higher levels

of C1-INH (113.6% vs 89.6%, p<0.001) and iC3b (21.6 mg/ml vs 9.3

mg/ml, p<0.001) and lower levels of FH (407.4 mg/ml vs 488.0 mg/ml,

p=0.027) in the NMOSD group than in the HC group, while the

levels of CIC-C1q and C3 did not differ between these groups

(Table 1; Figure 1B). The levels of FH (p=0.013) and iC3b (p<0.001)

were significantly higher in the MOGAD group than in the

NMOSD group (Figure 1B).

Attack vs remission
Within the NMOSD group, the C1-INH level was lower during

an attack than in remission (98.8% vs 113.6%, p=0.003). However,

in MOGAD, there were no differences in the concentrations of

complement components, regulators, or activation products based

on disease status.
Subgroup analyses within the MOGAD or
NMOSD group, focusing on the medication
status at the time of attack sampling

In the MOGAD group, 10 patients were not on medication,

while 6 were on steroids alone, 1 on IS other than steroids, and 2 on

a combination of both. Notably, no significant differences were

observed in complement analyte levels, demographics, and

clinical characteristics between MOGAD patients on and not on

medication (Supplementary Table 1).

In the NMOSD group, 13 patients were not on medication, while

5, 5, and 12 patients were respectively on steroids alone, IS other than

steroids, and a combination of both. Patients on medication showed

lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-

INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on

medication (Supplementary Table 1). In demographics and clinical

characteristics, NMOSD patients on medication showed no

significant differences when compared to those not on medication,

except for a longer disease duration in the former group (97.68 [6.62-

395.71] months vs 17.37 [1.22-60.52] months, p=0.026).
Differences in complement analyte levels
during attacks among MOGAD, NMOSD,
and HC groups: subgroup analyses based
on the medication status

MOGAD patients not on medication showed higher C1-INH and

iC3b levels (both, p<0.001) and similar CIC-C1q, FH, C3, and sC5b-9

levels compared to HC (Figure 2A). NMOSD patients not on

medication showed lower C3 level (p=0.028) and higher iC3b level

(p<0.001) compared to HC, while CIC-C1q, C1-INH, FH and sC5b-9
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TABLE 1 Demographic, clinical features, and serum levels of complement components and regulators in study subjects.

Controls p value

(N = 38) Total* Attack* Remission*
MOGAD NMOSD

A vs R A vs R

32.2 ± 4.72 0.002 0.001 0.054 0.266 0.222

23 (60.5) 0.021 0.030 0.443 0.907 0.409

N/A <0.001 <0.001 0.148 <0.001 0.181

N/A 0.943 0.111 0.066 0.016 0.170

N/A

0.011 <0.001 0.357 1.000 0.476

<0.001 <0.001 <0.001 0.530 0.770

0.924 0.181 1.000 1.000 0.494

N/A 0.005 0.032 0.039 0.562 0.380

N/A

0.451 0.649 0.500 0.657 0.918

0.041 0.017 1.000 0.001 0.020

N/A N/A N/A N/A 0.693 0.776

43.39 ± 122.24 <0.001 <0.001 <0.001 0.844 0.539

89.65 ± 5.99 <0.001 <0.001 <0.001 0.402 0.003

981.94 ± 116.21 0.921 0.423 0.141 0.128 0.629

9.30 ± 5.23 <0.001 <0.001 <0.001 0.875 0.062

87.97 ± 124.53 <0.001 0.001 0.027 0.275 0.480

38.77 ± 678.97 0.001 0.001 N/A N/A N/A

ion; N, number; EDSS, expanded disability status scale; IS, immunosuppressants; CIC-C1q,
D and anti-aquaporin4 [AQP4] antibody for NMOSD); N/A, not applicable.

olate mofetil (N=2, 11.8%).
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MOGAD NMOSD

Total (N = 28)
During attack

(N = 19)
In remission

(N = 9)
Total
(N= 52)

During attack
(N = 35)

In remission
(N = 17)

Age, years 36.0 ± 15.3 37.8 ± 18.5 30.3 ± 9.3 44.3 ± 16.2 44.2 ± 16.6 38.2 ± 15.5

Female, N (%) 16 (57.1) 11 (67.9) 5 (55.6) 43 (82.7) 30 (85.7) 4 (23.5)

Disease duration (month),
median (range)

3.22
(0.50-32.76)

0.77
(0.23-4.57)

51.4
(29.33-101.39)

76.68
(11.33-182.34)

53.93
(6.00-171.86)

82.27
(41.01-255.49)

Attack number,
median (range)

3 (1-5) 2 (1-4) 5 (2.5-8) 2 (1-5) 3 (2-5) 2 (1-4)

Attack site(s)†

Optic nerve 24 (85.7) 16 (84.2) 8 (88.9) 22 (42.3) 11 (31.4) 11 (64.7)

Spinal cord 12 (42.9) 3 (15.8) 9 (100) 36 (69.2) 23 (65.7) 13 (76.5)

Brain 11 (39.3) 7 (36.8) 4 (44.4) 14 (26.9) 6 (17.1) 8 (47.1)

EDSS‡ 1.0 (0.0-2.0) 1.0 (0.0-3.0) 1.0 (0.0-2.0) 2.5 (1.25-3.75) 2.75 (1.125-4.0) 2.0 (1.25-3.0)

Use of drugs (%) 16 (57.1) 9 (47.4) 7 (77.8) 37 (71.2) 22 (62.9) 15 (88.2)

prednisolone 11 (39.3) 8 (42.1) 3 (33.3) 25 (48.1) 17 (48.6) 8 (47.1)

Other IS 10 (35.7) 3 (15.8)§ 7 (77.8)§§ 30 (57.7) 17 (48.6)§ 13 (76.5)§§

CBA scores of Ab 3.0 (2.0-4.0) 3.0 (2.0-4.0) 3.0 (3.0-3.5) 2.5 (1.0-3.0) ¶ 2.5 (1.0-3.0) ¶ 2.0 (2.0-3.0)¶

Complements & Regulators

CIC-C1q (mg/ml) 84.86 ± 75.69 84.86 ± 75.69 122.01 ± 144.19 111.54 ±6.23 109.71 ± 58.25 115.32 ± 53.35

C1-INH (%) 105.36 ± 10.23 106.50 ± 10.57 102.95 ± 9.61 103.62 ± 21.14 98.78 ± 16.45 113.59 ± 26.32

C3 (mg/ml) 2030.00 ± 837.30 2196.59 ± 849.11 1678.31 ± 734.07 1972.75 691.94 2005.6 ± 746.47 1905.08 ± 578.63 1

iC3b (mg/ml) 34.70 ± 6.68 34.81 ± 6.31 34.45 ± 7.80 24.65 ± 8.31 26.14 ± 8.31 21.57 ± 7.63

FH (mg/ml) 551.27 ± 117.54 563.07 ± 129.45 526.35 ± 88.85 428.94 ±100.08 439.39 ± 91.37 407.41 ± 115.97

sC5b-9 (ng/ml) 889.59 ± 549.03 889.59 ± 549.03 N/A 1516.63 ± 933.82 1516.63 ± 933.82 N/A

MOGAD, myelin oligodendrocyte glycoprotein [MOG] antibody-associated disease; NMOSD, neuromyelitis optica spectrum disorder; HC, heathy control; A, attack; R, remiss
circulating C1q-binding immune complex; C1-INH, C1 inhibitor; FH, factor H; sC5b-9, soluble terminal complement complex; Ab, antibody (anti-MOG antibody for MOGA
*comparison among NMOSD, MOGAD, and HC.
†at the time of sampling if bloods were drawn during an attack period or during the disease course if bloods were drawn during remission.
‡The time interval between EDSS scoring and sampling was within 7 days for attack and 1 month for remission.
§For MOGAD, azathioprine (N=1, 5.3%) and mycophenolate mofetil (N=2, 10.5%) and, for NMOSD, azathioprine (N=13, 37.2%) and mycophenolate mofetil (N=4, 11.4%).
§§For MOGAD, azathioprine (N=3, 33.3%), mycophenolate mofetil (N=3, 33.3%), and tacrolimus (N=1, 11.1%), and, for NMOSD, azathioprine (N=11, 64.7%) and mycophe
¶In NMOSD, levels of anti-AQP4 antibody at the time of assay were obtainable in 20 (during attack) and 7 (in remission) patients, respectively.
1

4

8

n

https://doi.org/10.3389/fimmu.2024.1320094
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cho et al. 10.3389/fimmu.2024.1320094
levels did not differ between these groups (Figure 2A). Among patient

groups not onmedication, the MOGAD group showed a significantly

higher C1-INH level (p<0.001) compared to the NMOSD group.

There were no significant differences in CIC-C1q, FH, C3, iC3b, and

sC5b-9 levels between the two disease groups.

MOGAD patients on medication showed lower CIC-C1q level

(p<0.001) and higher C1-INH (p<0.001), FH (p=0.014), C3

(p=0.002), and iC3b levels (p<0.001) compared to HC, while

sC5b-9 level did not differ between these groups (Figure 2B).

NMOSD patients on medication showed higher C3 (p=0.034),

iC3b (p<0.001), and sC5b-9 levels (p<0.001) compared to HC,

while CIC-C1q, C1-INH, and FH levels did not differ between

these groups (Figure 2B). Among patient groups on medication, the

MOGAD group showed higher C1-INH (p<0.001), FH (p<0.001)

and iC3b levels (p<0.001) compared to the NMOSD group, while

the NMOSD group showed higher CIC-C1q (p=0.023) and sC5b-9

levels (p<0.001) compared to the MOGAD group.
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Correlations among complement analyte
levels, antibody CBA scores, and
EDSS scores

In the attack samples from patients not on medication, the

serum MOG-IgG CBA score had positive correlations with iC3b

(r=0.764, p=0.010) and C1-INH (r=0.629, p=0.049) levels, and the

AQP4-IgG CBA score had a positive correlation with C1-INH

(r=0.836, p=0.003) (Figure 3). In the MOGAD group, a

significant positive correlation found between C1-INH and iC3b

levels (r=0.643, p=0.045), as well as between sC5b-9 and CIC-C1q

levels (r=0.842, p=0.004) (Figure 3). The positive correlation

between sC5b-9 and CIC-C1q levels (r=0.624, p=0.023) was also

found in the NMOSD group (Figure 3). There were no significant

correlations between complement analyte concentrations and

EDSS scores in both the MOGAD and NMOSD groups not

on medication.
B

A

FIGURE 1

Comparisons between the concentrations of complement components and regulators in HC, MOGAD, and AQP4-NMOSD (A) during attacks and
(B) remission. Each dot represents an individual sample. In the case of sC5b-9, only attack samples were assayed in MOGAD and AQP4-NMOSD.
Each box plot shows the median and interquartile range. *p<0.05; **p<0.01; ***p<0.001. CIC-C1q, circulating C1q-binding immune complex; C1-
INH, C1 inhibitor; FH, factor H; sC5b-9, soluble terminal complement complex; HC, healthy control; MOGAD, myelin oligodendrocyte glycoprotein
antibody-associated disease; AQP4, aquaporin4; NMOSD, neuromyelitis optica spectrum disorder.
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In either attack or remission samples from patients on

medication, no significant associations were identified among

complement analytes, antibody CBA score, and EDSS score in the

MOGAD group. However, positive correlations between C3 and

iC3b (r=0.834, p<0.001 for attack samples, r=0.600, p=0.018 for

remission samples) were identified in the NMOSD group

on medication.
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Discussion

This study has demonstrated that the serum levels of

complement components, regulators, and activation products

differ between two antibody-mediated CNS autoimmune diseases:

MOGAD and AQP4-NMOSD. During attack period, higher C1-

INH, FH and iC3b levels and lower sC5b-9 level were found in the
B

A

FIGURE 2

Comparisons between the concentrations of complement components and regulators in HC and (A) patients not on medication (MOGAD and
AQP4-NMOSD) or (B) patients on medication (MOGAD and AQP4-NMOSD) during attacks. Each box plot shows the median and interquartile range.
*p<0.05; **p<0.01; ***p<0.001. CIC-C1q, circulating C1q-binding immune complex; C1-INH, C1 inhibitor; FH, factor H; sC5b-9, soluble terminal
complement complex; HC, healthy control; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease; AQP4, aquaporin4; NMOSD,
neuromyelitis optica spectrum disorder.
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sera of MOGAD samples compared with NMOSD samples. AQP4-

NMOSD patients, under medication during an attack, showed

lower levels of iC3b and higher levels of C3, C1-INH, sC5b-9

compared to those not on medication. Conversely, in MOGAD, the

presence of medication did not result in any significant differences

in complement analytes levels. Among patients not on medication,

AQP4-IgG CBA scores were positively correlated with C1-INH

levels and MOG-IgG CBA scores exhibited positive correlations

with C1-INH and iC3b levels. This study indicates a higher

prominence of complement pathway activation and subsequent

C3 degradation in MOGAD compared to AQP4-NMOSD. On the

other hand, the production of TCCs was found to be more

substantial in AQP4-NMOSD than in MOGAD.

Increased complement degradation product of iC3b confirmed

complement pathway activation in both MOGAD and NMOSD

regardless of the disease activity. Although C3 turnover increased,

the C3 level did not decrease on average compared with controls.

However, the concentrations of several complement analytes

differed between NMOSD and MOGAD. During attacks in

MOGAD, lower levels of CIC-C1q and higher levels of C1-INH

were observed compared to HC. Reduced circulating C1q

concentrations have been observed in several autoimmune

diseases, possibly resulting from impaired synthesis or heightened

consumption (12). In the context of consumption, not only are C1q

levels low, but the levels of other complement components like

C3 and C4 also exhibit a similar trend (12). However, this

generalization may not apply to MOGAD. Increased level of C1-

INH and iC3b in our patients may contribute to favoring

consumption and there is a positive correlation between the level

of CIC-C1q and sC5b-9. It’s noteworthy that defective production

of C1q has not been reported in MOGAD. The significant reduction
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in CIC-C1q levels in MOGAD patients, especially in those on

medication, rases the question of whether this decrease is a

medication effect. While evidence suggests that ex-vivo steroid

treatment enhances C1q production by macrophages (13), there

is a paucity of information regarding the correlation between

immunosuppressive treatments, such as azathioprine and

mycophenolate mofetil, and C1q production.

Higher C1-INH, FH, and iC3b levels in MOGAD indicate more

complement pathway activation compared with NMOSD. C1-INH

and FH play crucial roles as primary negative regulators of

complement activation, exhibiting an increase in response to

inflammation (14). A recent study also found that complement

system activation is a prominent feature of MOGAD (15). However,

the effects of medication on C1-INH, iC3b and FH levels in both

patient groups should be considered for a meaningful comparison.

In NMOSD patients not on medication, iC3b levels were higher

compared to those on medication, exhibiting no significant

difference from MOGAD patients. Moreover, only MOGAD

patients on medication showed a higher level of FH compared to

NMOSD and HC. Regarding C1-INH levels, MOGAD patients

consistently showed elevated C1-INH levels compared to NMOSD

patients, regardless of medication status. Higher iC3b but similar

FH and C1-INH levels in the blood have previously been suggested

in MOG-IgG-positive NMOSD compared with AQP4-NMOSD

(16). However, the interpretation of results is limited by the small

sample size of MOG-IgG-positive NMOSD patients (N=6), the

absence of information about medication, and the predominant

inclusion of samples from the remission phase. Disease activities

may indeed influence C1-INH levels in NMOSD, as evidenced in

our study. Specifically, we observed a significantly higher C1-INH

levels during remission compared to those observed during attacks.
B

A

FIGURE 3

Correlations among the levels of complement analytes and antibody CBA scores during an attack in (A) MOGAD and (B) AQP4-NMOSD patients not
on medication. CIC-C1q, circulating C1q-binding immune complex; C1-INH, C1 inhibitor; FH, factor H; sC5b-9, soluble terminal complement
complex; MOGAD, myelin oligodendrocyte glycoprotein [MOG] antibody-associated disease; AQP4, aquaporin4; NMOSD, neuromyelitis optica
spectrum disorder; CBA, cell-based assay.
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sC5b-9 levels were elevated only in NMOSD not in MOGAD,

although enhanced complement activation was suggested in both

disease groups. This may suggest that complement system is strongly

regulated and may play a role in the pathogenesis of MOGAD beyond

TCC formation. The role of complement activation in MOGAD is less

evident when compared to NMOSD. Neuropathologic studies have

noted complement deposition in only a specific group of patients,

prompting the exploration of alternative mechanisms underlying the

pathogenicity of MOG-IgG (6, 7). A recently published experimental

study also demonstrated lower ability for TCC formation in MOG-

IgG compared with AQP4-IgG (17). There has been a lack of studies

comparing blood complement levels between MOGAD and NMOSD,

but one investigation of complement system activation found that

sC5b-9 and iC3b levels were higher in MOGAD compared with HC

and NMOSD (15). However, the frequently reported infectious

prodrome in MOGAD may influence complement activation, as

evidenced by elevated levels of sC5b-9 in the study. On the other

hand, AQP4-IgG-mediated classical pathway activation and the

subsequent complement-dependent cytotoxicity is a well-known

pathophysiology of NMOSD (18). An anti-C5 complement inhibitor

treatment has been found to be highly effective against NMOSD (19).

During an attack in NMOSD, C1-INH levels were relatively lower

than those during remission. In contrast, FH levels remained

unchanged during an attack, comparable to HC. Our findings also

suggest classical complement pathway activation associated with

disease activity in NMOSD. In a study evaluating CH50 activity,

indicative of total complement activity of the classical pathway,

activation of complement system was observed in AQP4-NMOSD

patients during attacks (20). Decreased CH50 levels during attacks or

increased levels during remission were observed across different

investigations (20, 21). Diminished CH50 activity during the acute

phase implies potential deficiencies in complement proteins, probably

due to consumption. In NMOSD patients not on medication,

we noted low C3 levels, consistent with previous studies that

reported low C3 and C4 levels during attacks in drug naïve AQP4-

NMOSD patients (22, 23).

Acknowledging the impact of medication on complement levels,

this study identified higher C3 and lower iC3b levels during attacks

in medicated NMOSD patients compared to those not on

medication. Steroids can inhibit the activation of the alternative

amplification pathway of complement, thereby reducing the amount

of C3 degradation (24). Additionally, glucocorticoids stimulate

peripheral blood mononuclear cells and macrophages, leading to

the upregulation of gene pathways associated with innate immunity

resulting in an enhanced production of complement (25). Elevated

C1-INH and sC5b-9 levels were found specifically in a patient group

experiencing relapses during medication. Systemic use of

glucocorticoids, known to induce a hypercoagulable state (26),

plays a role in sC5b-9 generation (27). In response to this

hypercoagulable state, C1-INH, a regulator for the production of

coagulation factors XIIa, XIIf, and XIa, may also increase. However,

it is unlikely that medication is the primary cause of variations in

C1-INH and sC5b-9 levels, as similar differences were not observed

in MOGAD. The longer disease duration in patients on medication
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(median, interquartile range [IQR]; 97.68, [6.62–396.71] months), in

contrast to those not on medication (17.37 [1.22–60.52] months;

p=0.026), might be a contributing factor to the elevated levels of C1-

INH and sC5b-9. Recent clinical data challenge the belief that

AQP4-expressing peripheral organs are typically spared from

damage, revealing AQP4-IgG-associated peripheral organ damage

(28). Consequently, the measured sC5b-9 levels may partially stem

from peripheral organ damage in patients exposed to AQP4-IgG for

a more extended duration. However, research on peripheral

complement activation and its association with disease duration in

NMOSD is currently limited. Undisclosed clinical factors may

underlie differences in sC5b-9 levels, while features such as attack

site, annual relapse rate, AQP4-IgG CBA score, and EDSS at

sampling did not show any difference between patients on and not

on medication in out cohort. Upon closer examination, patients not

on medication showed a positive correlation between C1-INH and

AQP4-IgG CBA score, comprising individuals with AQP-IgG CBA

score of 0 or 0.5 (N=4) at sampling. Notably, this subgroup

with lower AQP-IgG CBA scores also manifested the lowest

levels of C1-INH and sC5b-9. A recent study, utilizing AQP-4

expressing cells, revealed a positive correlation between antibody

titers and TCC levels (17). However, the replicability of this

observation in peripheral blood remains uncertain and further

studies are warranted.

This study had several limitations. First, the small number of

samples, especially in the MOGAD group, may have reduced the

statistical power and introduced unintended bias, and so caution

may be needed when interpreting the results. Second, the influence

of factors beyond the disease itself on the complement levels was not

considered. Complement levels can be impacted by preceding

infections and inflammation (29). Third, the absence of sC5b-9

levels during remission might limit the interpretation of changes in

complement levels within this study. Remission phase blood

samples originally intended for another study were later included

in our research after analyzing attack samples. However, due to

limited specimen availability, the analysis prioritized other

complement concentrations over sC5b-9, leading to the absence

of sC5b-9 data. Prior studies with NMOSD suggested that sC5b-9

levels were lower than those observed in HC during remission, or at

least, they exhibited a decrease from the levels observed during an

attack (21, 30). However, further studies utilizing paired samples

from the same patients during both attack and remission phases will

be necessary to corroborate our findings and validate changes

consistent with disease activity. Fourth, although we employed

serum samples for the analyses, the evaluation of individual

complement components, particularly activation products, is

better suited using plasma samples. This approach helps mitigate

the risk of potential artificial complement activation (31). In

addition, there was uncertainty regarding how consistent the

complement analytes were during delivery because the samples

were collected from multiple hospitals. For this reason, we included

analytes such as iC3b and sC5b-9 that are more stable than C3a or

C5a in assays. There were no differences in the concentration of

each analyte according to hospital location in this study.
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Conclusion

The pattern of complement system activation in the periphery

differed between AQP4-NMOSD and MOGAD. In MOGAD, more

enhanced complement pathway activation with subsequent C3

degradation was indicated compared to AQP4-NMOSD. However,

final product of complement pathway activation, sC5b-9, did not

increase during an attack, and the levels of complement analytes did

not reflect disease activity (attack versus remission). The strong

regulation of the complement system suggests its potential

involvement in the pathogenesis of MOGAD through mechanisms

beyond the formation of the TCC. In NMOSD, we identified the

expected complement system activation and the formation of TCC,

more associated with classical pathway activation. Simultaneously,

our study indicates that medication and autoantibody levels may

influence the levels of complement analytes. Further studies with

larger samples are required to augment our findings and properly

identify their clinical significance.
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