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An individual’s T-cell repertoire constantly changes under the influence of

external and internal factors. Cells that do not receive a stimulatory signal die,

while those that encounter and recognize a pathogen or receive a co-

stimulatory signal divide, resulting in clonal expansions. T-cell clones can be

traced by monitoring the presence of their unique T-cell receptor (TCR)

sequence, which is assembled de novo through a process known as V(D)J

rearrangement. Tracking T cells can provide valuable insights into the survival

of cells after hematopoietic stem cell transplantation (HSCT) or cancer treatment

response and can indicate the induction of protective immunity by vaccination.

In this study, we report a bioinformatic method for quantifying the T-cell

repertoire dynamics from TCR sequencing data. We demonstrate its utility by

measuring the T-cell repertoire stability in healthy donors, by quantifying the

effect of donor lymphocyte infusion (DLI), and by tracking the fate of the different

T-cell subsets in HSCT patients and the expansion of pathogen-specific clones in

vaccinated individuals.
KEYWORDS

T cell repertoire analysis, adaptive immune receptor repertoire (AIRR), T cell receptor
(TCR), clonal tracking, hematopoietic (stem) cell transplantation (HCST), immune
reconstitution, TCR sequencing, immune monitoring
1 Introduction

The adaptive immune system is unique in its ability to recognize multiple previously

unencountered pathogens and to form immunological memory of the encounter (1). T

cells, which play a major role in antigen-specific immune response, represent a specific pool

of clonally related cell lineages with unique antigen specificity (2). The repertoire of

antigen-recognizing receptors of the T cells of an individual bears a unique fingerprint of

past and ongoing immune challenges. This is because each T-cell clone is characterized by
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its own unique T-cell receptor (TCR) sequence that encodes its

antigen specificity, tracking individual T-cell clones is a matter of

studying the TCR repertoire (3). However, due to the large disparity

in clonal size (i.e., the number of T cells comprising a T-cell clone),

the huge diversity, and the high dimensionality of the TCR

sequence space, such data have an inherently stochastic nature.

The sequence diversity of TCR that enables its cognate antigen

specificity is ensured by the mechanism of V(D)J rearrangement,

which combines recombination events and random nucleotide

insertions and deletions. This results in the unique nucleotide

sequence of the complementarity-defining region 3 (CDR3) at the

V(D)J junction that can be used to track individual T-cell clones.

The theoretical number of sequence combinations is around 1015–

1020 variants, but this becomes smaller (108–109) owing to the

thymic and peripheral selection that deletes T cells with potentially

autoreactive TCRs, while still providing enough variety to maintain

an adequate immune response against virtually any encountered

antigen (4). Therefore, determining the real changes in the T-cell

repertoire structure from noise requires dedicated wet-lab

protocols, highly accurate bioinformatic pipelines, and robust

statistical methods (5).

A large number of recent works have employed immune

repertoire profiling methods based on high-throughput

sequencing techniques to study the dynamics of the T-cell

repertoire by tracking the clonal emergence, survival, and

expansion in response to various immune stimuli, such as

vaccination (6) and hematopoietic stem cell transplantation

(HSCT) (7), by monitoring minimal residual disease (8), detecting

the autoimmune response (9), and assessing the aging of the

adaptive immune system (2, 10). One of the most important

applications of high-throughput TCR profiling in the coronavirus

disease 2019 (COVID-19) pandemic era is the tracking of the

response to pathogens such as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), both in the course of infection,

during follow-up, after infection, and during assay of the

vaccination efficiency (11).

While multiple studies on T-cell clonotype tracking have been

reported, there is no standard practice for the aforementioned issue,

and the field still needs dedicated bioinformatic pipelines (12).

Several statistical approaches for the assay of TCR frequency in the

repertoire and of individual T-cell clonotype frequencies in donor

blood samples have been described (12–15). Most of these

approaches have been inspired by the problem of evaluating the

species richness and diversity in the field of ecology, as covered by

Colwell and Chao et al. (16), Efron and Thisted (17), and Hill (18).

For example, in their attempt to infer factors underlying an

unexpectedly broad distribution of naive T cells in human

repertoire, de Greef et al. examined predictions based on neutral,

power law, and log-linear models of species frequency distribution

and compared them with experimental observations (19).

Alternative strategies to account for sampling bias include

utilizing spike-in TCR sequences in order to calibrate and assay

the accuracy of a sequencing-based technique, thus estimating the

probability of detecting a given TCR sequence in subsequent

experiments (20). The aforementioned approaches are also linked

to the concept of clonotype publicity and attempt to estimate the T-
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cell repertoire overlap between individuals and its reproducibility

between replicates (21).

In the present paper, we propose a computationally simple but

efficient approach that combines common repertoire and clonotype

features, such as repertoire diversity and clonotype abundance, into

a single statistical model that can be used to test hypotheses related

to the T-cell clone expansion and survival of studied groups of T-

cell clonotypes and entire samples. This model is highly accurate in

recapturing the T-cell sampling process in both unperturbed and

stimulated repertoires. We demonstrate this approach by detecting

vaccination-driven clonal expansions, analyzing T-cell survival, and

capturing differences in the T-cell subset behavior during HSCT.
2 Materials and methods

2.1 Model description

In the present study, we describe a model that statistically

compares the clonotype sampling rates describing capture,

survival, and expansion between conditions, clonotype subsets,

and time points in a repertoire profiling time course. Firstly, the

clonotype size group “s” was defined—singletons, supported by a

single read/molecule [when using a unique molecular identifier

(UMI)-based normalization]; doubletons, supported by two reads/

molecules; tripletons, clonotypes with three reads/molecules and

clonotypes that are highly expanded (i.e., more than three reads/

molecules)—based on the clonotype frequency in the “pre” sample

that can be either the preceding time point in a time course or the

donor repertoire in clone tracking after HSCT, among others. The

recapture probability in the “post” sample (the following time point

in a time course, the recipient repertoire in HSCT, etc.) for a given

group “S” of clonotypes was measured as P = n/N, where P is the

capture probability, N is the number of unique clonotypes from

group S in the “pre” sample, and n is the number of unique

clonotypes from S found in both the “pre” and “post” samples. In

the simplest case, S = s, but it can also incorporate other features,

such as antigen specificity, A: S = s⊗ A. Importantly, the proposed

model includes the overall number of unique clonotypes in the

“pre” and “post” samples, Npre and Npost, respectively. This model

can also include various factors of interest, denoted as G, e.g., the

HSCT protocol or the vaccination regime. Statistical analysis is

subsequently performed using the linear model, logP ~ S + logNpre

+ logNpost + G, as formulated in terms of the R programming

language model definition to compare the effects of various factors.
2.2 Datasets used in the study

2.2.1 HSCT dataset
The allogeneic hematopoietic stem cell transplantation (allo-

HSCT) TCR repertoire data for donor lymphocyte infusion (DLI;

n = 9) vs. non-DLI (n = 10) patients were obtained from Blagov et al.

(7) and Zvyagin et al. (22). Briefly, the patients in this study received

the abT-cell depleted donor’s granulocyte colony-stimulating

factor (G-CSF)-mobilized peripheral blood (PB) mononuclear
frontiersin.org
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cells (graft). After engraftment, a sub-cohort of patients (the DLI

cohort) were infused with the donor’s CD45RA-depleted PBMCs at

monthly intervals (a total of three times, with the last infusion on

day 90 post-HSCT). Non-DLI patients did not receive the donor

CD45RA-depleted PBMCs after HSCT (the non-DLI cohort). DLI

cell samples from the DLI cohort or graft cell samples from the non-

DLI cohort were collected to obtain the donor TCR repertoire.

Recipient PBMCs for both cohorts were sampled at two time points:

on day 120 and on day 360 post-HSCT.

To evaluate the clonal survival of T cells from distinct subsets,

we also used previously unpublished data in the HSCT dataset from

the study by Blagov et al. (7). These data represent the TCRb
repertoires of the CD4+ and CD8+ cell fractions obtained by

fluorescence-activated cell sorting (FACS), as well as the central

memory T (Tcm) and effector memory T (Tem) cells. These cell

fractions were derived from recipient PB samples (CD4/CD8) or the

DLI cell samples (Tcm/Tem and CD4/CD8). The cDNA TCRb
libraries for all samples in the HSCT dataset were prepared using

the same method described in the next subsection.

2.2.2 Vaccination dataset
Data on yellow fever virus (YFV) vaccination (“vaccination”

dataset) were obtained from Pogorelyy et al. (6). Bulk PBMCs of

three pairs of identical twins immunized with the YFV vaccine were

collected at several time points: 7 days before vaccination;

immediately after vaccination; and 7, 15, and 45 days after

vaccination. The TCRb repertoires were obtained for each sample

as described below.

2.2.3 Immune aging dataset
The repertoires for the “aging” dataset were taken from

Britanova et al. (10). We focused on the T-cell repertoires of two

healthy adult individuals. The PB samples were collected at two

time points separated by 3 years. The two individuals were 27 and

47 years old at the first sample collection and, correspondingly, 30

and 50 years old at the second sampling.
2.3 TCRb library preparation, sequencing,
and repertoire data extraction

For all datasets used in the study, the TCRb cDNA library

preparation, sequencing, and data analysis were performed as

previously described (23). Briefly, total RNA was extracted from

cells using TRIzol reagent. The 5′ RACE cDNA libraries were

prepared using primers specific for TCRb constant regions. UMIs

were introduced to cDNAs to allow removal of potential cross-

sample contamination, to correct sequencing errors, and to

normalize data (24). The cDNAs were processed using a two-step

PCR amplification, and the libraries were then sequenced on the

Illumina HiSeq 2500 platform.

Raw sequencing data were preprocessed and clustered by UMIs

using the MIGEC software (24). Reads were mapped to the V, D,

and J genes and the clonotypes assembled using the MiXCR

software (25), generating datasets containing the read counts, the
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nucleotide and amino acid sequences of the CDR3 region, the V/J

segment IDs, the sample ID, and related metadata for the identified

TCRb clonotypes. In this study, we defined TCRb clonotype as a

TCRb sequence having a particular CDR3 nucleotide sequence in

combination with an identical V segment ID.

The VDJdb database (26) was used to annotate the clonotypes

specific for the YFV. In the “vaccination” dataset, we identified

clonotypes that matched the TCRb CDR3 associated with the A*02-
LLW epitope in VDJdb as “YF-specific”. Based on previous findings

on the sequence similarity of epitope-specific TCRs (27, 28), we

allowed one mismatch (i.e., Hamming distance = 1) in the CDR3.
2.4 Statistical analysis and source code

All results were obtained using in-house R scripts and open-

source R packages. All of the datasets used in this study are available

at Zenodo (https://zenodo.org/record/7988170). The descriptive

statistics of the samples used in the current study are presented in

Supplementary Table 1.

R markdown notebooks reproducing the analysis described

here can be found on GitHub (https://github.com/antigenomics/

vdjtrack). The repository also contains an example dataset with the

formatted T-cell repertoire sequencing data from the “vaccination”

dataset, annotated with experimentally validated clonotypes that are

induced by the vaccine (see “example/” folder), and an

“example.Rmd” file that can be used as a template to run the

VDJtrack pipeline in RStudio. The “code/” folder contains the code

for preparing all the figures used in this work.

The framework was designed to work with next-generation

sequencing data, including single-cell sequencing data from

immune profiling. To perform analysis, the minimal input dataset

should contain a list of clonotypes and their counts (number of

UMIs/read counts). Clonotype can be defined as a unique CDR3

nucleotide or amino acid sequence. Alternatively, additional

features, such as V, D, or J gene segments, can be added to the

clonotype identifier. To check possible methods of converting data

to the prerequisite format, one can refer to the “Load data” sections

in the R markdown notebooks (see “example/” or “code/” folders

on GitHub).

A file containing metadata, which includes the sample file names

and their descriptions, can be used to simplify data preprocessing.

Clone-specific or sample-specific features can be used to annotate

different groups; for example, groups of clones can be annotated by

antigen specificity, while groups of samples can be annotated by

condition or by cell cluster in the case of single-cell data. The

appropriate column should be added (see “vaccination dataset” as

an example for grouping clonotypes by antigen specificity).

After organizing the data into the required structure, the next

step is to track the clonotypes across time points and to group these

clonotypes according to size (by read/UMI count). On the basis of

clonal sequence identity, each clonotype in the combined dataset

was labeled as either “found” or “not found” in the subsequent

sampling (“post” time point) compared with the previous sampling

(“pre” time point). All clonotypes were also categorized based on
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their size at the corresponding time point: as “singletons,”

“doubletons,” “tripletons,” “large,” and “missing” for reads/UMI

counts of 1, 2, 3, 4+, and 0, respectively.

Note that, subsequently, the beta distribution parameters can be

estimated (posterior alpha and beta), and the capture probability p

then calculated, which allows visualizing a probability distribution

function using standard R graphical packages (see “DLI.Rmd” in

the code section for an example). The beta distribution was fitted

using the built-in “dbeta” function in R with Bayes (uniform) prior.

To quantify the effect of various factors (e.g., the number of

clones detected in the “pre” repertoire, the number of clones

detected in the “post” repertoire, the clonotype group size, and

other grouping factors) on the recapture probability, a log-linear

model was used to determine the log-transformed coefficients and

their p-values. To assess the linear models and quantify the

significance of the various model parameters, ANOVA was

performed using the corresponding built-in R functions.
2.5 Inferring expanded clones
using “edgeR”

A classic “edgeR” approach (as described in the edgeR User’s

Guide) was used (29) for the comparison of the bulk TCRb
repertoires of six individuals on day 15 and on day 45 after

vaccination. Reads with mean counts across pairwise comparisons
Frontiers in Immunology 04
of <4 were filtered out. The TTM (trimmed mean of M values)

method was used for data normalization, and the dispersion was

estimated using the quantile-adjusted conditional maximum

likelihood (qCML) method. To determine the significantly

expanded clonotypes between two time points, an exact test for

the negative binomial distribution to compute exact p-values was

used. Clonotypes with a log2 fold change ≥5 between two time

points and a p-value ≤0.01 were considered as significantly changed

and, thus, vaccine-associated.
3 Results

3.1 Model description and rationale

In the present study, we aimed to quantify the expected number

of T-cell clones or clonotypes present in the original sample (“pre”

time point) that were successfully captured in a subsequent sample

(“post” time point), with the ability to compare the capture rates

between groups of clones or clonotypes and experimental

conditions (Figure 1). In repertoire sequencing, the T-cell clones

can be defined by identical nucleotide sequences of their TCR genes

(both TCR a and b chains). However, as most of the repertoire

sequencing data available to date, as well as the data used in our

study, represent the sequencing data of only the TCR b chains, we

further used the term “clonotype” to designate the TCRs that came
A

B DC

FIGURE 1

Overview of the Т-cell clone tracking model. (A) Statistical model described in the present study that aimed to estimate the probability of capturing
a T-cell receptor (TCR) clonotype belonging to a subset of interest (sampled at the “pre” time point, repertoire A) in a subsequent sample (“post”
time point, repertoire B). (B) Three parameters describing the TCR clonotype sampling process: clonotype size (s) [singleton—supported by a single
read or unique cDNA molecule [identified on the basis of a UMI; doubleton—supported by two reads/cDNAs, etc.]; the number of clonotypes in the
original sample, N(A); and the number of clonotypes in the subsequent sample, N(B). (C) Proposed simple log-linear model that can incorporate and
estimate the effect of clonotype/sample grouping factor G on the capture probability. (D) The model can be applied to detect differences in cell
survival post-hematopoietic stem cell transplantation (HSCT), the normal clonal dynamics in aging, and the emerging clonotypes induced by
vaccination. Linear models (red boxes) are given in terms of the R programming language formula specification. R denotes the overall existing T-cell
repertoire diversity, while samples (i.e., A or B) represent subsets [with N(A) or N(B) total clonotype number, respectively] that can be
partially overlapped.
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from a group of T cells with identical TCR b chains. Both “clone”

and “clonotype” will be further used synonymously to refer to

clonotype as the model used can be applied for both paired (a and

b) and unpaired (a or b) TCR repertoire data. We have empirically

determined that the capture rate is dependent on the size of the

clonotype and the total number of clonotypes in the original and

subsequent samples, as shown below.

Our model stems from observations of T-cell clonotype

tracking in the HSCT data (Figure 2), where the donor repertoire

is considered as the original sample (“pre” time point) and the

corresponding recipient post-HSCT repertoire is considered as the

subsequent sample (“post” time point). This allows monitoring the

survival of the donor T lymphocytes probed by the donor

repertoire. Clonotype abundance was binned into size groups

according to the number of TCRb cDNAs identified for a given

clonotype: singletons, doubletons, tripletons, and large (expanded)

clonotypes (Figures 2A, B). This abundance-based approach was

previously introduced for the estimation of species diversity and

number of unseen species by Colwell et al. (16) and was

implemented in a number of immune repertoire sequencing data
Frontiers in Immunology 05
analysis software packages to quantify immune repertoire diversity

(14). Note that, due to differences in the number of cells, messenger

RNA (mRNA) molecules, and sequencing depth, the sample sizes

can vary a lot, which makes their direct comparison impossible

without proper normalization, but which was handled by our model

as described below.

In our examples for all clonotype size groups, we observed

around 1,000 clonotypes and more. It is noticeable that the group of

missing clonotypes (detected in the donor but not seen in the

recipient) was substantial (Figure 2A): in the case of sampling of the

recipient PBMCs on day 60 after abT/CD19-depleted HSCT, a high

rate of detectable clonotypes was not expected in the recipient due

to sampling effect and the long period of T-cell repertoire

reconstitution (22). While quantitatively most of the clonotypes

surviving post-HSCT were singletons (Supplementary Figure 1A),

the proportion of recaptured clonotypes originating from the donor

was remarkably higher in the large or tripleton size groups

(Supplementary Figure 1B). Thus, expanded clonotypes have a

better chance of surviving the procedure compared with those

supported by a few TCRb cDNAs, i.e., T cells.
A B

DC

FIGURE 2

The clonotype recapture probability during immune reconstitution after hematopoietic stem cell transplantation (HSCT) was defined by the
clonotype size in the original sample at the “pre” time point and the repertoire diversity. (A, B) Number of unique clonotypes in the donor and
recipient repertoires (n = 10) assigned to size groups based on the number of corresponding TCRb cDNAs identified for each clonotype: single
(singletons), two (doubletons), three (tripletons), and 4+ (large) in repertoire sequencing data [“HSCT” dataset; data from donor–recipient pairs
transplanted in the non-donor lymphocyte infusion (non-DLI) setting are shown]. The plot also shows the number of clonotypes in the recipient, but
not in the donor [“novel,” gray bars in (A)], or found in the donor, but not detected in the recipient repertoire [“missing”, gray bars in (B)]. Note that
the “novel” clonotypes in panel (A) and the “missing” clonotypes in panel (B) are depicted for comparison and represent the clonotypes detected
only in the recipient (“novel”) or the donor (“missing”) repertoire, respectively. (C) Recapture probability for a clonotype belonging to each of the four
size groups in the donor. The probability distribution is modeled using beta distribution with the number of detected clonotypes and the number of
missing clonotypes as parameters. A ridgeline plot is used to visualize the distributions: each sample has an equal share of space in the general Y-
axis, and individual Y-axes are scaled to fit the highest peak of corresponding density distributions. (D) Log-linear model fitting clonotype recapture
probability (Y-axis) based on the clonotype size in the donor sample (points and lines of different colors) and the diversity of donor and recipient
samples (ratio plotted on the X-axis). Adjusted R2 for the entire model and corresponding linear fit parameters and SDs are provided in the main text.
Clonotype size colors in (C, D) are the same as those in (A).
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We computed the capture rate of a clonotype group, i.e.,

clonotypes having the same size in the “pre” repertoire (i.e., in

the donor sample), as the fraction of clonotypes from that group

that were present in both the “pre” and “post” (i.e., in the recipient)

sample time points. When fitted with beta distribution, the capture

rates of the clonotypes were nicely ordered by abundance in log

scale (Figure 2C), while the remaining difference in the sampling

can be explained by the difference in the donor and recipient

repertoire diversities, leading to a robust log-linear fit

(Figure 2D). Beta distribution was chosen as a natural method

(from the Bayesian point of view) for visualizing uncertainty in the

clonotype capture rate by learning from data, but which was not

directly used in the modeling, which used log transformation for

frequencies. The model can then be supplemented with a grouping

variable in order to measure the significance of its input: the donor-

specific features [e.g., the donor diagnosis, the cytomegalovirus

(CMV)-positive/negative status, the HSCT protocol with or without

additional infusions of donor T cells, the organ/tissue type, or the

cell subpopulation as the repertoire source, among others] and the

clonotype-specific features, such as antigen specificity, can be

compared across different time points.
3.2 Longitudinal repertoire stability and
sampling model

We proceeded with our baseline repertoire sampling model by

analyzing the repertoire changes with time in healthy adult donors

using data from the “aging” study of Britanova et al. It has already

been shown that human T-cell repertoires are extremely stable, even

when sampled over a 3-year period (10). In this study, we showed

that the suggestion to split clonotypes into groups based on their
Frontiers in Immunology 06
size (which lies in the basis of our model as described in Materials

and methods) can recapture T-cell clonotype sampling behavior on

large timescales, and our observations revealed that most of the

differences between the TCR repertoires obtained from the same

donor across a 3-year period can be explained by random sampling.

Owing to the depth of repertoire sequencing in the “aging” dataset,

one can observe a clear log-linear dependence between the

clonotype size and sampling probability up to clonotypes

supported by 10+ reads when the stochasticity of large clonal

expansions is in effect (Figure 3A). This observation can be used

to justify the rarefaction approaches common in the field of ecology

for estimating the species richness of the TCR repertoires of PBMCs

or T-cell subsets (14, 16). The population (repertoire) frequency of a

clonotype from a group of a given size can be estimated, assuming

that the capture probability can be derived from Poisson

distribution as Pcapture = 1 − exp(−f × R), where R ~ 106 is the

total number of T cells (TCRb cDNA molecules, UMIs) in the

sample, arriving to f ~ 10−8 (see the example R script referenced in

Materials and methods for calculation). This estimate was weighted

to account for the different fractions of clonotypes represented by

different numbers of cells: fractions of singletons, doubletons, and

tripletons, among others, based on the count of UMIs identified for

each TCR clonotype in the repertoire. Given ~1011 T cells in adult

PBMCs (30), the size of a T-cell clonotype can be roughly estimated

as ~103 cells, in agreement with earlier observations that gave the

lower bound of the number of unique T-cell clones as ~2.5 × 107

(31). Interestingly, in-depth analysis using rarefaction curves (14)

showed that, while the repertoire becomes less diverse with age, the

sets of clonotypes captured at both time points in an individual tend

to become richer with age in terms of capture probability, a likely

manifestation of the increase of the memory T-cell compartment

(Supplementary Figure 2).
A B

FIGURE 3

Repertoire stability and clonotype sampling model in time course setting: the probability to sample a clonotype at a later time point given its
observed size at a previous time point and repertoire diversity at both time points. (A) Log-linear fit of probability (Y-axis) to detect clonotypes
supported by different numbers of TCRb cDNAs [unique molecular identifiers (UMIs), X-axis] in samples taken 3 years apart in two healthy donors of
different ages (27 and 47 years old at the first sampling) [data from the “aging” dataset of Britanova et al. (10)]. The difference in the intercept of these
curves can be attributed to the different diversity ratios of the post-to-pre samples of two donors [0.42 for 30 years old (“post” time point) versus 27
years old (“pre” time point) and 0.14 for 50 years old (“post” time point) versus 47 years old (“pre” time point)]. (B) Probability to capture clonotypes
sampled a week before vaccination (day −7, “pre” time point) and on the day of vaccination (day 0, “post” time point) in n = 6 sample pairs [data from
the “vaccination” dataset of Pogorelyy et al. (6)] fitted with a log-linear sampling model. (B) The values of the size-dependent coefficients are shown
to the right of the corresponding lines.
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Moreover, we examined the repertoire stability on the timescale

of a single week using the YFV vaccination dataset from the study

by Pogorelyy et al. (6). We compared the individual repertoires

sampled in a week before the vaccination (day −7, the “pre” time

point) and those sampled just on the day of vaccination (day 0, the

“post” time point). As can be seen in Figure 3B, the log-linear model

accurately predicted sampling in all six donors in the study: the

clonotypes for which two unique TCRb cDNAs were identified

(doubletons) were ~2.2 times more likely to be captured than the

clonotypes represented by a lower number of T cells (singletons),

while tripletons were ~2.0 times more likely to be captured than

doubletons. The expanded clonotypes were mostly persistent (with

a capture probability close to around 10%–50%) and were ~3.5

times more frequently captured than tripletons. Again, the two

factors that explained the most variance in the clonotype recapture

probability were the size of the clonotype (p < 0.001, 10−6, and 10−11

for the doubleton, tripleton, and large clonotypes, respectively) and

the ratio of repertoire diversity (p < 0.001) in two subsequent

sampling points, yielding a log-linear fit with an adjusted R2 = 0.91.
3.3 Vaccination time course and
emergence of antigen-specific TCRs

Prior knowledge of TCRs specific to antigens of interest

obtained using techniques such as tetramer-based sorting

followed by repertoire sequencing (32) or annotating the list of

TCRs using a database of TCRs with known specificity, such as

VDJdb (26), allows identifying the specific TCRs that were induced
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in the course of vaccination. Here, we applied prior knowledge of

TCRs cognate to the YFV A*02-LLW epitope to trace specific

clonotypes in the course of vaccination [data from Pogorelyy

et al. (6)]. TCR sequencing of various antigen-specific T cells

isolated using the peptide-bound major histocompatibility

complex (pMHC) multimer technology showed high CDR3

sequence similarity among the clonotypes specific to the

particular pMHC (27, 28). Based on this, we annotated all

clonotypes in the dataset that matched to or differed by a single

mismatch in their CDR3 region from the known A*02-LLW-

specific TCR sequence as “specific.” Our approach indicates that

“specific” clonotypes observed on day 15 (peak vaccination

response, “pre” time point) were persistent in the repertoire on

day 45 (“post” time point) and were more likely to be captured than

other clonotypes (Figure 4A). This can be explained by the

persistence of vaccination-induced memory T cells specific to

the antigen.

Moreover, TCRs emerging on day 7 post-vaccination, but not

present prior to vaccination, were more likely to be persistent across

days 15 and 45, suggesting their involvement in vaccine response

(Figure 4B), further supporting the ability of the proposed approach

to detect vaccine response. Note that these observations were only

partially true for the expanded clonotypes that were already present

in the donor. These can be attributed to the bystander activation of

memory T cells (33) and/or to the presence of a cross-reactive

response to similar antigens.

We reproduced the main results on the recapture probability for

the expanded/vaccine-induced clonotypes using an edgeR-based

approach (see Materials and methods). “edgeR,” an R package
A B

FIGURE 4

Repertoire behavior in the vaccination time course. (A) Recapture of the yellow fever virus (YFV)-specific T-cell receptors (TCRs, bold) in the post-
vaccination peripheral blood (PB) repertoires of six individuals. Beta approximation for the distribution of the capture probability on day 45 (“post”
time point) of the TCRs identified on day 15 (“pre” time point) is shown. The TCRs annotated as HLA*02-LLW-specific TCRs (solid) are compared to
the rest of the TCR clonotypes of the repertoire on day 15 (dashed line). Clonotypes were grouped based on their size in the “pre” time point:
singletons, doubletons, tripletons, and TCRs supported by four or more UMIs (large). (B) Evaluation of the recapture of “emerging” TCRs, i.e., those
not present on day 0 (before vaccination), but present on day 7 after vaccination in the donor repertoire. The recapture probabilities between the
emerging (solid points and lines) and persistent (dashed lines) TCRs falling into different groups of clonotypes (singletons, doubletons, tripletons, or
large) are compared for pairs of repertoires sampled on day 15 [vaccination response peak (“pre” time point) vs. day 45 (post-vaccination, “post”
time point)].
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developed for differential expression analyses of transcriptome data,

was used for the inference of clonotype expansion previously (6).

The expanded clonotypes identified by the edgeR-based approach

had a higher recapture probability (Supplementary Figure 3, solid

lines are shifted to the right along the X-axis for all group sizes),

showing the good agreement of our model with the

orthogonal method.
3.4 HSCT conditioning and donor
T-cell recovery

We further utilized our statistical approach to study the

differences in the donor T-cell clonotypes post-HSCT survival

depending on the HSCT setting. As before, the donor repertoire

was denoted as the “pre” time point and the recipient repertoire

sampled after HSCT as the “post” time point. The analysis of the

different types of transplants used for HSCT revealed substantial

differences in the DLI and non-DLI samples (Figure 5A). While the

capture probability of the T-cell clonotypes from transplants

containing the unperturbed TCR repertoire (non-DLI samples)

resulted in overall agreement with the log-linear model as shown

previously, the transplants depleted for CD45RA+ cells (DLI

samples), i.e., mostly consisting of memory T cells, showed little
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dependence on the donor and transplant repertoire diversity, but

overall had a higher survival rate, as expected from previous

observations (7). Notably, while conventional analysis of the

correspondence between the clonotype frequencies in the donor

and transplant showed some significant correlations (Figure 5B),

the overall correlation coefficient values (effect sizes) were low, and

there were no differences between the DLI and non-DLI samples.

The survival rates for the T cells from the two main memory

subsets of donor cells, i.e., Tcm and Tem T cells, showed differences

in the DLI setting of HSCT (Figure 6A). As the numbers of sorted T

cells were relatively low, we focused on singletons and doubletons,

combining tripletons with the “large” clonotypes. Overall, there was

good agreement with the log-linear sampling model, and Tem cells

showed higher survival probability on day 120 post-HSCT (t = 3.01,

p = 0.004, post-hoc t-test for log values). It should be noted that the

increased capture rates in both subsets on day 120 can be attributed

to the continuing clonal proliferation and reconstitution of the

overall T-cell count and the repertoire diversity (Figure 6B)

reported previously for this period after TCRab/CD19-depleted
allo-HSCT for pediatric patients (22, 34).

Using the same logic, we compared the CD4+ (helper T cells)

and CD8+ (cytotoxic T cells) donor T-cell survival on days 120 and

360 post-HSCT, but did not observe any significant difference

between them, while the model based on clonotype size and
A B

FIGURE 5

Donor clonotype survival in recipients transplanted with and without additional infusion of donor memory T cells (donor lymphocyte infusion, DLI).
(A) Comparison of the sampling probabilities for clonotypes of different sizes using the log-linear model proposed in this paper. DLI samples (n = 10,
the same as in Figure 2D) are shown with dashed lines and circles, while non-DLI samples (n = 9) are shown with dots and solid lines. Non-DLI samples
have significantly higher log recapture rates when corrected for clonotype size and sample diversity, with estimated increases in the log capture
probability of p = 0.30 ± 0.07, p = 3 × 10−4. (B) Comparison of the clonotype frequencies in the donor [GM-CSF-mobilized PB (non-DLI) or CD45RA-
depleted PB T cells (DLI)] and recipient repertoires post-hematopoietic stem cell transplantation (HSCT). The donor clonotypes in the DLI and non-DLI
samples are shown in blue and red, respectively. R2 estimates and p-values are provided for each plot. Asterisks denote the DLI samples.
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sample diversity ratios showed a fine correlation (Figure 6C). Note

that, for the cell subsets, we limited the analysis to singletons and

doubletons and merged the tripletons into the “large” quantile as

the number of sorted clonotypes was too smal l for

proper quantification.
4 Discussion

The immune repertoire of an individual is extremely diverse,

and existing methods [i.e., adaptive immune receptor repertoire

sequencing (AIRR-seq) and single-cell RNA sequencing (scRNA-

seq)] reveal only a minor fraction of the immune receptors present

in an individual. This results in sparse datasets, causing

complications in T-cell clone tracking and in comparative

analysis of the immune repertoires (35). In general, it is almost

impossible to determine whether a certain rare TCR is missing in
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the dataset by chance or is lost due to the extremely low number of

T cells supporting this clone in an individual (8, 36).

In the present work, it was demonstrated that, even with the

aforementioned challenges, it is still possible to quantify the

incidence of certain clones in donors using a relatively

straightforward statistical approach. It is challenging to construct

a proper statistical model for a single T-cell clonotype: factors such

as high stochasticity due to the rarity of clonotypes and the “noise”

from the sequencing library preparation steps play a role. The main

idea behind our approach is that an accurate model can still be built

when considering a set of hundreds or more T-cell clonotypes

associated with a homologous TCR sequence or from sample-

specific categories, such as the cell subset or the origin group

(e.g., donor-derived in HSCT). We measured the recapture

probability in the “post” sample for a given group of clonotypes

identified in the “pre” sample using the repertoire diversity and

clone size. Beta distribution was used to visualize uncertainty in the
A B

C

FIGURE 6

Post-hematopoietic stem cell transplantation (HSCT) survival of the donor T-cell clonotypes from different T-cell subpopulations. (A) Survival of the
donor central memory T- (Tcm) or effector memory T-cell (Tem) clonotypes on days 60 and 120 after HSCT (n = 5 donor–recipient pairs, “post”
time points). The donor lymphocyte infusion (DLI) Tem or Tcm repertoires were used as the “pre” time points. The overall log-linear model had an
adjusted R2 = 0.38 and p = 10−6. Tem survived better in terms of the number of donor clonotypes compared with Tcm (t = 3.01, p = 0.004, post-
hoc t-test for log values). (B) Days 60 and 120 post-HSCT recipient repertoire diversity normalized to analysis depth and measured using the Chao
diversity index (n = 25 patients). The log diversity index was significantly higher on day 120 compared with that on day 60 using a two-sided t-test
(t = −3.95, p = 0.0006). Note that most recipients were measured at only one time point. (C) Comparison of the survival of CD4+ and CD8+ donor
Т cells on days 120 and 360 post-HSCT. The donor DLI CD4+ or CD8+ repertoires served as “pre” and the corresponding recipient CD4+ or CD8+

repertoires (sorted either on day 120 or day 360) as “post” time points. Gray dots represent all samples from the HSCT dataset for comparison. The
overall log-linear model had an adjusted R2 = 0.56, p < 10−16. No significant difference between the cell subsets was observed (p = 0.89). Note that
this plot had no tripletons and merged into the “large” quantile due to the low clonotype counts of the sorted T-cell populations.
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clonotype capture rate, but was not used directly in the modeling,

which used log transformation for clonotype frequencies. The log-

linear model was used as it is one of the simplest yet most efficient

ways to explain variance in the data and to not overfit the data: basic

model parameters are limited to factors such as clonotype size and

repertoire size. This model can be easily extended with arbitrary

grouping variables specified by the user, and it is robust enough to

handle different types of datasets, including ones with low coverage

and with a low number of cells. More sophisticated models that

handle the underlying clone size distribution can be implemented

but would require deep repertoire sequencing with a control for the

number of events (mRNA/reads) per cell.

Alternative methods have already been described for T-cell

clone size estimation [for example, see de Greef et al. (19)].

However, other approaches are focused on different aspects. De

Greef et al. modeled the frequency of naive T cells from generation

(VDJ rearrangement) probabilities (Pgen) and highlighted several

cases of frequent rearrangements that fall out of the model.

Moreover, all the work was performed by separating the CD4 and

CD8 memory and naive subsets, which behave differently. The

comparisons were done between the real repertoire frequency

distribution and the model built from Pgen that can be adjusted to

account for thymic selection (but not for memory expansions). In

this paper, we proposed a method to evaluate the differences in the

clonotype survival rates. These are dependent on the real clonotype

frequency, which is extremely hard to measure as most clonotypes

are rare and 1 cell per 10,000–1,000,000 can represent either naive

or memory cells. Moreover, Pgen-based models can, strictly

speaking, only be used for T-cell repertoires before thymic

selection. In our case, we are agnostic to the Pgen and cell subset

(which can be used as a comparison factor) and group clonotypes

by their observed counts, expecting that, in general, they will behave

similarly during sampling and that any biases can be attributed to

changes in survival, expansion, and other probabilities.

As the top of the immune receptor repertoire is, in general,

highly stable (10, 37–39), and on that scale most of the changes

associated with rare clone incidence are due to sampling effects, we

were able to show that our model can accurately predict the

probability to recapture a T-cell clonotype of a certain size

(supported by a certain number of reads/UMIs, i.e., supported by

a certain number of T cells) over the course of several weeks and

even years. The model parameters can be easily determined and

fine-tuned for a specific AIRR-seq protocol.

In the section on YFV, we noted that antigen-specific clones are

more likely to be captured on day 45 post-vaccination; however, as

shown in Figure 4A, the capture probability difference between the

specific and nonspecific large clonotype groups was very small,

particularly for Q1, Q2, S1, and S2. As the recapture probability is

directly dependent on clonal size, large clonal expansions have high

recapture rates disregarding their relatedness to YFV even in the

context of vaccination. Large expansions in the CD8 subset are well

known for T-cell clones specific to persisting viruses, such as CMV

or Epstein–Barr virus (EBV). The results of this paper showed the

stability of large clones during the 1-year timeline; similarly, in a

number of previous studies, the stability of large clonal expansions
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has been demonstrated (10). Even after an acute antiviral response

or vaccination, only a few T-cell clones can reach comparable cell

numbers when using bulk TCR repertoire sequencing and ordinary

(5–20 min) sample size. During the immune response, most

“events” in terms of changes in the clonal abundance are usually

observed for small- or medium-sized clones in PB samples (11).

Indeed, our model showed more differences for the smaller groups

compared with the large groups. There was a relatively small

number of YF-specific clones falling into the group designated as

“large” in this study, and the most non-YF-specific T-cell clones

from the group were also recaptured with high probability, leading

to small differences in the recapture probability between the YF-

specific and the rest of the large clones. Depending on the aims of a

particular study, the repertoire can be more precisely dissected,

allowing a detailed study of this part of the repertoire.

We further applied our approach to study the survival of donor

T cells in recipients after allo-HSCT. Even in cases where the

majority of donor T-cell clonotypes could not be detected in the

PB of patients after TCRab/CD19-depleted HSCT (22), the

recapture probability of the traceable clonotypes accurately

follows our model. This allowed us to compare alternative

approaches to allo-HSCT with the clonotype recapture probability

inferred by our model and to detect differences in the survival of

donor T cells from different cell subsets. Our results supported the

initial observation that the clonotypes from memory-enriched

donor T-cell infusions survive in recipients’ blood (7) and

demonstrated differences in the survival rates of the clonotypes

associated with the central memory or effector memory phenotype,

as well as the absence of such differences between CD4+ and CD8+

donor T cells. It has to be noted that, due to the inability to sequence

all of a recipient’s T cells, the better recapture rate in the subsequent

sample of a given size could also reflect a higher expansion rate

rather than the complete elimination/persistence of a clonotype on

a periphery.

Comparison of the serial time point repertoires in the

vaccination dataset allowed inferring the groups of clonotypes

with homologous TCRs induced by YFV vaccination that are

likely to be specific to viral antigens. This result was validated

using the TCRs that were previously shown to be specific to the YFV

antigen by tetramer staining. Overall, the results of the repertoire

analysis using our statistical approach complement the conclusions

of the study in which the dataset was obtained (6).

Having ground truth values for clonotype frequencies is close to

impossible due to the extreme diversity of the T-cell repertoire and

the limited sampling [a common challenge in analysis that involves

undetectable species; see (37)]. To further validate our approach, we

used the YFV vaccination data and edgeR as a method with different

underlying statistical basis to identify the clonotypes with increased

cell counts between two time points (6). In this dataset, the vaccine-

induced clones were independently verified and were known to

expand and have a characteristic trend in their frequencies. This

trend in frequencies is in a good agreement with that of our model

(Supplementary Figure 3).

Our approach can be easily generalized to B-cell AIRR-seq data.

Interestingly, as B-cell receptors naturally cluster into tree-like
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structures (i.e., “clonal groups”) as a result of somatic

hypermutation, the definition of a functional group in this case is

relatively simple. Using our approach, it is possible, for example, to

monitor a single large tree/clonal group formed by an antigen-

responding B-cell clone in dynamics and observe how its expansion

changes in a time course (40).

Another natural application is the analysis of single-cell

transcriptome data completed with VDJ sequencing. In this case,

functional groups of T cells can be introduced by clustering the gene

expression profiles of single cells and defining the T-cell

phenotypes. By tracking the TCRs corresponding to a certain

phenotype, our method can be applied to identify the T-cell

populations that undergo expansion and depletion across various

conditions and tissues. Given the wealth of single-cell sequencing

data that incorporate TCR sequencing, this approach appears to

hold a lot of promise and can be used to reanalyze existing data.

Other potential applications of our approach include basic

immunology studies such as quantifying clonal selection and the

diversity of adaptive immune repertoire in various setups (2, 19, 41),

monitoring rare groups of clonotypes involved in autoimmune

responses (9), and tracking the fate of T cells in the course of

cancer immunotherapy by comparing the TCR repertoires of

various cell subsets and post-therapy time points (42, 43). Our

approach can be easily incorporated into routine data analysis

pipelines, both for AIRR-seq data and other types of datasets,

such as scRNA-seq. Overall, we believe that our approach can be

useful for both basic and applied research and that it has certain

potential for clinical applications.
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41. Nikolich-Žugich J, Slifka MK, Messaoudi I. The many important facets of T-cell
repertoire diversity. Nat Rev Immunol. (2004) 4:123–32. doi: 10.1038/nri1292

42. Liu B, Hu X, Feng K, Gao R, Xue Z, Zhang S, et al. Temporal single-cell tracing
reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1
therapy in lung cancer. Nat Cancer. (2022) 3:108–21. doi: 10.1038/s43018-021-00292-8

43. Abbas HA, Hao D, Tomczak K, Barrodia P, Im JS, Reville PK, et al. Single cell T
cell landscape and T cell receptor repertoire profiling of AML in context of PD-1
blockade therapy. Nat Commun. (2021) 12:6071. doi: 10.1038/s41467-021-26282-z
frontiersin.org

https://doi.org/10.1146/annurev-immunol-032414-112014
https://doi.org/10.1073/pnas.1409155111
https://doi.org/10.1111/j.1365-2567.2011.03527.x
https://doi.org/10.1073/pnas.1409572111
https://doi.org/10.1073/pnas.1409572111
https://doi.org/10.1038/s41587-020-0656-3
https://doi.org/10.1073/pnas.1809642115
https://doi.org/10.1038/s41409-020-01128-2
https://doi.org/10.1038/s41375-019-0496-7
https://doi.org/10.1038/s41375-019-0496-7
https://doi.org/10.1093/rheumatology/kex517
https://doi.org/10.4049/jimmunol.1600005
https://doi.org/10.4049/jimmunol.1600005
https://doi.org/10.1038/s41590-022-01184-4
https://doi.org/10.3389/fimmu.2019.02533
https://doi.org/10.3389/fimmu.2019.02533
https://doi.org/10.1073/pnas.1212755109
https://doi.org/10.1371/journal.pcbi.1004503
https://doi.org/10.1038/s41467-018-02832-w
https://doi.org/10.1093/jpe/rtr044
https://doi.org/10.1093/biomet/63.3.435
https://doi.org/10.2307/1934352
https://doi.org/10.7554/eLife.49900
https://doi.org/10.1093/bib/bbab566
https://doi.org/10.1038/nri2260
https://doi.org/10.1038/leu.2016.321
https://doi.org/10.3389/fimmu.2013.00456
https://doi.org/10.1038/nmeth.2960
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1093/nar/gkx760
https://doi.org/10.1038/nature22976
https://doi.org/10.1038/nature22383
https://doi.org/10.1093/biostatistics/kxm030
https://doi.org/10.1182/blood-2008-10-184184
https://doi.org/10.1182/blood-2008-10-184184
https://doi.org/10.1126/science.286.5441.958
https://doi.org/10.1038/nri777
https://doi.org/10.1073/pnas.1808594115
https://doi.org/10.1038/sj.bmt.1704953
https://doi.org/10.1186/s13073-015-0169-8
https://doi.org/10.1126/scitranslmed.3003656
https://doi.org/10.1126/scitranslmed.3003656
https://doi.org/10.4049/jimmunol.1302064
https://doi.org/10.4049/jimmunol.1302064
https://doi.org/10.1172/JCI158122
https://doi.org/10.1016/j.exger.2017.05.015
https://doi.org/10.1016/j.exger.2017.05.015
https://doi.org/10.7554/eLife.79254
https://doi.org/10.1038/nri1292
https://doi.org/10.1038/s43018-021-00292-8
https://doi.org/10.1038/s41467-021-26282-z
https://doi.org/10.3389/fimmu.2024.1321603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Detecting T-cell clonal expansions and quantifying clone survival using deep profiling of immune repertoires
	1 Introduction
	2 Materials and methods
	2.1 Model description
	2.2 Datasets used in the study
	2.2.1 HSCT dataset
	2.2.2 Vaccination dataset
	2.2.3 Immune aging dataset

	2.3 TCRβ library preparation, sequencing, and repertoire data extraction
	2.4 Statistical analysis and source code
	2.5 Inferring expanded clones using “edgeR”

	3 Results
	3.1 Model description and rationale
	3.2 Longitudinal repertoire stability and sampling model
	3.3 Vaccination time course and emergence of antigen-specific TCRs
	3.4 HSCT conditioning and donor T-cell recovery

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


