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Background: Hepatocellular carcinoma (HCC) is one of the most lethal

malignancies worldwide. PANoptosis is a recently unveiled programmed cell

death pathway, Nonetheless, the precise implications of PANoptosis within the

context of HCC remain incompletely elucidated.

Methods: We conducted a comprehensive bioinformatics analysis to evaluate

both the expression and mutation patterns of PANoptosis-related genes (PRGs).

We categorized HCC into two clusters and identified differentially expressed

PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was

constructed using LASSO and multivariate Cox regression analyses. The

relationship between PRGs, risk genes, the risk model, and the immune

microenvironment was studies. In addition, drug sensitivity between high- and

low-risk groups was examined. The expression profiles of these four risk genes

were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the

effect of CTSC knock down on HCC cell behavior was verified using in

vitro experiments.

Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8,

G6PD, and CXCL9). Receiver operating characteristic curve analyses

underscored the superior prognostic capacity of this signature in assessing the
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outcomes of HCC patients. Subsequently, patients were stratified based on their

risk scores, which revealed that the low-risk group had better prognosis than

those in the high-risk group. High-risk group displayed a lower Stromal Score,

Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor

mutation burden (TMB) values. Furthermore, a correlation was noted between

the risk model and the sensitivity to 56 chemotherapeutic agents, as well as

immunotherapy efficacy, in patient with. These findings provide valuable

guidance for personalized clinical treatment strategies. The qRT−PCR analysis

revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas

downregulated expression of CXCL9 in HCC compared with adjacent tumor

tissue and normal liver cell lines. The knockdown of CTSC significantly reduced

both HCC cell proliferation and migration.

Conclusion:Our study underscores the promise of PANoptosis-basedmolecular

clustering and prognostic signatures in predicting patient survival and discerning

the intricacies of the tumor microenvironment within the context of HCC. These

insights hold the potential to advance our comprehension of the therapeutic

contribution of PANoptosis plays in HCC and pave the way for generating more

efficacious treatment strategies.
KEYWORDS

PANoptosis, hepatocellular carcinoma, tumor microenvironment, prognosis signature,
drugs susceptibility
Introduction

Liver cancer ranking as the seventh most commonly diagnosed

malignancy and the second leading cause of cancer-related

mortality, is a significant global health concern. In 2020, 906,677

new cases and 830,180 deaths attributed to liver cancer were

reported (1). The burden of liver cancer is steadily increasing,

with the number of estimated incident projected to exceed one

million by 2025 (2). The majority of liver cancer cases are

hepatocellular carcinoma (HCC), accounting for 90% of live

cancer (2). Current mainstay curative management options for

HCC include surgical resection, radiofrequency ablation, and liver

transplantation. However, a significant number of patients are

diagnosed at an advanced stage, limiting the curative treatment

options to transarterial chemoembolization (TACE), tyrosine

kinase inhibitors (TKI), and immune checkpoint inhibitors (3).

The prognosis for HCC remains poor, with an overall 5-year
ular carcinoma; TME,
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survival rate of only 18% (4). Therefore, it is essential to uncover

the genomic characteristics of HCC and develop reliable and

effective models for developing reliable and effective models to

predict HCC prognosis and assess therapeutic responses, thereby

enabling individualized and precise treatments.

Programmed cell death (PCD), including apoptosis, pyroptosis,

and necroptosis has been implicated in the pathophysiology of HCC

(5). Although these PCD pathways were traditionally considered

independent, mounting evidence suggests intricate crosstalk among

apoptosis, pyroptosis, and necroptosis (6). Thus an additional PCD

pathway known as PANoptosis has recently emerged (7). It is a

newly recognized form of inflammatory programmed cell death,

which underscores the coordination and crosstalk between

pyroptosis, apoptosis, and necroptosis (6, 7). During PANoptosis,

these three pathways are collectively activated, forming the

PANoptosome complex, which exhibits characteristics not

explained by any individual death pathway (6, 8, 9). Although

numerous studies have identified the roles of pyroptosis, apoptosis,

and necroptosis in HCC (10–12), the relationship between HCC

and PANoptosis, as well as its impact on anticancer immunity,

remains unclear. Therefore, understanding the characteristics of

PANoptosis may provide vital insight into the mechanisms

underlying HCC tumorigenesis and facilitate the development of

promising immunotherapy strategies for HCC.

In this study, we comprehensively integrated the expression

profiles of 486 HCC patients to assess the PANoptosis-related
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1323199
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ouyang et al. 10.3389/fimmu.2024.1323199
molecular patterns into mechanisms contributing to HCC

tumorigenesis and facilitate the development of promising

immunotherapy strategies for HCC. A novel PANoptosis risk

scoring system was developed to predict the prognosis of HCC

patients and characterize the TME phenotype. Finally, we validated

the expression levels of the four genes in our signature using

quantitative polymerase chain reaction (qPCR) in both human

samples and cells.
Materials and methods

HCC dataset and preprocessing

The RAN-sequencing and corresponding clinical data of 371

HCC cases and 50 healthy cases were download from the TCGA

database (https://portal.gdc.cancer.gov/) (13). The HCC gene

expression profiles and clinical characteristics of GSE76427

(n=115) were enrolled from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (14). Gene symbols were converted

from probes based on the GPL10558 platform annotation file. The

patients with HCC whose survival information was unavailable

excluded from the analysis. The data of TCGA and GEO databases

were merged using the “sva” R package (15) to remove the batch

effects. A total of 29 PANoptosis-related genes (PRGs) were

enrolled from previous studies (6, 8, 16). The data of copy

number variation (CNV) was downloaded from UCSC Xena

(https://xenabrowser.net). The flowchart of this study is shown

in Figure 1.
Frontiers in Immunology 03
Differential expression gene and consensus
clustering analysis of CRGs

Wilcoxon rank-sum test was used to analysis the differential

PRGs expression level between HCC patients and healthy samples

using “limma” package (17). DEGs were selected with the threshold

of p-value<0.05. We applied consensus clustering algorithms to

categorize HCC patients into distinct molecular subtypes based on

the expression of PRGs. This analysis was performed using the

“ConsensusClusterPlus” (18) R package, and 1000 repetitions were

conducted to ensure robustness. We next determined determine the

optimal number of subtypes, we utilized a Cumulative Distribution

Function (CDF) and evaluated the CDF Delta area. Additionally,

Principal Component Analysis (PCA) was performed to confirm

the differentiation of transcriptome profiles among the identified

subgroups using the “ggplot2” R packages (19).
Gene set variation analysis and functional
enrichment analysis

We used the “GSVA” (20) R package to perform the GSVA analysis

to detect biological functions distinguishing different PANoptosis

subtypes. The gene sets of KEGG gene set “c2.cp.kegg.symbols.gmt”

download from the MSigDB database (https://www.gsea-msigdb.org/

gsea/index.jsp), was employed to conducted the GSVA analysis (21). The

“clusterProfiler” (22) R package was used to performed the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and gene ontology

(GO) analysis. The pathways exhibiting a p< 0.05, logFC > 0.5 were

deemed statistically significant.
Construction of PANoptosis risk model

A total of 485 HCC patients were randomly classified into

testing and training group with a ratio of 1:1. Afterward, we

identified 153 differentially expressed genes (DEGs) through

performed three pairwise comparisons between the three

PANoptosis subtypes, each time with a Log2 (fold change)> 0.585

and an adjusted P-value<0.05. The DEGs between three

PANoptosis subtypes was intersected with each other to create

PANoptosis gene signature.

Subsequently, we conducted univariate Cox regression analysis

and identify 93 DEGs which significant associations with HCC

prognosis to estimate significant genes. To mitigate overfitting, we

employed LASSO Cox regression analysis (23). The best-

performing gene was selected through multivariate Cox regression

analysis, and a PANoptosis risk model was established using the

formula: PANoptosis score =on
i=1exp(Xi)� coef(Xi), where exp

(Xi) represents the expression level and coef(Xi) represents the

coefficient. Patients were stratified into high- and low-risk groups

based on the median risk score. Time-dependent receiver operating

characteristic (ROC) analysis was conducted to assess the sensitivity

and specificity of the risk signature. A bootstrap method employing

1,000 resamplings was employed to generate the test set.
FIGURE 1

Flowchart of the present study.
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Assessment of tumor microenvironment

The CIBERSORT algorithm (24) was utilized to estimate the

fractions of 22 immune cell phenotypes in each HCC patients, with

the sum of the proportion of all calculated immune cell phenotypes

in each sample being equal to 1. Samples with a p-value of< 0.05

were deemed statistically significant. Utilizing CIBERSORT results,

correlation analysis was conducted between risk genes and 22

phenotypes of immune cells using the “limma” and “ggplot2”

packages. The R “ESTIMATE” package (25) was used to

calculated the immune scores, stromal scores, and ESTIMATE

scores for each HCC sample (26). Subsequently, we conducted

Wilcoxon tests to analyze the differences in these scores between the

two risk groups. For a more detailed assessment of immune cell

infiltration, we applied the single-sample gene set enrichment

analysis (ssGSEA) based on “gsva” package (27).
Survival analysis of HCC

Afterward, we identified “survminer” and “survival” packages to

generate Kaplan–Meier survival plots and assess the significance of

differences using log-rank tests. The HCC patients were stratified

into different subtypes, including PANoptosisCluster subtype,

geneCluster subtype, PANoptosisScore subtype, and TMB subtype.
Development of nomograms

We developed nomograms to quantitatively predict of 1-, 3-,

and 5-year overall survival (OS) by incorporating both clinical

characteristics and risk score based on HCC patients’ survival.

Within the nomogram scoring system, individual variables such

as gender, age, stage, and PRG Risk score were paired with

corresponding scores. The cumulative score for each sample was

derived by summing the assigned scores across all variables. The

prognostic performance of the nomograms was assessed by

calibration plots, which evaluated the concordance between

predicted and actual values. The “rms” R package was used to

construct the nomograms and conducting the calibration

plot analysis.
Assessment of mutation, and cancer stem
cell index

We next analyzed the mutations in HCC patients from both

high- and low-risk groups, using the R package “maftools” (28) to

generate mutation annotations. Initially, the total count of

nonsynonymous mutations in each sample was computed.

Subsequently, genes with high mutation frequencies were

discerned utilizing a threshold of mutation frequency>5. The

discrepancies in mutation frequency between different groups

were then evaluated. Additionally, we examined the correlation

between the cancer stem cell index and risk scores using the

Spearman method (29).
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Drug sensitivity analysis

We next assessed the drug sensitivity of every patient utilizing

198 drugs obtained from the genomics of drug sensitivity in the

cancer v2 (GDSC) database (https://www.cancerrxgene.org/) and

calculated their sensitivity by the “oncoPredict” R package (30).

Statistical significance was determined at p< 0.05.
Cell culture and siRNA transfection

The HCCLM3, huh7, sun449, HepG2, HCCLM3, MHCC97-H of

HCC cell lines and THLE-3 of normal liver cells, were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

penicillin G (100 mg/mL), streptomycin (100 mg/mL), and 10% fetal

bovine serum (FBS; Gibco; USA). These cultures were incubated at

37°C in a 5% CO2 atmosphere. Logarithmically growing cells were

selected to conduct experiments. SUN449 was employed for siRNA

transfection. For transfection, we employed Lipofectamine 3000

Transfection Reagent (Invitrogen, Waltham, Massachusetts, USA)

in conjunction with 5 nmol of the specified siRNA fragments and a

negative control si-NC (GenePharma, Shanghai, China) into

approximately 4×105 SUN449 cells following the manufacturer’s

instructions. Si-NC (GenePharma) was used as a negative control.

To assess transfection efficiency, quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) were employed. The

sequences listed in Supplementary Table 1.
RNA extraction and quantitative real-
time PCR

Total RNA was isolated from human samples of adjacent tumor

tissues, HCC, normal liver cells (THLE-3), and HCC cells (huh7,

sun449, HepG2, HCCLM3, MHCC97-H) using the Trizol reagent

(Thermo Fisher Scientific, United States) following the

manufacturer’s instructions. Reverse transcription was carried out

using the PrimeScriptTM RT reagent Kit (Takara, Japan). Next,

qRT-PCR was performed on an FX Connect system (Bio-Rad,

United States) using the SYBR ® Green Supermix (Bio-Rad,

United States) to measure the expression levels of hub genes. b-
actin was used as an internal control for normalization. RT-qPCR

was measured 3 times, with 3 biological replicates each time. The

relative expression levels of the target genes were calculated using

the 2-DDCT method. 15 patient’s HCC tissue and adjacent tissue were

used for qRT-PCR and a Student’s t-test used to analyzed. Primer

sequences used in the qRT-PCR assays are provided in

Supplementary Table 1.
Human specimens and
immunohistochemical staining

Human specimens were collected from 15 patients diagnosed

with HCC at LiuZhou People’s Hospital affiliated to Guangxi

medical university. The study protocol was reviewed and
frontiersin.org
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approved by the Medical Ethics Committee of LiuZhou People’s

Hhospital affiliated to Guangxi medical university. All patients

provided written informed consent in accordance with the

Declaration of Helsinki. Human tissue specimens were fixed with

4% paraformaldehyde, embedded in paraffin, and sectioned into

5 mm slices by a slicer. The specimens were dewaxed with xylene,

following which the tissue sections were rehydrated using a graded

series of ethanol solutions for antigen retrieval. The tissue sections

were repaired with a sodium citrate repair solution (from Fuzhou

Maixin Biotechnology Development Co., Ltd.), followed by

allowing the sections to cool. Subsequently, an adequate amount

of endogenous peroxidase blocker (supplied by Beijing Zhongshan

Jinqiao Biotechnology Co., Ltd.) was added, and the sections were

incubated at room temperature for 10 minutes. Afterward, the

sections were washed three times with PBS, with each wash lasting 3

minutes. The sections were then blocked with 10% goat serum and

incubated overnight at 4°C with anti-CTSC antibody (1:100) (Santa

Cruze, U.S.A, cat#:sc-74590). Following three washes with PBS, the

sections were incubated with a secondary antibody for 30 mins at

25°C, followed by development and then developed with DAB for

10 mins. Next, the sections were counterstained with hematoxylin

for 2 mins to visualize nuclei. 15 patient’s tumor and adjacent tumor

tissue were used to qRT-PCR and immunohistochemical staining.

Student’s t-test or Wilcoxon test was used to compared the two

group and p< 0.05 was regarded as significance.
Wound-healing and Transwell assays

We next studied the invasion capability and cell migration

capacity by conducting Transwell assays and wound healing assays,

respectively. For the Transwell assays, Prior to the experiment, the

experimental cells underwent a period of serum starvation and were

cultured in serum-free medium for 24 hours. Following this, the

cells were digested, the digestion process was halted, and then

centrifuged at 1500 rpm for 3 minutes. After aspirating the

supernatant, the cells were washed with PBS and counted.

Subsequently, the cells were resuspended in serum-free medium.

The cell density was adjusted to 1 × 10^4 cells/mL, and 500 mL of

culture medium containing 15% FBS was added to each well of a 24-

well plate. Next, 200 mL of cell suspension was added to the

chamber, which was carefully placed into the well of a 24-well

plate containing complete culture medium to prevent the formation

of air bubbles. The cells were then incubated in a cell culture

incubator for 48 hours. Following incubation, the cells on the

chamber were aspirated, and any remaining cells were gently

wiped off using a PBS-dried cotton swab. The cells were fixed

with a 10% methanol solution for 30 seconds, stained with 0.1%

crystal violet for 20 minutes, and washed with tap water until the

background was clear. Finally, 3-5 fields of view were randomly

selected under an upright microscope, and the number of cells

passing through the membrane was counted. Photomicrographs

were captured and counted using Image J software. For the wound-

healing assay, transfected SUN449 cells were seeded in a 6-well

plate. When the cells reached 90% confluence, a 200 mL pipette tip

was used to create a vertical scratch in the cell monolayer. Washed 3
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times with PBS, removed the scratched cells, and added serum-free

medium. The cells were then cultured for an additional 24 hours in

a 37°C 5% CO2 incubator. Images were acquired and documented

initially at the 0-hour time point, with additional imaging

performed at 24 hours. Kruskal-Wallis test was used to analysis

the Wound-healing and transwell assays results.
5-ethynyl-2′-deoxyuridine assays

SUN449 cells were seeded into a 12-well plate. After overnight

incubation and return to a normal state, the cells were transfected

with siRNA. Subsequently, an equal volume of 2X EdU working

solution (20 mM) (Beyotime, China), preheated to 37°C, was added

to the 12 wells plate, and the cells were incubated for 2 hours. Once

EdU labeling was completed, the culture medium was removed, and

the cells were fixed with 500 ml of fixative solution for 15 minutes.

Following fixation, the cells were washed three times with 500 ml
washing solution per well, with each wash lasting 3-5 minutes. After

washing, permeabilization solution (500 ml per well) was added and

incubated for 15 minutes, followed by 2 additional washes with 1 ml

washing solution per well. Subsequently, 200 ml of Click reaction

solution (Beyotime, China) was added, and the cells were incubated

in the dark for 30 minutes. After removing the Click reaction

solution, the cells were washed three times with washing solution

for 3-5 minutes each. Nuclear staining was performed using

Hoechst 33342, with protection from light, for 10 minutes.

Following staining, the cells were washed three times with

washing solution for 3-5 minutes each. Finally, fluorescence

detection could be carried out.
Immunohistochemistry

Paraffin sections of HCC tissue from 15 patients and adjacent

tumor tissue from the same group were subjected to

immunostaining using antibodies against CTSC. Prior to staining,

a dual endogenous enzyme blocker (MXB Biotechnologies, China)

was applied for 30 minutes. The primary antibodies were left to

incubate overnight at 4°C. Following thorough washing, the tissues

were treated with the appropriate secondary antibodies and

incubated at 37°C for 30 minutes. Next, an appropriate amount

of DAB solution was applied for staining, followed by

counterstaining with hematoxylin. To complete the process, a

layer of neutral gum was used to cover the slides and the slides

were sealed. The staining results was observed using an

inverted microscope.
Statistical analysis

All statistical analyses were performed using the R software

version 4.2.2 and GraphPad Prism 9. Continuous data are presented

as means ± standard deviations. Student’s t-test was used for

normally distributed data in two-group comparisons, whereas the

Wilcoxon test was used for non-normally distributed data. For
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comparisons involving more than two groups, the Kruskal-Wallis

test was used. Statistical significance was defined as p< 0.05. ALL

experiment was repeated three times independently.
Results

Differential expression and genetic
variation of PRGs in HCC

We first collected a set of 29 PRGs from previously published

studies (6, 8, 16). As shown in Figure 2A, 33 (8.89%) of 371 samples

had somatic mutations. Among the 29 PRGs, NLRP3 and MEFV

exhibited the highest mutation frequency. Copy number variation

(CNV) analysis showed that AIM2, GSDMD, RIPK1, NLRP3,

RIPK3, PARP1, FADD, ZBP1, NLRC4, CASP8, IRF1, PYCARD,

and MEFV had the increased CNV, whereas, CASP6, TAB2,

TRADD, CASP7, CASP1, TNFAIP3, MLKL, TAB3, and PSTPIP2

displayed decreased an CNV decrease (Figure 2B). The locations of

the CNV alterations of PRGs on the chromosomes were shown in

Figure 2C. Furthermore, we conducted mRNA differential

expression analysis of these 29 PRGs between 374 HCC samples

and 50 healthy samples from TCGA. The result showed that gene,

including CASP8, FADD, CASP6, TAB3, PSTPIP2, TNFAIP3,

PARP1, GSDMD, MKLK, IRF1, RIPK1, TRADD, PYCARD, was
Frontiers in Immunology 06
upregulated in HCC, whereas only NLRP3, AIM2, and MEFV were

significantly downregulated in HCC samples (Figure 2D).
Identification of PRGs clusters in HCC

To explore the overall landscape of PRGs interaction,

relationships, and prognostic significances, a network map was

constructed (Figure 3A). The network map showed 14 of 29

genes showed significant correlation in interaction, relationship

and prognostic. The relationship between the prognosis of HCC

patients and 14 PRGs were assessed using the Kaplan-Meier curves

and shown in Supplementary Figure 1. The expression of 20 PRGs

in HCC were used to conduct an unsupervised clustering algorithm

and group the 486 HCC patients into three distinct patterns. The

most effective clustering result was achieved at K=3 among K = 2 to

K = 9 (Figures 3B, C). Thus, we categorized 128 HCC patients into

PRGcluster A, 226 into PRGcluster B, and the remaining 132 into

PRGcluster C. The principal component analysis (PCA) indicated a

satisfactory separation between the three clusters (Figure 3D).

PRGcluster C exhibited higher expression levels for most PRGs,

whereas PRGcluster A displayed lower expression levels for most

PRGs (Figure 3E). Next, we investigated the relationship between

these three PRGcluster and clinical characteristics. Kaplan-Meier

curves demonstrated significant differences in OS among the three
B

C D

A

FIGURE 2

Expression and genetic alteration of PRG in HCC. (A) The maftool exhibited incidence of somatic mutations of PRG in 371 HCC patients from TCGA
database; (B) The CNV frequency of PRG in TCGA cohort. The height of the column showed the proportions of gain or loss variations; (C) The
location of CNV alteration of 22 PRG on 23 chromosomes. (D) The expression of 22 PRG in HCC and normal tissues;. PRGs, PANoptosis-related
genes; HCC, hepatocellular carcinoma; CNV, Copy number variation. The p-values were showed as: *p < 0.05; ***p < 0.001.
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PRGclusters, with PRGcluster C showing the poorest

OS (Figure 3F).

Additionally, we conducted the GSVA analysis to identify distinct

pathways associated with PRGclusters A, B, and C (Figures 4A–C). The

ssGSEA were utilized to assess the immune cell infiltrations in three

PRGclusters. The boxplot showed that PRGcluster C was enriched in

activated CD4 T cells, activated dendritic cells, CD56 bright nature

killer cells, immature B cells, immature dendritic cells, MDSCs,

macrophages, natural killer cells, plasmacytoid dendritic cells,

regulatory T cells, T follicular helper cells, and type 2 T helper cells.

While, PRGcluster A was enrich in eosinophils (Figure 4D).
Generation of PRG signatures in HCC

We conducted a differential gene expression analysis of three

PRGclusters, comparing them in pairs three times among the three

subtypes. We used a Venn diagram to successfully identify 153

DEGs exhibiting intersection across these three clusters (Figure 5A).

The potential functions and pathways governed by these 153 DEGs

were unraveled using GO and KEGG enrichment analyses

performed using the “ClusterProfiler” packages. The GO results

unveiled that these DEGs were involved in chromosome

segregation, wound healing, and positive regulation of the cell

cycle process in the biological process (BP). Within the Cellular

Component (CC) category, they were prominently associated with

chromosomal regions, collagen-containing extracellular matrices,

and nuclear chromosomes. The Molecular Function (MF) exhibited

closely related to integrin binding, platelet−derived growth factor
Frontiers in Immunology 07
binding, and single−stranded DNA binding (Figure 5B).

Furthermore, the KEGG pathway analysis demonstrated their

participation in processes such as Phagosome, PI3K-Akt signaling

pathway, cell adhesion molecules, ECM-receptor interaction,

Proteoglycans in cancer, and Cell cycle (Figure 5C).

To further analyze the important roles, univariate Cox regression

was performed to identify the relationship between the 153

PRGcluster-related DEGs and the prognosis in HCC. Subsequently,

patients were categorized into two major gene clusters, denoted as

genecluster A and genecluster B (Figures 5D, E). The Kaplan–Meier

analysis revealed that patient in genecluster B exhibited a more

favorable OS rate compared to those in genecluster A (Figure 5F). A

complex genecluster-based heatmap was developed by combining the

gender, age, HCC clinical stage, PRGcluster, genecluster in TCGA and

GSE 76427 (Figure 5G). Moreover, the analyzing the transcriptomic

profile from the heatmap was analyzed that revealed the upregulation

in most genes of genecluster A, whereas those in genecluster B

predominantly exhibited downregulation. The DGEs analysis

between genecluster A and B showed that CASP8, FADD, CASP6,

NLRP3, PSTPIP2, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, IRF1,

AIM2, ZBP1, CASP1, RIPK1, RIPK3, TRADD, MEFV, PYCARD,

NLRC4 were upregulated in genecluster A (Figure 5H).
Construction of prognostic PANoptosis risk
scoring model

The HCC patients were randomly divided into a training set

(243 samples) and a testing set (242 samples) to explore the
B C

D E F

A

FIGURE 3

Identification of molecular subtypes of PRGs for HCC. (A) A network between PRGs in HCC; (B, C) Consensus matrix heatmap defining three
clusters (k = 3) and their correlation area; (D) PCA diagram of HCC samples in cluster A, B, and C. (E) Complex heat maps show clinical correlations
among the three clusters; (F) Survival analysis of three PRGclusters.
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prognosis related PRG-related DEGs. A univariate Cox regression

analysis was performed using the 153 DEPRGs along with survival

data within the training datasets. Out of these, 93 DEPRGs were

exhibited significant associations with prognosis (p< 0.05). To

enhance the precision of gene selection for model construction,

we adopted a systematic approach. Specifically, we randomly

sampled 80% of the training set specimens for LASSO regression
Frontiers in Immunology 08
analysis, incorporating tenfold cross-validation and executing 1000

iterations. Subsequently, this rigorous methodology enabled the

identification of a refined subset comprising 4 significant genes

crucial for model refinement. (Figures 6A, B). Subsequently, we

performed a multivariate Cox regression analysis using these four

significant genes, and identifying the most pivotal genes for

prognosis—CTSC, CDCA8, G6PD, and CXCL9The PANoptosis
B

C D

A

FIGURE 4

GSVA results between three PRGclusters and relationship of tumor microenvironment in three PRGclusters. (A–C) The GSVA heat map showed the
differences in pathways in the three clusters; (D) The differential analyses between immune cells and the scale of fraction for PRGcluster A, B and C.
*p<0.05, **p<0.01, ***p<0.001.
B C D
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A

FIGURE 5

Functional enrichment analysis of PRGs, and identified two genecluster based on 153 DEGs. (A) The Venn diagram shows the intersection of three
PRGclusters; (B) Analysis of BP, CC, and MF terms of GO enrichment demonstrated the possible function of the 153 DEGs; (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis revealed the possible pathways; (D) Unsupervised cluster analysis of 153 DEGs
developed two geneclusters (k = 2); (E) Consensus matrix heatmap defining two clusters and their correlation area; (F) Survival analysis of two
geneclusters. (G) A complex heat map illustrated the expression patterns; (H) Expression of PRGs between genecluster A and genecluster B. *p<0.05,
***p<0.001. DEGs, differential expressed genes.
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Risk scoring system was constructed based on the following formula

in the training sets: Risk score=Exp (CTSC)× (0.215) + Exp

(CDCA8) × (0.232) + Exp(G6PD) × (0.138) + Exp (CXCL9) ×

(-0.196). All set files were combined by the training group and

testing group files. The HCC patients were subsequently categorized

into high- and low-risk groups based on the median Risk score for

each group. The Sankey diagram shows the distribution of PRGs

risk scores with three PRGcluster, two geneclusters, and HCC

patients survival status (Figure 6C). The boxplot showed that

PRGcluster C and genecluster A had higher risk scores

(Figures 6D, E). The differential expression analysis between

high- and low-risk group demonstrated that CASP8, FADD,

CASP6, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, ZBP1,

TRADD, PYCARD, and NLRC4 were upregulated in high-risk

group (Figure 6F).
Validation of prognostic PANoptosis risk
scoring model

The KM analysis revealed that patients with low-risk had a

better survival rate than those with high-risk in both total, training,

and testing sets (P< 0.05) (Figures 7A–C). Additionally, we utilized

the ROC curves to assess the prediction efficiency of the risk score.

The AUCs for 1-, 3-, and 5-year survival rates in the training set

were 0.696, 0.706, and 0.603, respectively. In total sets, the AUCs for

1-, 3-, and 5-year survival rates was 0.735, 0.706, 0.638, respectively.

In testing sets, the AUCs of 1-, 3-, and 5-year survival rates were

0.771, 0.697, and 0.708, respectively (Figures 7D–F). These results

indicated a favorable predictive performance for the survival of

HCC patients. We next constructed a nomogram with using risk

score, clinical stage, gender, and age (Figure 7G). the calibration
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curves indicated a relative link between observed and nomogram-

predicted OS of HCC patients (Figure 7H), confirming the validity

of the nomogrammodel for predicting the survival of HCC patients.

The gene expression differences for CTSC, CDCA8, G6PD, and

CXCL9 between high- and low-risk group in all set, training set, and

testing set are depicted in Figures 8A–C. The heatmap visually

represented that CTSC, CDCA8, and G6PD exhibited higher

expression levels in the high-risk groups, whereas CXCL9 showed

lower expression levels. We observed an inverse correlation between

risk score and survival time, as well as a positive association between

risk score and the death rate across all sets—total, training, and

testing. These findings underscore that HCC patients with higher

risk scores had poorer survival outcomes (Figures 8D–I).
Relationship between signature and TME

The association analysis between immune cell abundance and

the risk score showed that neutrophils and macrophages M2 were

positively correlated with risk score, whereas CD8 T cells,

macrophages M1, and naïve B cells were negatively related with

risk score (Supplementary Figure 2). Furthermore, Figure 9A

demonstrates the correlation between immune cells and the four

risk genes. The CTSC displayed significant associations with

neutrophils, macrophages M2, and CD4 memory resting T cells.

In the low-risk group, the Stromal Score, Immune Score, and

ESTIMATE score were significantly higher compared to the high-

risk group (Figure 9B).

Cancer stem cells (CSCs) were thought to play an important

role in the recurrence, metastasis, and identifying therapeutic target

due to their differentiation and self-renewal capacity l (31). A

correlation analysis between the risk score and stem cells unveiled
B C

D E F

A

FIGURE 6

Identification of 4 genes for estimating the risk score and the relationship between molecular classifications, PRGs expression levels and the risk
score. (A, B) The Least absolute shrinkage and selection operator (LASSO) regression analysis and partial likelihood deviance on the prognostic
genes; (C) Sankey plot showed the correlation between PRGclusters, geneclusters, risk groups and survival status in HCC patients; (D) Boxplots
indicate the differences in risk scores in three PRGclusters and (E) two geneclusters. (F) The differential analysis of PRGs expression in high- and low-
risk groups. *p<0.05, **p<0.01, ***p<0.001.
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a positive linear correlation between the risk score and stem cell

content (R=0.3, p<.001) (Figure 9C).

Furthermore, we explored the disparity in tumor somatic

mutations between the high- and low-risk groups using

“maftools”. The top six mutated genes were TP53, CTNNB1,

TTN, MUC16, PCLO, and ALB in both high- and low-risk

groups (Figures 9D, E). In addition, we observed that patients

with high TMB displayed a poorer overall survival rate (Figure 9F).
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The combination of TMB and risk score demonstrated that low risk

plus low TMB had the best OS (Figure 9G).
Drugs susceptibility analysis

We next investigated the predictive therapeutic effects in

patients with HCC by assessing the relationship between the two
B C
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A

FIGURE 8

An analysis of risk gene expression and the distribution of risk scores, survival status of HCC patients. (A–C) Heatmap of four risk genes across
different risk scores in the All, training, and testing sets, respectively. (D–F) Exhibition of PRGs risk score model of the All, training, and testing sets,
respectively. (G–I) Survival status between low-and high-risk groups in the All, training, and testing sets, respectively.
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FIGURE 7

Validation of the prognostic value of the signatures. (A–C) K-M survival curve of all sets, testing set, and training set. (D–F) The ROS for 1-year, 3-
year, and 5-year OS prediction of all sets, testing set, and training set. (G) The nomogram of the risk score and clinical features (age, gender, and
stage) for predicting the survival of HCC patients. (H) The calibration curves showed the accuracy of the nomogram in the 1st, 3rd, and 5th years.
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risk groups and drug sensitivity. Our analysis revealed significant

differences in drug responses between the high- and low-

risk groups, with 56 drugs exhibiting noteworthy distinctions.

Among them 16 drugs had lower IC50 in high-risk groups, such

as Paclitaxel, Sepantronium, and Tozasertib. Low-risk

group were more sensitive to Oxaliplatin, sorafenib, irinotecan

(Supplementary Table 4).
Validation of the expression levels
signature genes

GSE14520 was used to validated the mRNA expression and

diagnosis probability. The results showed that CTSC, CDCA8, and

G6PD were upregulated in HCC tissues, whereas CXCL9 was

downregulated (Figures 10A–D). The AUC value of CTSC,

CDCA8, G6PD, and CXCL9genes were 0.656, 0.858, 0.882, 0.621,

respectively and the model AUC value reached to 0.92, suggesting

our signature had higher quality of prediction (Figures 10E, F). In

addition, we used RT-PCR to validated the mRNA expression of

signature genes between adjacent tumor tissue and HCC, and

normal liver cell THLE3 and liver cancer cell line of HCCLM3,

MHCC-97H, SUN449, HepG2, and Huh7. Compared with the

adjacent tumor tissue and most liver cancer cells lines, a

significant increase expression of G6PD, CDCA8, and CTSC in

HCC tissues and liver cancer cells was observed, whereas CXCL9

was significant downregulated (Figures 10G–N). However, the

mRNA expression of G6PD and CDCA8 showed no significant

differences between THLE3 and HepG2 (Figures 10K, M). IHC and

western blotting further confirmed the higher expression of CTSC

in HCC tissues compared to the adjacent tumor tissues

(Figures 10O–R).
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Effects of CTSC on the proliferation and
migration of SUN-449 cell

We designed three siRNA to study the impact of CTSC

downregulation in SUN449 cells due to the upregulated

expression of CTSC. qRT-PCR confirmed the CTSC effectiveness

of downregulation following siRNA interference (Figure 11A). The

results of Transwell and Wound-healing assays indicated the

inhibition CTSC attenuated the migratory capabilities of SUN449

cell (Figures 11B–E). The EdU assay revealed a reduced proportion

of EdU-positive cells upon the inhibition of CTSC in SUN449 cells,

indicating that CTSC fosters the proliferation of HCC cells

(Figure 11F). qRT-PCR result showed that inhibition of CTSC

could increase the mRNA expression of CASP3, CASP7, GSDMD,

CASP1, MLKL, RIPK3(Figures 11G–L).
Discussion

HCC is a common fatal malignancy of the digestive system

whose global burden has surged significantly from 1990 to 2019,

posing substantial threats to human life, health, and the global

economy (32). Despite previous efforts to diagnose and treat

patients with HCC, a majority of them are diagnosed at advanced

stages, rendering them ineligible for surgical resection and resulting

in unfavorable prognoses. Therefore, it is imperative to elucidate the

mechanism contributing to the pathogenesis of HCC to explore

innovative approaches for diagnosis and treatment. PANoptosis, a

component of the host’s innate immune response, has been

identified as a novel mechanism governing inflammatory

programmed cell death, encompassing pyroptosis, apoptosis, and

necroptosis (6). Previous studies have demonstrated the significant
B C
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F G

A

FIGURE 9

Evaluation of the tumor microenvironment, and tumor mutation burden (TMB) in low- and high-risk groups. (A) Correlation between the four risk
genes and the abundance of immune cells. (B) Comparison of ESTIMATE scores, stromal scores, and immune scores between the low- and high-
risk groups. (C) Correlation between the stem cell content and the PANoptosis risk score. (D, E) The frequency of somatic gene mutations in the
high- and low-risk groups, respectively. (F, G) The Kaplan-Meier curve of the tumor mutation burden and risk scores versus the overall survival.
*p<0.05, **p<0.01, ***p<0.001
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role of PANoptosis in tumorigenesis and anti-tumor therapies (16).

We identified a valid signature to assess the treatment and

prognosis of HCC and developed a signature based on the

concept of PANoptosis for HCC patients.

In our study, we used 29 PRGs to evaluate their somatic

mutations, CNVs, DEGs. Our findings indicated that the majority

of PRGs were significantly upregulated in HCC, with only NLRP3,

AIM2, andMEFV demonstrating downregulation in HCC. Notably,
Frontiers in Immunology 12
NLRP3 and AIM2 were significantly correlated with HCC

prognosis. Previous research has confirmed the downregulation of

AIM2 expression in human HCC tissues compared to adjacent

normal tissues. Furthermore, we revealed that patients with HCC

with higher AIM2 expression exhibited improved overall survival

rates (33), consistent with our analysis. Regarding NLRP3, it plays

dual roles in HCC. On one hand, the NLRP3 inflammasome

inhibits HCC development via pyroptosis, while on the other
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FIGURE 10

Validation of the signature genes with GSE14520, qRT-PCR, and IHC. (A–D) The expression of CXCL9, CTSC, CDCA8, G6PD between HCC and
normal tissues in GSE14520; (E) The ROC results of 4 marker genes in GSE14520. The AUC value of CXCL9, CTSC, CDCA8, G6PD was
0.656,0.858,0.882,0.621, respectively. (F) ROC results of the 4-gene-based model based on 3-fold cross-validation in GSE14520. The AUC value as
0.921. AUC, area under curve; ROC, receiver operating characteristic; DCA, Decision curve analysis. (G–J) qRT-PCR confirmed the 4 marker genes
expression between HCC tissues and adjacent tumor tissues; (K–N) qRT-PCR validated the 4 marker genes expression between HCC cells
(HCCLM3, MHCC-97H, SUN449, HepG2, Huh7) and normal liver cell (THLE3). (O, P) CTSC representative IHC stained images in adjacent tissues and
HCC tissue. (Q, R) Western blot analysis the protein expression in adjacent tumor tissues and HCC tissue. *p < 0.05; **p < 0.01; ****p < 0.0001.
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hand, it promotes HCC growth through the mediation of different

signaling pathways (34). Additionally, we identified that 14 PRGs

were significantly associated with the survival rate of HCC patients.

Collectively, these results suggest that PANoptosis may indeed play

a pivotal role in the context of HCC.

We initiated our study by conducting a comprehensive

clustering analysis to identify the molecular subtype of

PANoptosis. All HCC patients were categorized into three

distinct PRGclusters. Notably, although PRGcluster C exhibited

an overall high expression of most PRGs, it displayed experienced a

significantly worse prognosis. Thus, higher expression levels of
Frontiers in Immunology 13
PRGs could be associated with a lower rate of survival.

Additionally, PRGcluster C exhibited heightened immune

infiltration, characterized by the presence of various immune cells

such as activated CD4 T cells, immature dendritic cells, MDSCs,

macrophages, natural killer cells, and regulatory T cells. Previous

studies has indicated that certain components within TME,

including dendritic cells, macrophages, and natural killer cells,

can promote tumor proliferation, invasion, metastasis, and hinder

anti-cancer immune responses (35–37). This finding implies that

the elevated expression of PRGs could lead to increased immune

cell infiltration and subsequently result in a poorer survival rates.
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FIGURE 11

Cell model validation of CTSC in SUN-449 cell transfected with siCTSC and vector. (A) Relative CTSC mRNA level after being knocked down. (B, C)
Transwell assays were employed to assess the ability of SUN-449 cell to migrate after CTSC was knocked down for 24 h; (D, E) Representative
images and quantitative analysis of the results from the wound healing assay; (F) EdU assay was conducted between the si-NC and CTSC
knockdown SUN-449 cells; (G–L) The mRNA expression of CASP3, CASP7, GSDMD, CASP1, MLKL, RIPK3 after CTSC was knocked down. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001. ns, not significant.
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Furthermore, we identified 153 DEGs related to PANoptosis among

the three PRGclusters, and subsequently categorized patients into

two geneclusters. Notably, geneCluster A exhibited higher PRG

expression levels and a worse survival prognosis. Altogether, these

findings provide valuable insights into the underlying biology of

these specific tumor types and offer potential avenues for subgroup

screening in HCC.

To improve the prognosis prediction and characterization

capabilities of each patient with HCC, LASSO and multivariate

Cox regression analyses were employed to construct a novel

prognostic signature to better predict HCC prognosis. High-risk

groups were characterized by elevated expression levels of most

PRGs and poorer prognoses. Furthermore, PRGcluster C and

geneCluster A, both associated with reduced survival rates,

displayed higher risk scores. This reinforcing the correlation

between higher risk scores in our established signature and

unfavorable prognostic outcomes. Our risk model has practical

applications in treatment personalization, increased surveillance

frequency, and patient prognosis prediction. Specifically, high-risk

patients may benefit from aggressive therapies, while more frequent

monitoring and surveillance can aid in early disease detection.

Moreover, our analysis encompassing ROC curves, nomograms,

and calibration plots underscored the superior predictive

performance and accuracy of the constructed signature. The 1-,3-

,5-year AUC was 0.735, 0.706, 0.638 in the present model, while

another study PANoptosis-related gene signature model showed 1-

,3-,5-year AUC was 0.707, 0.622, and 0.562, respectively. This

indicating that the efficiency of diagnosis of our model was

superior than previous prognostic model (38).

Four risk gene (G6PD, CTSC, CDCA8, and CXCL9) were

identified and utilized to calculate the risk score in our study.

These four risk genes have been previously associated with various

types of malignant tumors, including HCC. G6PD has been

recognized as a prognostic signature and a potential treatment

target for different tumors (39). Zeng et al. reported that the

expression of G6PD in HCC tissues was upregulated compared to

the corresponding adjacent normal tissues (39). In our qRT-PCR

analysis, we confirmed the elevated expression of G6PD in HCC

tissues and HCC cell lines. G6PD is known to promote HCC cell

proliferation, invasion, migration and inhibit ferroptosis.

Knockdown G6PD or inhibit it with smilax China root extract

could suppresses HCC cell growth, tumorigenesis and metastasis

(39–41). CDCA8, a crucial regulator of mitosis, is upregulated in

numerous cancer types. A high expression of CDCA8 has been

associated with higher AFP, larger tumor size, pathological status, T

stage, and poor prognosis in HCC. Silencing CDCA8 could

suppresses tumor growth, proliferation, and stemness of HCC by

inactivating AKT/b–Catenin Signaling, and regulating the CDK1/

cyclin B1 signaling axis (42–45). CXCL9, a specific ligand for

CXCR3, facilitates tumor-suppressive lymphocytic infiltration in

certain solid tumors coupled with its two family members CXCL10

and CXCL11 (46). Increasing evidence has demonstrated that

CXCL9 is closely correlated with the prognosis of certain solid

tumor patients, such as colorectal cancer lung cancer, and HCC

(47). Ding et al. revealed that CXCL9 binding to CXCR3 promotes

metastasis and invasion of CD133+ liver cancer cells via the p-
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ERK1/2-MMP2/MMP9 pathway (48). In addition, increasing the

expression of CXCL9 with rhCXCL9 has been reported to enhance

the HCC invasion ability by upregulating the PREX2 (49).

Cathepsin C(CTSC), a lysosomal cysteine protease abundantly

expressed in multiple tissues and belonging to the papain

superfamily, plays a pivotal role in numerous tumor biological

processes. Moreover, CTSC regulates breast cancer lung metastases

by modulating neutrophil infiltration and the formation of

neutrophil extracellular traps (50). Silencing CTSC has the

capacity to promote apoptosis, thereby restraining the growth of

colorectal cancer. Furthermore, it can enhance colorectal cancer

metastasis by modulating immune escape through the upregulation

of CSF1 (51, 52). An earlier study has documented the pivotal role

of cathepsin C in regulating pyroptosis and lysosome-mediated cell

death within cathepsin C-deficient mouse splenocytes (53). For

HCC, CTSC collaborates with the TNF-a/p38 MAPK Signaling

Pathway to enhance proliferation and metastasis (54). In addition,

our results also showed that inhibition CTSC could attenuated HCC

cells metastasis and proliferation, confirming the previous results.

This indicated that CTSC could be a target for HCC therapy.

Immunoreactivity plays a critical role in the development of

tumors and offers a promising target for potential cancer therapies

(55). Our risk score was negatively correlated with CD8 T cells,

macrophages M1, and naïve B cells, and positively correlated with

neutrophils, macrophages M2. A higher number of CD8+ T cell,

macrophages M1, cases were positively associated with better OS

and DFS in HCC patients, whereas macrophages M2 were related to

a poor prognosis and outcome of HCC (56–59). This is consistent

with our finding that the low-risk group had a better prognosis, as

shown in our previous overall survival analysis. In the present study,

we also explore the correlation among risk genes, risk score, and

immune cells. The results showed that high-risk group associated

with a lower Stromal Score, Immnune Score, and ESTIMATE score,

and higher TMB. This suggests that our signature could predict the

TME composition. These result of our study was aligned with a

previous study based on cuproptosis-related genes (60). However,

another model based on the immune-related gene was on the

contrast, namely high-risk group have a higher Stromal Score,

Immnune Score, and ESTIMATE score (61). CSCs, as a driver of

tumor progression and growth, contribute to metastasis, recurrence,

and drug resistance (62). A previous study indicated that a high

immune score is indicative of improved chemotherapy and

immunotherapy efficacy (63). In our research, we found the low-

risk group displayed higher immune and lower stem cell content,

implying a more favorable anti-tumor treatment. We found that

TP53 and CTNNB1 genes were the most frequently mutated genes

in both groups, which was consistent with previous study (64).

Mutations in TP53 gene is regarded as a major driver of HCC, and

higher mutation rate of TP53 was associated with poor overall

survival (65). In our study, we found that high-risk group have

higher mutation frequency of TP53 and poor prognosis, compared

to low-risk group. Our study showed that Oxaliplatin, irinotecan,

and sorafenib was more sensitivity in low-risk group, consistent

with previous studies (66–68) supporting our risk model possesses

the potential to predict the effectiveness of drugs treatment. In

addition, one person can be stratified into high- or low-risk group
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and matching the most suitable personalized medicine through

prediction based on based on the expression of risk gene of the

person, then increasing the treatment effectiveness.

Nonetheless, our study had certain limitations. Firstly, the

majority of our analyses relied on publicly available datasets and

all samples were obtained retrospectively, which could have

introduce cases selection bias and thus affected the accuracy of

our finding. Hence, it is imperative to conduct well-designed

prospective studies in order to validate the robustness and

applicability of our findings. Secondly, although we conducted

expression validation at both tissue and HCC cell levels, the

sample size was relatively limited. We plane to are committed to

expanding our sample collection efforts to assess this signature in

the context of immunotherapy in the future. Thirdly, some crucial

clinical variables such as surgical interventions, neoadjuvant

chemotherapy, and tumor markers were not included in our

study. Fourthly, although we have performed qRT-PCR to

validate the relationship between CTSC and PANoptosis marker

gene, more research, including Western blotting and IHC need

conducted to confirm the result. Finally, although our prognostic

model has some benefits, it has some barrier to clinical

implementation. For example, the data availability and quality,

and cost-effectiveness due to additional tests, monitoring.

Consequently, our findings’ validity is relies on the inclusion of

clinical cases.
Conclusion

In conclusion, we have developed a pivotal PANoptosis-based

molecular clustering approach and prognostic signature with

multifaceted capabilities, including survival prediction, TMB

assessment, and clinical therapy guidance. Our study has the

potential to advance our understanding of PANoptosis in HCC

and contribute to the development of more effective personalized

immunotherapy or targeted therapy. Nonetheless, it is imperative to

acknowledge the inherent limitations of this study, and further

experiments and clinical case validations are warranted to

substantiate our findings.
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