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MYC activation is a known hallmark of cancer as it governs the gene targets

involved in various facets of cancer progression. Of interest, MYC governs

oncometabolism through the interactions with its partners and cofactors, as

well as cancer immunity via its gene targets. Recent investigations have taken

interest in characterizing these interactions through multi-Omic approaches, to

better understand the vastness of the MYC network. Of the several gene targets

of MYC involved in either oncometabolism or oncoimmunology, few of them

overlap in function. Prominent interactions have been observed with MYC and

HIF-1a, in promoting glucose and glutamine metabolism and activation of

antigen presentation on regulatory T cells, and its subsequent metabolic

reprogramming. This review explores existing knowledge of the role of MYC in

oncometabolism and oncoimmunology. It also unravels how MYC governs

transcription and influences cellular metabolism to facilitate the induction of

pro- or anti-tumoral immunity. Moreover, considering the significant roles MYC

holds in cancer development, the present study discusses effective direct or

indirect therapeutic strategies to combat MYC-driven cancer progression.
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1 Introduction

MYC is a proto-oncogenic transcription factor that governs a

myriad of cellular processes including cell proliferation, survival,

DNA damage repairs, histone modifications, and cellular

metabolism (1). MYC is a family of transcription factors, i.e.,

MYC(c-MYC), MYCN (N-Myc) and MYCL (L-Myc), all of these

contain a basic helix-loop-helix structure (bHLH) and leucine

zipper (LZ) structural motifs with 6 conserved regions known as

the MYC homology boxes (2). MYC family shares similar functions

but has distinct tissue specificity; c-MYC is ubiquitously expressed

in a broad variety of tissue development, n-MYC in neural and

hematopoietic tissues, and L-MYC in lungs. The bHLH structure

allows the interaction of MYC with DNA, while the LZ structure

allows interaction with its partner transcription factor MAX. This

MYC-MAX heterodimer interacts with numerous elements to

either promote or repress transcription of gene targets (3).

Dysregulation of MYC implicates a wide array of diseases

including neurodegenerative diseases (4), immune disorders (5),

and cancers (6). Of the known hallmarks of cancer, MYC

dysregulation has been reported to result in angiogenesis (7), cell

replicative immortality (8), cell invasion and migration (8),

alterations in cellular energetics (9), insensitivity to growth signals

(10), and evading immune recognition and programmed cell death

(6, 11). Because of its multifaceted dysregulation, MYC-driven

cancers are often associated with poor prognosis (12–14). The

involvement of MYC in both metabolism and immune evasion is

highly concerning, especially in the context of malignant

transformation. MYC promotes cell proliferation under

conditions that would typically prove fatal for normal cells by

manipulating glucose metabolism and eluding immunosurveillance

by releasing metabolites within the tumor microenvironment

(TME) (15, 16). While this facet has great implications for tumor

progression, it also poses a particular threat in both tumorigenesis

and potential tumor recurrence (17, 18).

Estimating up to 70% of cancers are affected by MYC aberration

(19, 20), MYC therefore has been perceived as one of the most

valuable targets for cancer therapy. However , direct

pharmacological inhibition of MYC has remained challenging due

to its lack of enzymatic activity or binding sites. Hence, this has

raised interest in exploring the interactome of MYC to identify

druggable targets, thereby modulating MYC-dependent

transcriptome. A prototype of this approach is Omomyc, a MAX-

interfering peptide. Omomyc was found to halt breast cancer

progression, and regressed lung cancer in preclinical models (21).

Currently, clinical trials are underway to determine the safety and

efficacy of this drug in non-small cell lung cancer and colorectal

cancer (ClinicalTrials.gov identifier NCT04808362). The success of

this proof-of-concept inhibition of protein-protein interactions of

MYC encourages the development of many such small molecules in

therapeutically targeting MYC.

In this review, we enumerate the recent studies that characterize

the targets and partners of MYC involved in cancer metabolism and

immunology. Further, we discuss current evidence of the overlap

between cellular functions governed by MYC and how one function
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may influence another. This guides us to further unravel how MYC

orchestrates cancer growth by mediating metabolism and

oncoimmunology. Lastly, in the growing interest of mitigating the

‘undruggable’ nature of MYC, we discuss currently available

therapeutic strategies to combat MYC, a central target in the

grand scheme of cancer.
2 Key MYC partners and targets

MYC structure consists of several domains that allow binding

interactions of coactivators, heterodimers, or ligases. Each of these

interactors facilitates the function of MYC in carrying out various

biological processes. Its organization begins with a transcription

activation site, which is a conserved region known as the MYC

homology box (MBI and II), followed by a proline, glutamine,

threonine-rich region, two more MYC homology boxes (MBIII and

IV), and lastly, a basic HLH-LZ, at the carboxy-terminal (22).

Because of the various regions available for interactions, and the

implication of MYC in various cellular processes and molecular

functions, there is a growing interest in unraveling the vast network

of MYC and its interactome. In Figure 1, we summarized the text-

mined sources of MYC protein-protein interactions with

key partners.

Investigating the mechanisms of action revealed crucial insights

into MYC functions; MYC utilizes its transcription activation

domain to recruit cofactors containing chromatin modifiers,

specifically histone acetyltransferases (HATs). One such cofactor,

p300 (EP300) HAT, was identified as having a novel functional

interaction with MYC (3). Moreover, p300 was also found to

interact with N-MYC in regulating cell proliferation in MYCN-

amplified neuroblastoma cell lines (23). Conversely, MYC

transcriptionally represses gene expression of its targets by

interacting with transcription factors such as MIZ-1 and NFY-B,

which facilitates the recruitment of histone deacetylases (HDACs)

(24). This finding highlights the multifaceted role of MYC, whereby

it acts as a regulator by binding to the promoter region of target

genes and modulates DNA methylation through the recruitment of

HATs and HDACs.

MYC is considered a systemic regulator of diverse functions,

because of the multidomain structure and the requirement of

chromatin-modulating cofactors. MYC functions as a molecular

switch of activating and/or repressing the transcription of its gene

targets, depending on the position at which specific cofactors bind.

The transactivation domain spans the MB1 and MB2 regions (22).

Within this domain, cofactors that are shown to bind and activate

gene transcription include FBW7 (25, 26), TAF1 (27), TBP (27), p-

TEFb (28) TRRAP (3, McMahon et al., 1998), GCN5 (29), TIP60

(30), TIP48 (31), p400 (32), and SKP2 (33). These transactivating

cofactors promote the transcription of target genes related to cell

proliferation and survival, including CDK4 (34), CDC25A (35), and

E2F1. Moreover, beyond sustained proliferative signaling, MYC has

roles in various other hallmarks of cancer mediated by its gene

targets. For instance, in promoting angiogenesis, MYC binds to the

promoter region of VEGFA, thereby increasing its production (36).
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Moreover, MYC regulates invasion and migration by inducing the

transcriptional activation of LGALS1 (37).

Conversely, the repression of MYC gene targets is triggered by

cofactors binding in and between the regions ofMB2 andMB3, and the

bHLHLZ region. Cofactors that contribute to transrepression of MYC

gene targets include TIP48/49, DNMT3a (38), PRC2 (39), HDAC1

(40), HDAC3 (41), KDM4B (42), and MIZ-1 (43, 44). In the initiation

and progression of cancer, the expression of tumor-suppressing genes

is usually repressed. Likewise, the expression of NDRG2 (45), PTEN

(46), CDKN2C (46), CDKN1A (46), p21 (47, 48), p15 (48, 49), N-

cadherin (48), is repressed by MYC, and therefore suppresses tumor

suppressing functions, leading to cancer progression (50). Another key

determinant of MYC global transcriptional amplification and systemic

activity is its abundance and regulation (2). Patange et al’s investigation

reveals that the overexpression of MYC results in prolonged bursts of

transcriptional activation by altering the binding affinity of

transcription factors involved in the pre-initiation complex to RNA

polymerase II (51). Together, the abundance of MYC and a balance of

these transactivators or transrepressors, dictate the fate of

cancer progression.

Of these hallmarks, cancer metabolism and oncoimmunology have

garnered interest from several researchers due to the rising

opportunities in therapeutic development. In this direction, MYC is

a systemic regulator of diverse functions by employing various

interactors. The MYC interactome extends further into

oncoimmunology and oncometabolism by transcribing or repressing

specific gene targets. Key interacting partners, stability partners,

cofactors, and gene targets of MYC involved in tumor progression

illustrated in Figure 2, in which their details are summarized in Table 1.

Some of these key partners are discussed in the contexts of

oncometabolism and oncoimmunology in the next section.
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3 MYC roles in oncometabolism
and oncoimmunology

The regulatory network of MYC is extensive, spanning across

gene targets and cofactors involved in various aspects of cancer

development, including cellular metabolism and immunology.

Aberrant cell proliferation not only requires altered energy

metabolism but also evasion from immunosurveillance. Recent

evidence suggests that metabolism is a key element that controls

immune evasion (84–86). The following sections summarize the

role of MYC in regulating key elements of oncometabolism

and oncoimmunology.
3.1 MYC and cancer
metabolic reprogramming

In the case of regulated cell growth and proliferation, nutrient

availability is essential. Hence, there needs to be a system in place to

“sense” the level of available nutrients, to regulate the metabolism of

available resources and maintain the balance of homeostasis. In

mammals, systemically, this regulation occurs with the storage of

glucose as glycogen in the liver, and the metabolism of fat by

lipolysis, in response to starvation. At a cellular level, the availability

of nutrients affects the activation of mTOR, and subsequently MYC

expression. In the availability of nutrients, mTOR is activated in cells,

which phosphorylates PI3K-AKT and therefore inhibits FOXO, a

MYC antagonist (65). The activated mTOR also enhances MYC

translation and function in transcribing genes favoring cancer

progression (87). However, nutrient shortage inhibits mTOR
FIGURE 1

AlphaFold predicted structure of MYC (AF- P01106-F1) its annotated structural domains and their respective interactors. LZ – Leucine Zipper, HLH –

Helix-Loop-Helix, MB1-MB4 – MYC binding boxes. Created with BioRender.com.
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TABLE 1 Key partners and interactors of MYC involved in cancer.

Interactor
Interaction
Type

Interaction Site Role in Cancer Reference

AKT1 Interaction partner MB1 Energetic and Metabolic Pathways and Developmental Signaling (52)

ARF Interaction partner Between MB1 and MB2, HLH
Tumor suppressor that inhibits MYC transactivation, proliferation,
and transformation.

(53)

ASH2L Interaction partner Between MB3b and MB4 Epigenetic regulation (54)

AURKA Stability partner MB1
Promotes tumor invasion, migration, proliferation. Protects MYC from
proteasomal degradation

(55)

BPTF Cofactors NK† Cancer cell proliferation, cell cycle progression (56)

BRCA1
Gene
Target/Antagonist

– Tumor suppressor, DNA repair activity (57, 58)

BRCA2 Gene Target – Genomic Instability/DNA repair activity (59)

BRD4 Cofactors MB1 Promotes MYC-activated gene transcription. (60)

CDCA7 Interaction partner C-Terminus Tumorigenesis (61)

CDK2 Stability partner MB1 Regulates MYC-mediated suppression of senescence. (62)

CUL1 Gene target – Ubiquitin mediated proteolysis and cell cycle progression (63)

DNMT3a
Transrepression
partner

Between MB2 and MB3a
Represses the transcription of cell cycle dependent kinase inhibitors,
promoting tumor cell proliferation.

(38)

FOXO Antagonist – Metabolism, adapting to Hypoxia (64, 65)

FBW7 Stability partner MB1
Regulates Ubiquitin mediated degradation of MYC. Prevents MYC-
activated tumor progression.

(25, 26)

FBX028 Stability partner MB2, MB4 Promotes Ubiquitination of MYC (66)

HDAC3
Transrepression
partner

MB3a
Binds to MYC to repress FOXA2 gene transcription, leading
to tumorigenesis.

(41)

HHEX Interaction partner HLH Regulates tumor hyperproliferation, metabolism, and transformation. (67)

HIF1A Antagonist – Metabolism and Proliferation (68)

(Continued)
F
rontiers in Immu
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FIGURE 2

Protein-protein interaction network analysis of MYC and its interacting partners reveal several key regulatory processes including cellular
metabolism, immune system, cell cycle and cell death. FDR, false discovery rate.
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activation, which thereby yields active FOXO, that limits MYC

expression and function (65).

In the process of neoplastic transformation, cancer cells require

an increase in glucose uptake to energize their rapid proliferation.

Interestingly, this glucose is fermented to produce lactate in the

presence of oxygen in a process called the Warburg Effect to yield

energy in the form of adenosine triphosphate (ATP). Several

investigators revealed that this increased consumption of glucose

is due to the oncogenic levels of MYC, as evidenced in Burkitt’s

lymphoma (88) and MYC-driven liver carcinoma (89). This occurs

by MYC upregulating various elements of the glycolytic cycle, such

as the expression of glucose transporter, GLUT1 (90), glycolytic
Frontiers in Immunology 05
enzymes hexokinase 2 (HK2), phosphofructokinase-M1 (PFKM-1)

(91), enolase-1 (ENO1) and lactate dehydrogenase A (LDHA) (92).

As a result, the increased glucose uptake and metabolic glycolysis

driven by MYC, leads to an accumulation of lactate. While often

misconstrued as a waste product, tumors take advantage of the

lactate produced by the Warburg Effect to promote various pro-

oncogenic functions such as immunomodulation and angiogenesis

(93). Consequently, a plausible alternative strategy is to inhibit

MYC-driven metabolic reprogramming. For instance, Cargill et al.

(94) reported the therapeutic potential of a small molecule inhibitor

of a glycolytic enzyme, PFKFB3, in inhibiting the downstream

effects of MYC in small cell lung cancer. Moreover, Zuo et al.
TABLE 1 Continued

Interactor
Interaction
Type

Interaction Site Role in Cancer Reference

HUWE1 Stability partner Between MB1 and MB2 Promotes Ubiquitination of MYC (69)

KAT5 Stability partner
Indirect interaction via
Ubiquitin-mediated proteolysis

Invasion and Migration (70)

LKB1 Interaction partner NK† Energetic and Metabolic Pathways and Developmental Signaling (52)

MAD Cofactors bHLHLZ Cell Proliferation, Differentiation, Tumorigenesis (71)

MAX
Heterodimerization
partner

bHLHLZ Proliferation and Tumor Progression (72, 73)

MIZ1 Interaction partner bHLHLZ Tumorigenesis (44)

p27
Cofactors/
Antagonist

MB4 Proliferation and Tumor Progression (74, 75)

p300 Cofactors MB4 Proliferation, Invasion and Migration (23)

p400 Cofactors MB2 Facilitates Gene Expression of MYC targets (32)

P65
Antagonist/
Transactivation

– Immune Checkpoint expression, Inhibiting Apoptosis (76, 77)

p-TEFb
Transactivation
partner

MB1 Facilitates Gene Expression of MYC targets. (28)

SIN3 Stability partner MB3a
Recruits HDAC1 to exert deacetylase activity. Induces the degradation
of MYC.

(78)

SKP2 Stability partner MB2, HLH Ubiquitin mediated proteolysis and cell cycle progression (33)

SNF5 Transactivation HLH
Facilitates Gene Expression of MYC targets. The protein itself has tumor
suppressor roles by suppressing tumorigenesis.

(79, 80)

TAF1
Transactivation
partner

Between MB1 and MB2
Essential for forming the transcription initiation complex TFIID, to
activate MYC-activated gene transcription.

(27)

TBP
Transactivation
partner

Between MB1 and MB2
Essential for forming the transcription initiation complex TFIID, to
activate MYC-activated gene transcription.

(27)

TIP48/49 Cofactor MB2
Essential cofactor for oncogenic transformation induced by
MYC activation.

(31)

TIP60
Transactivation
partner

MB2
Mediator to recruit Histone Acetyltransferases to MYC to facilitate gene
expression of MYC targets.

(30)

TRRAP Cofactors MB2 Facilitates Gene expression of MYC targets (3, 81)

VEGFA Gene Target – Angiogenesis (82)

WDR5 Interaction partner MB3b Tumorigenesis (83)

YAP1 Interaction partner NK† Energetic and Metabolic Pathways and Developmental Signaling (52)
NK† - Interaction Site Not Known; (-) No Physical Interaction.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1324045
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Venkatraman et al. 10.3389/fimmu.2024.1324045
(95), explored the use of vitamin D activated-long noncoding RNA

MEG3 to suppress glycolysis by promoting c-MYC degradation in

colorectal cancer. As mentioned earlier, MYC exerts control over

multiple targets within the glycolytic process, these findings support

a potential therapeutic approach by targeting specific components
Frontiers in Immunology 06
that abate MYC-driven glycolysis. The role of MYC in cancer

metabolism is depicted in Figure 3.

In promoting glucose uptake and metabolism, NAD+ ions are

produced as metabolites, which are utilized in amino acid synthesis.

Cancer cells exhibit a reliance on amino acids, which promote their
FIGURE 3

The role of MYC-driven transcriptional activation on cancer and immune cell metabolism and its influence on anti-tumor immunity. Top-left panel
shows CAF metabolic reprogramming as a result of activated MYC in tumors exporting miR-105 which is imported into CAFs and inhibits MXI1. Top-
right panel shows the inactivation of CD8+ T cells by MYC activated export of PD-L1 from tumor cells bound to PD-1 receptors on CD8+. T cells.
Middle left panel shows how the acidification of the microenvironment triggers p38 and c-Jun signaling pathways in CD8+ T cells which promotes
interferon-mediated inactivation of CD8+ T cell function. Middle right panel shows lactate released in the tumor microenvironment from tumor cells
polarizes the differentiation of M1 macrophages to M2 macrophages. The bottom panel shows how MYC activated transcription of key enzymes
promotes Warburg Effect within tumor cells. Created with BioRender.com.
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survival and proliferation, especially under nutritional constraints.

Therefore, malignant cells hijack mechanisms to upregulate amino

acid production (96).

Just as MYC is a key driver of the metabolic switch in the

presence of oxygen (normoxia), HIF1A is a key driver of the

metabolic switch in the absence of oxygen (hypoxia) (97). In

hypoxic conditions, MYC activity is usually inhibited by HIF1a

by impeding the heterodimerization of MYC/MAX complex. HIF1a

and MXI1 bind to MAX, thereby yielding unbound MYC destined

for degradation (68). This impediment to MYC activity

subsequently affects MYC target genes involved in mitochondrial

biogenesis, apoptosis, and metabolic reprogramming (98). HIF1A

also impedes MYC activity by upregulating the expression of

FOXO3a which binds to MYC gene target promoters (99).

Notably, however, when MYC is overexpressed, it overcomes the

inhibitory effects of HIF1A. Although MYC and HIF1A antagonize

each other functions, they share common gene targets in glycolysis,

including HK2, PFK1, ENO1, and LDHA. Additionally, when both

MYC and HIF1A are overexpressed, they collaborate in promoting

angiogenesis and activating the expression of their gene targets

(100). Thus, both HIF1A and MYC are key therapeutic targets for

cancer progression.

MYC reprograms amino acid metabolism by activating the

serine and glutamine synthesis pathways. Under nutrient-

deprived conditions, MYC upregulates the expression of five

major enzymes in serine biosynthesis, i.e., phosphoglycerate

dehydrogenase (PHGDH), phosphoserine aminotransferase 1

(PSAT1), phosphoser ine phosphatase (PSPH), ser ine

hydroxymethyltransferases 1 and 2 (SHMT1 and SHMT2). The

transcriptional upregulation of these genes facilitates nucleic acid

production and cell cycle progression (101, 102). Another amino

acid in high demand during tumor development is glutamine. MYC

upregulates glutamine synthetase (GS) to promote glutamine

anabolism (103), and paradoxically, it enhances glutamine

catabolism by upregulating SLC1A5 and SLC7A5 amino acid

transporters (104). To facilitate the conversion of glutamine to

glutamate, MYC upregulates the expression of glutaminase (GLS)

(105) and represses the expression of miR-23 which interrupts GLS

translation (106). The availability of amino acids has emerged as a

promising therapeutic target. As a result, there has been a

significant focus on developing inhibitors that specifically target

enzymes involved in amino acid synthesis. For example,

pharmacological inhibition of MYC-driven GLS by CB-839 has

recently shown encouraging results in suppressing various cancers

in vitro and in vivo (107–109), and currently examined in a phase 1

clinical trial of solid tumors (NCT02071862).
3.2 MYC and cancer immune evasion

The immune system is a highly regulated defense mechanism

instated to recognize and eliminate pathogens, or dysregulated cells,

to maintain a healthy body. As cancer cells propagate

uncontrollably, they acquire traits to evade immune recognition.

This happens by downregulating self-antigen presentation,

promoting an immunosuppressive TME through the release of
Frontiers in Immunology 07
cytokines, recruiting pro-tumoral immune cells, and increasing

the expression of inhibitory immune checkpoint molecules. MYC

is reportedly a grand orchestrator of cancer growth and immune

evasion, as it regulates most of these traits by modulating its gene

targets (110).

In establishing a tumor-proliferative environment beneath the

surveillance of anti-tumor immune cells, tumor cells must recruit

and modulate regulatory immune cells. In a lung adenoma model in

vivo, Kortlever et al. (72) revealed that MYC cooperated with KRAS

to reprogram stromal cells via epithelial-derived CCL9 and IL-23,

resulting in CCL9-mediated macrophage recruitment, PD-L1-

dependent discrimination of T and B cells, and IL-23 mediated

exclusion of adaptive T and B cells and innate immune NK cells.

Deactivating MYC was found to reverse this reprogramming and

reinstate normal anti-tumor immune function (111). Noted that

MYC is upregulated in tumor-associated macrophages (TAMs),

which is involved in suppressing immunosurveillance (112).

Moreover, in head and neck squamous cell carcinoma (HNSCC),

therapeutic inhibition of MYC promoted intrinsic anti-tumor

immune responses through the cGAS-STING signaling pathway,

and CD8+ T-cell infiltration of HNSCC in vivo (113). Together, this

evidence shows how MYC creates the TME through the release of

cytokines or modulating gene expression to promote pro-tumoral

immune cell infiltration and suppress immunosurveillance.

Importantly, MYC also governs the expression of immune

checkpoint molecules and self-antigens to switch off immune cell

recognition of tumors. Particularly in osteosarcoma, Jiang et al.

(114), observed that pharmacological inhibition of MYC resulted in

reprogramming the tumor immune microenvironment through the

release of T-cell recruiting chemokines and crosstalk of co-

stimulatory immune checkpoint molecules CD40 and CD40L.

Moreover, a recent study by Dhanasekaran et al. (115), reported

that MYC transcriptionally repressed MHC-1 antigen presentation

and therefore repressed T-cell immune response in MYC-driven

h ep a t o c e l l u l a r c a r c i noma . Th i s ph enomenon wa s

pharmacologically reversible by the dual-inhibition of immune

checkpoint molecules, PD-L1 and CTLA-4. MYC directly

regulates the expression of CD47 and PD-L1 through

transcriptional activation (116). Other than upregulating the

expression of PD-L1 as cell surface receptors, expressed PD-L1 is

also packaged into vesicles for export into exo-PD-L1 (117). This

exo-PD-L1 promotes immune escape by PD-1/PD-L1 mediated

cytotoxic T-cell inactivation through direct interaction or indirectly

by exo-PD-L1 uptake in tumor-promoting immune cells (Figure 3).

Recent investigations have reported evidence of exo-PD-L1 in

various cancers including prostate, breast, melanoma, and

pancreatic cancer (118). Besides the regulation of immune

checkpoint molecule expression, MYC is also involved in post-

translational modification of immunosuppressive glycans. Smith

et al. (119), recently demonstrated that MYC regulates Siglec

ligands through the transcriptional regulation of ST6GALNAC4

and the induction of a glycan so-called disialylated Galb1-3GalNAc
(disialyl-T antigen). Disialyl-T functions as an inhibitory glyco-

immune checkpoint molecule that “switches off” immune response

in T-cells by engaging pro-tumoral macrophages. This shows that

MYC systemically extends itself in creating an immunosuppressive
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environment by recruiting pro-tumoral macrophages, repelling

anti-tumor immune cells, releasing cytokines, and modulating

immune checkpoint molecules, by transcriptionally activating key

gene targets.

Cumulatively, MYC systemically extends itself in creating an

immunosuppressive environment by recruiting pro-tumoral

macrophages, repelling anti-tumor immune cells, releasing

cytokines, and modulating immune checkpoint molecules, by

transcriptionally activating key gene targets.
3.3 MYC at the intersection between
oncometabolism and oncoimmunology

Since MYC plays an essential role in regulating key targets

involved in both metabolic reprogramming and immune evasion, it

is likely that MYC induces one hallmark to influence the activation

of another. Studies to date support this notion. Figure 3 summarizes

the role of MYC at the interplay between cancer metabolism

and oncoimmunology.

MYC promotes the Warburg Effect by upregulating glucose

transporters and key glycolytic enzymes, the yield of H+ ions from

NADH reduction influences the microenvironment by lowering the

pH. This acidic environment facilitates cancer cells to invade the

tumor stroma (120). This acidification of the microenvironment

also suppresses CD8+ T lymphocyte functions, thereby promoting

an immunosuppressive microenvironment. More specifically, this is

mediated by activation of the p38, JNK/c-Jun signaling pathways,

which promotes interferon production (121). Moreover, the lactate

produced from tumors polarizes M2-tumor-associated

macrophages (122). This is facilitated by the recognition of

extracellular lactate levels with GPR132, and the subsequent

upregulation of HIF-1a and activation of STAT3 signaling (123,

124). HIF-1a and MYC reciprocally regulate the expression of each.

MYC is often seen to interact with HIF-1a in regulating T-cell

metabolism by transcriptionally regulating genes involved in

glucose and glutamine transport. Moreover, HIF-1a cooperates

with MYC to shape the tumor immune microenvironment (100,

125). Similarly, Marchingo et al. (126), unraveled metabolic

proteome changes including SLC7A5 and SLC1A5 during T cell

activation governed by MYC. These are some of the ways MYC

influences oncoimmunology by promoting glucose or amino

acid metabolisms.

Conversely, modulating the tumor immune microenvironment

also influences cellular energetics. This is particularly evidenced in

the metabolic reprogramming of T lymphocytes after antigen

activation. Wang et al. (127), reported the antigen activation of T

lymphocytes drove the upregulation of genes encoding enzymes

and transporters involved in glycolysis and glutaminolysis as

governed by MYC. This antigen-activated MYC-driven metabolic

reprogramming is responsible for T cell proliferation. Another

investigation by Tsai et al. (128) focused on how immunoediting

of the TME in early-stage tumorigenesis reprograms cancer

metabolism in a way that supports immune evasion. The results

suggested that interferon-gamma (IFNg) released from T cell

immunosurveillance stimulated STAT3-dependent MYC
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upregulation in melanoma cells, which subsequently activated

genes involved in glycolysis and oxidative phosphorylation while

suppressing IFNg-induced cellular senescence (128). Besides T cells,

cancer-associated fibroblasts (CAFs) are known to play an

important role in regulating antitumoral immunity by recruiting

the infi l t r a t i on o f e ff e c to r T ce l l s and mod i f y ing

immunosuppressive cells (129, 130). CAFs also influence the

metabolism of cancer cells through the secretion of various

metabolites that fuel cancer proliferation (131). In breast cancer,

MYC promotes this interaction through extracellular vesicles (EVs)

containing miR-105 transported from cancer cells to CAFs (132).

MiR-105 suppresses the expression of endogenous MYC inhibitor

MXI1, thereby sustaining MYC activation in CAFs and

subsequently facilitating glucose and glutamine metabolisms

(132). Increased metabolism in CAFs yields increased lactate

levels in the TME which offers an advantage for cancer cells and

impedes effector T-cell function (133). While the influence of cancer

metabolism on the immunosuppressive TME is well characterized,

there are fewer studies exploring the reciprocal communication

between cancer and stromal cells through EV molecular cargos.

Besides the dynamic abundance of MYC effecting global

transcriptional changes involved in oncometabolism and

oncoimmunology, MYC can modulate gene targets that induce

metabolic changes influencing cancer immunity and possess dual

roles in cancer development. We have compiled the summarized

information in Table 2, highlighting a few notable gene targets of

the exhaustive list of MYC-regulated genes involved in both

oncometabolism and oncoimmunology. Further studies focusing

on the gene targets and MYC-regulated gene network at the

immune-metabolic crossroad shall offer novel alternative

strategies to attenuate tumor invasiveness and treatment

resistance caused by MYC aberration.
4 Targeting MYC to tackle
oncometabolism and
oncoimmunology: 2 birds 1 stone?

MYC has previously been labeled “undruggable” due to its lack

of an enzymatic active site and inaccessibility to its nuclear

localization (20, 159). Various approaches have been employed to

address the undruggable MYC through its actionable interacting

partners and gene targets as illustrated in Figure 4.

Investigators exploited the heterodimerization between MYC

and MAX to inactivate MYC-activated transcription. One study

showed that pharmacological inhibition of MYC by 10058-F4

resulted in changes in lipid and amino acid metabolism in

neuroblastoma cell lines (160). Additionally, another MYC-MAX

perturbagen, Mycro3 resulted in enhanced CD8+T cell function in

surveilling cancer cells and inducing anti-tumor immune response

(161). Another approach is the inhibition of MYC transcription by

bromodomain-containing 4 (BRD4), using inhibitors such as JQ1

and OTX-015 (162). In medulloblastoma, the transcriptional

inhibition of MYC by OTX-015 alters cancer glycolysis and

amino acid metabolism (163). Moreover, the use of JQ1 in
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neuroblastoma, melanoma cells promoted tumor immunogenicity

and potentiated immune checkpoint blockade therapy (164).

However, over the decades, MYC-targeted strategies against

cancers have yet to see success in clinical trials due to the half-life

of MYC and the rapid metabolism of the small-molecule inhibitors

(20, 165). One significant challenge has been translating in vitro

findings in vivo (166), until recently.

In the advent of overcoming the limitations of current MYC

inhibitor designs, Omomyc, a 90 amino acid mutant MYC peptide

that disrupts the MYC-MAX dimerization, rose to clinical

development (167). Omomyc has exuded various pro-apoptotic

effects in various cancers, and the potential of immune

reprogramming of tumors (168). However, the effect of Omomyc
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treatment on the metabolic reprogramming of cancers is yet to be

determined. Because of its potent reduction of tumor burden,

Omomyc stands as the first direct MYC inhibitor to ascend in

dose-escalated phase 1 and phase 2 clinical trials of patients

with non-small cell lung, colorectal, and breast cancer

(NCT04808362). More recently, another phase 1 clinical trial

(NCT06059001) has been initiated in metastatic pancreatic

cancer. This success should encourage further improvements in

this design to effectively target MYC and systemically shut down

MYC-driven oncogenic pathways.

The growing body of evidence of the vastness of the “onco-

MYC network” and its grave implications on cancer progression

point to MYC being an ideal therapeutic target. Considering the
TABLE 2 Key gene targets of MYC in cancer metabolism and oncoimmunology.

Gene
Target

Main
Hallmark

Role in Oncometabolism Role in Oncoimmunology Reference

LDHA Metabolism
Required in the production of lactate in
anerobic glycolysis.

Inhibits immune killing and promotes immunosuppression by increasing
lactate production and influencing the microenvironment. Negatively
regulates immune infiltration.

(92)
(134, 135)

GLUT1 Metabolism
A glucose transporter responsible for the
uptake of glucose into cells.

Associated with increases in neutrophil, platelet, monocytes, and
lymphocyte count. Negatively correlates with tumor-infiltrating T -cells but
positively correlates with neutrophils and dendritic cells

(90, 136, 137)

ENO1 Metabolism
Responsible for converting 3’
biphosphoglycerate
to 3’biphosphopyruvate

Promotes anti-tumor immunity by promoting PD-L1 proteolysis. (90, 138)

SLC1A5 Metabolism Glutamine Transporter

Overexpression is associated with the presence of immunosuppressive
immune cells such as CD68+ macrophage, FOXP3+ regulatory T cells,
CD20+ B cells, and PD1+ lymphocytes. SLC1A5 is also required for MYC
induction of cytokine-stimulated NK cells.

(84) (139)

SLC38A5 Metabolism
Glutamine Transporter and amino acid
coupled Na+/H+ exchanger

Maintains extracellular acidification while maintaining intracellular pH.
Acidification of the microenvironment turns off? anti-tumor
lymphocyte function.

(140, 141)

IL-23 Immunology

When secreted by tumor-associated
macrophages it Interlinks glutamine
addiction and immune evasion in
kidney cancer.

Cytokine that recruits pro-tumoral macrophages (111, 142)

CD47 Immunology
Tumor intrinsic CD47 regulates glycolysis
in colorectal cancer cells by
stabilizing ENO1.

Inhibitory Immune Checkpoint Molecule which turns off immune response
in NK and T cells

(143, 144)

PD-L1 Immunology
Regulates glycolysis by improving
PFKFB3 expression in renal cell
carcinoma cells.

Inhibitory Immune Checkpoint Molecule which turns off immune response
in NK and T cells

(143, 145)

VEGF Immunology

Exogenous VEGF alters metabolism of
triple negative breast cancer cells by
modulating MAPK-ERK and PI3K-
AKT pathways

An immunosuppressive growth factor that impedes the development of T
cells and impairs maturation of dendritic cells.

(146–149)

HIF1A Immunology
Transcribes genes that encode glycolytic
enzymes (such as HK2, TPI, ENO1, and
PKM) and glutamine metabolism.

Produces IL-9 during TH9 differentiation involved in pro-inflammatory
signaling and anti-tumor immunity. HIF1A also partners with mTOR to
promote CD8 memory T cell generation. HIF1A also upregulates PD-L1 on
tumor cells.

(125,
150–152)

STING Immunology
STING driven interferon signaling drives
metabolic reprogramming of pancreatic
cancer cells.

STING induced interferon signaling is crucial in inducing anti-cancer
immune response. STING activation enhances antigen presentation and
therefore activation of T cells.

(153–155)

TGFB Immunology

Canonical signaling of TGF-b modulates
metabolic reprogramming by upregulating
genes involved in glycolysis and
oxidative phosphorylation.

TGF-b is a cytokine that promotes cancer progression by impairing T cell
proliferation and expansion. TGF-b in cancer associated fibroblasts also
promotes immune evasion through ECM signaling.

(156–158)
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overlap in function of the gene targets of MYC between

oncometabolism and oncoimmunology, we believe that targeting

MYC directly or indirectly may systemically impact both hallmarks.

Several investigators have untangled the MYC network to identify

indirect putative targets to combat MYC-driven effects. For

example, the inhibition of LDHA, a direct gene target of MYC, by

FX11, not only suppresses MYC but also inhibits MYC-induced

metabolic changes (169). Moreover, inhibition of MYC-regulated

glutaminase (GLS) by CB-839 also has a similar effect in reversing

MYC-driven metabolic changes such as nucleotide metabolism in

ovarian and glioblastoma (109, 170). Moreover, this has shown

promise for clinical development in various cancers including

colorectal and leukemic cancers (NCT02861300; NCT02071927).

The approach of tackling MYC gene targets has also been

successful in modulating the immune evasive nature of tumors.

For instance, dual inhibition of MYC targets PD-L1 and CTLA-4

reverses MYC-driven immunosuppression through pro-

inflammatory macrophages in hepatocellular carcinoma (115).

Moreover, MYC partners with epigenetic modulators such as

histone acetylases (HAT) and DNA methylases (DNMT), in the

transcriptional activation of immunosuppressive gene targets of

MYC (171). Targeting, MYC-epigenetic modulators may reverse

this phenomenon and exude anticancer effects. In this direction,

Topper et al. (172), tested this hypothesis by combining epigenetic

modulators including 5’-azacytidine and entinostat to assess its

effect on tumor burden. As a result, this combination increased the

number CD8+T and natural killer cells in the TME, promoted
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immunosurveillance of tumors, and reduced MYC-driven

interferon signaling. These indirect pharmacological inhibitions

are effective in modulating the downstream effects of MYC-driven

tumors (172). These indirect pharmacological inhibitions are

effective in modulating the downstream effects of MYC aberration

as aforementioned, the therapeutic potentials of targeting gene

targets at the crossroad between oncometabolism and

oncoimmunology (Table 2) warrants further investigations.
5 Challenges and perspectives

Despite the success of Omomyc in preclinical models, the

development of MYC-targeted therapy has miles to go until we

reach the growing demand of patients who require effective

treatment. The main challenge posed against all small molecule

inhibitors against MYC is the rapid metabolism of the drug, and the

quick half-life of MYC regeneration. One reported limitation of

Omomyc is the fast distribution and catabolism, thereby limiting its

use in preclinical and in vivomodels (173). Other challenges include

the multiple disordered conformations of the putative binding

regions of MYC (174). Thus, this warrants further development

in the design of MYC inhibition. Recent investigations approach

this issue by using in silico tools to facilitate drug design. Using in

silico tools offers a wealth of information to guide the development

of a MYC-targeted therapeutic strategy. This ranges from

identifying potential binding sites on MYC and predicting
FIGURE 4

Direct and indirect MYC-targeted therapeutic strategies. Therapeutic inhibitors are depicted as labeled red boxes. PC585 inhibits CDK9, JQ1 inhibits
BRD4, and THZ-1 inhibits CDK4, which together are key transcription factors that regulate MYC gene expression. BEZ235 is a PI3K inhibitor, MK2206
is an Akt inhibitor, and Rapamycin is a mTOR inhibitor, which together inhibit the translation of MYC. 10074-G5, 10058-F4, Omomyc, and Mycro3
inhibits the heterodimerization of MYC and MAX. Entinostat inhibits HAT and 5’azacytidine inhibits DNMT which are co-factors that aid in MYC
activated transcription of gene targets. FX11 inhibits LDHA, a gene target of MYC, and thus inhibits the downstream function of MYC activation.
Created with BioRender.com.
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different drug binding conformations using molecular docking to

identifying close targets or partners upstream or downstream of

MYC. For instance, Yu et al. employed conformational simulation

of intrinsically disordered MYC to identify binding sites and “multi-

conformational” molecular docking. This guided the identification

of seven compounds that bind to MYC in vitro and inhibited cell

proliferation in c-MYC overexpressing cell lines (175). Moreover, in

2018, a novel inhibitor, 7594-0035 was reported to specifically target

MYC indicated for the treatment of refractory multiple myeloma.

The novel inhibitor was identified using the drug database

ChemDiv and molecularly docked to the crystallized structure of

the MYC-MAX heterodimer complexed with DNA (PDB ID:

1NKP) (176). This evidence shows promise in unmasking the

elusive binding pockets of MYC by simulating the interaction

between the MYC-MAX heterodimer and small molecule

structures , to develop better direct inhibitors of the

MYC oncoprotein.

The advent of machine learning and artificial intelligence opens

opportunities for investigators to design novel peptides, predict

novel binding sites on MYC, and explore indirect key partners or

regulators of MYC that may be therapeutically targeted

alternatively. One successful example of this approach is the

discovery of novel inhibitors by Xing et al. (177). that target

BRD4 which regulates the transcription of the MYC gene

(Figure 4). In their investigation, a structure-based virtual

screening approach with machine-learning algorithms was

performed to learn the structure of the BRD4 protein and predict

the likelihood of the compound inhibiting BRD4 based on its

binding pattern. This led to the discovery of 15 new BRD4

inhibitors which were experimentally validated (177). This

approach could be extended by integrating machine learning and

molecular docking to identify binding pockets within MYC at

which predicted inhibitor structures may bind. Another approach

utilizes novel in silico tools to predict miRNAs capable of regulating

MYC and its partners; nonetheless, only a few miRNA regulators of

MYC expression, such as miR-19, have been validated (178). This

presents an avenue of research yet to be claimed to expand the

available therapeutic options for inhibiting MYC.

A promising approach in employing in silico tools to discover

pharmacological inhibition of MYC is using pharmacogenomic

connectivity analysis of cancer transcriptomes and drug

sensitivity data. To this effect, the iLINCS consortium facilitates

“pharmaco-multi-Omics” analysis by integrating data from

transcriptomic, proteomic, phospho-proteomic, and genomic

sources to drug sensitivity data from chemical perturbation or

gene knockdown signatures (179). This approach may not only

supplement our understanding of the potential interactors of MYC,

but also of the potential mechanism of action of these small

molecules against MYC. An example of this approach being

successful is seen in an excellent investigation led by Howard

et al. (180). In the interest of repositioning pharmacological

inhibitors toward the inhibition of eIF4A1 against triple-negative

breast cancer, Howard et al. (180) surveyed and screened the

Prestwick Chemical Library for potential therapeutics against

eIF4A1, where iLINCS pharmacogenomics was implemented to

elucidate the mechanism of action of these candidate molecules.
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They identified that in the inhibition of eIF4A1, c-MYC is also

suppressed, thus warranting further exploration of the interaction

between eIF4A1 and c-MYC (180). While this investigation showed

how c-MYC itself is an indirect target of some small molecules,

future investigations may build on this information and identify

other small molecules that impede c-MYC activity.
6 Conclusion

MYC activation is characteristic of various aggressive tumor

types. This aggression is typically mediated by the crosstalk of

cancer metabolism and cancer immunity. MYC is central to both

hallmarks by partnering with various cofactors or transcription

factors and by its gene targets. This thus presents MYC as a

promising therapeutic target for cancer therapy. This review

explores how MYC bridges these hallmarks by inducing

metabolic reprogramming that influences an immunosuppressive

microenvironment, and conversely, promoting immune evasive

markers to influence immune cell and cancer cell metabolism.

Moreover, the gene targets of MYC are often seen to be involved

in both hallmarks and would therefore present as ideal alternative

targets to combat MYC-driven effects. Direct inhibition of MYC

has been challenging due to the short half-life of MYC oncoprotein

and the high metabolism of the small molecule inhibitors, which

has impeded the development of MYC inhibitors in clinical

trials. However, Omomyc overcame these limitations, exuded

potent anti-cancer effects, and has ascended toward clinical

development for multiple cancers. This review surmises that

MYC inhibition would be beneficial in systemically combating

metabolic reprogramming and immune evasion in various

cancers. Thus, we encourage more pharmacological strategies

should be centered around MYC inhibition. Moreover, future

investigation attention should be drawn toward elucidating

the molecular mechanism behind MYC inhibition in both

oncometabolism and oncoimmunology.
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