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Introduction: C-type lectin domain family 11 member A (CLEC11A) was

characterized as a growth factor that mainly regulates hematopoietic function

and differentiation of bone cells. However, the involvement of CLEC11A in gastric

cancer (GC) is not well understood.

Methods: Transcriptomic data and clinical information pertaining to GC were

obtained and analyzed from publicly available databases. The relationships

between CLEC11A and prognoses, genetic alterations, tumor microenvironment

(TME), and therapeutic responses in GC patients were analyzed by bioinformatics

methods. A CLEC11A-derived immune signature was developed and validated, and

its mutational landscapes, immunological characteristics as well as drug

sensitivities were explored. A nomogram was established by combining

CLEC11A-derived immune signature and clinical factors. The expression and

carcinogenic effects of CLEC11A in GC were verified by qRT−PCR, cell migration,

invasion, cell cycle analysis, and in vivomodel analysis. Myeloid-derived suppressor

cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and T cells in tumor

samples extracted from mice were analyzed utilizing flow cytometry analysis.

Results: CLEC11A was over-expressed in GC, and the elevated CLEC11A

expression indicated an unfavorable prognosis in GC patients. CLEC11A was

involved in genomic alterations and associated with the TME in GC. Moreover,

elevated CLEC11A was found to reduce the benefit of immunotherapy according

to immunophenoscore (IPS) and the tumor immune dysfunction, exclusion

(TIDE). After validation, the CLEC11A-derived immune signature demonstrated

a consistent ability to predict the survival outcomes in GC patients. A nomogram

that quantifies survival probability was constructed to improve the accuracy of

prognosis prediction in GC patients. Using shRNA to suppress the expression of

CLEC11A led to significant inhibitions of cell cycle progression, migration, and

invasion, as well as a marked reduction of in vivo tumor growth. Moreover, the

flow cytometry assay showed that the knock-down of CLEC11A increased the

infiltration of cytotoxic CD8+ T cells and helper CD4+ T into tumors while

decreasing the percentage of M2 macrophages, MDSCs, and Tregs.
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Conclusion: Collectively, our findings revealed that CLEC11A could be a

prognostic and immunological biomarker in GC, and CLEC11A-derived

immune signature might serve as a new option for clinicians to predict

outcomes and formulate personalized treatment plans for GC patients.
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1 Introduction

Gastric cancer (GC) remains a considerable threat to human

health, ranking the fifth diagnosed cancer and the fourth cause of

cancer death in 2020 (1). Due to the delayed diagnosis and absence

of efficient treatments, individuals afflicted with advanced GC

experience unfavorable prognoses and a short lifespan of merely

one year (2). At present, chemotherapy and targeted therapy are the

commonly used therapies for advanced GC. However, the outcome

of GC patients has not improved substantially due to the toxicity of

chemotherapeutic agents, the difficulty of identifying the beneficiary

population for targeted therapy agents and drug resistance (3–5).

As one of the most successful immunotherapies, immune

checkpoint blockade (ICB) has received approval for the therapy of

advanced GC. ICB could amplify endogenous anti-tumor immunity by

inhibiting negative regulatory molecules located on the surface of T

cells (6). However, the response rate of ICB in GC is not ideal (7–10). A

rational explanation for the low response rate is the complex immune

suppression mechanisms in the tumor microenvironment (TME) (11).

Specifically, various populations of immunosuppressive cells in the

TME, including M2 macrophages, myeloid-derived suppressor cells

(MDSCs), and regulatory T cells (Tregs), prevent cytotoxic T cells from

attacking the tumor to facilitate tumor evasion (12). Encouragingly,

targeting some biomarkers, such as growth factors, can transform the

inherently immunosuppressive TME into an immunosupportive one

(13–16). As a growth factor, the C-type lectin domain family 11

member A (CLEC11A) plays important roles in regulating

hematopoietic differentiation and homeostasis, safeguarding against

lipotoxicity and severe malaria anemia, and maintaining bone

homeostasis (17–25). In cancer research, the prognostic and

therapeutic value of CLEC11A has surfaced. CLEC11A was found to

be over-expressed and promoted angiogenesis in lung cancer (26).

Additionally, the up-regulation of CLEC11A expression in acute

myeloid leukemia is associated with a favorable prognosis (27).

CLEC11A has also been discovered to regulate the pathogenesis and

progression of multiple myeloma (28). Moreover, CLEC11A has been

considered a potential deoxyribonucleic acid (DNA) methylation

marker for hepatocellular carcinoma and pancreatic cancer (29, 30).

Despite the proven role of CLEC11A in the progression of various

cancers, the underlying mechanism of CLEC11A remains unclear in

GC, especially regarding its role and function in tumor immunity.
02
RNA sequencing (RNA-seq) has emerged as an omnipresent

tool in molecular biology, significantly influencing our

comprehension of genomic function. RNA-seq is mainly applied

to analyze differential gene expression (DGE) (31). Besides, tumor

RNA-seq data can be used to evaluate immune infiltration levels by

employing a group of immune-specific marker genes, which may

help uncover novel targets for immunotherapy (32–34). Herein, we

used bulk tumor RNA-seq information to explore the expression,

prognosis value, and genomic alterations of CLEC11A, as well as its

immune infiltration in GC. Based on CLEC11A-relevant immune

genes, we developed a prognostic signature and evaluated its role in

TME. Through laboratory work, we confirmed the increased

CLEC11A expression in GC and assessed the impact of CLEC11A

on cell cycle, migration, invasion, immunocytes, and in vivo

tumorigenesis. Our research presented a comprehensive

perspective of CLEC11A and introduced a potential selection for

predicting the clinical outcomes of GC patients (Figure 1).
2 Materials and methods

2.1 Data collection and processing

RNA-seq information for The Cancer Genome Atlas (TCGA)

pan-cancer was downloaded through the Genomic Data Commons

data portal. GSE13861, GSE13911, GSE26899, GSE29272, GSE54129,

GSE66229, GSE26901, GSE15459, GSE26253, GSE62254, GSE84426,

GSE84433, and GSE84437 were obtained from the Gene Expression

Omnibus (GEO) database.
2.2 Expression analysis

CLEC11A mRNA expression data was assessed from TCGA

database, and validated using six datasets obtained from GEO,

including GSE13861, GSE13911, GSE26899, GSE29272, GSE54129,

and GSE66229. The difference in CLEC11A mRNA expression

between tumor and normal samples was calculated using the

‘ggplot2’ package in R (35). The protein expression patterns of

CLEC11A were investigated according to the HPA database (36).
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2.3 Survival analysis

Univariate Cox proportional hazards regression was used to obtain

the impact of CLEC11A on overall survival in TCGA cancer types (37).

R packages (‘survminer’ and ‘survival’) were used to assess the overall

survival rate between CLEC11A subgroups in TCGA-STAD,

GSE26899, GSE13861, GSE26901, GSE15459, GSE29272, GSE26253,

GSE62254, GSE84426, GSE84433, and GSE84437, respectively (38).
2.4 Analysis of genomic alteration and
epigenetic modification

The frequency of two types of genomic alterations, specifically

mutations and amplifications, was analyzed employing the “Cancer

Types Summary” module of the web-based tool cBioPortal (https://

www.cbioportal.org/) (39). Tumor mutation burden (TMB) was
Frontiers in Immunology 03
computed by the R software package “Maftools” (40). Homologous

recombination deficiency (HRD), loss of heterozygosity (LOH),

ploidy, and microsatellite instability (MSI) were obtained from

previous research (41). The associations between CLEC11A mRNA

expression and TMB, MSI, ploidy, HRD, LOH were explored and

visualized by ‘ggplot2’ package in R (35). The correlation between

CLEC11A expression and 4 DNA methyltransferase genes (42), 5

mismatch repair (MMR) genes (43), and 44 RNA modification genes

(44–46) was visualized by R package ‘ComplexHeatmap’ (47). The

gene mutation frequency and chromosomal gain/loss were analyzed

between CLEC11A subgroups.
2.5 Functional analysis

Based on the median CLEC11A mRNA expression, the TCGA-

STAD samples were categorized into two groups. With |log(fold
FIGURE 1

A flowchart of the study design. The mRNA and protein expressions of CLEC11A in GC were investigated using TCGA, GEO, and HPA databases.
Kaplan-Meier curves were used to assess the overall survival in CLEC11A subgroups. CLEC11A was involved in genomic instability. The functional
enrichment analyses identified CLEC11A’s relevance with cancer immunity. The associations between CLEC11A and ESTIMATE, immune checkpoints,
and immunocyte infiltration were further explored. A 6-gene CLEC11A-derived immune signature was constructed to predict prognosis and immune
therapy response, and guide precision therapy. The mRNA expression of CLEC11A in GC was verified by qRT−PCR, and the carcinogenic effects of
CLEC11A were examined by cell migration, invasion, cell cycle analysis, and in vivo analysis. The associations between CLEC11A and immunocyte
infiltration were analyzed utilizing flow cytometry.
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change)| > 1 and adjusted p-value < 0.01, the differentially expressed

genes were determined and included in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and gene ontology (GO) analyses by

the R software package “ClusterProfiler” (48). The molecular

mechanisms and immune landscapes based on specific groups of

genes were determined by Gene Set Enrichment Analysis

(GSEA) (49).
2.6 TME analysis

Infiltration of immune and stromal cells was evaluated in GC by

the ESTIMATE (Estimation of STromal and Immune cells in

MAlignant Tumours using Expression data) algorithm (50).

Immune cells and immunomodulators associated with CLEC11A

in GC were obtained from TISIDB, an online database that provides

interaction information between tumors and the immune system

(51). In accordance with mRNA expression data, CIBERSORT

algorithm was conducted to characterize the TME cell

composition in GC tissues (52). Single-sample GSEA (ssGSEA)

analysis was conducted for quantitatively elucidating immune

function enrichment values (53).
2.7 Immunotherapy response

The expression patterns of CLEC11A in GC molecular subtypes

were assessed from TISIDB (51, 54). Tumor immune dysfunction,

exclusion (TIDE), immunophenoscore (IPS), and several

biomarkers (TMB, microsatellite stable (MSS), MSI) were

evaluated to predict ICB responses (55, 56).
2.8 Development of a CLEC11A-derived
immune signature

Immunoinhibitors and immunostimulators correlated with

CLEC11A (Spearman correlation test, P less than 0.05) from

TISIDB were selected for univariate Cox regression. After that,

significant prognostic genes were included in the random forest

survival analysis (57). With the optimal cutoff, the GC samples were

partitioned into two groups. The relationships between the risk

score and clinical outcomes were examined through Kaplan-Meier

analyses. The independence of CLEC11A-derived immune

signature in prognosis prediction was verified by univariate and

multivariate Cox regression analyses. ROC curves were employed

further to validate the efficacy and precision of risk scores in

predicting one-, three-, and five-year outcomes.
2.9 Nomogram establishment

The clinical factors that have independent prognostic value

were combined with the CLEC11A-derived immune signature to

construct a nomogram. Subsequently, the independence of the

nomogram was determined in univariate and multivariate Cox
Frontiers in Immunology 04
regressions. The consistency between the actual and observed

survival rates of the nomogram was evaluated using

calibration curves.
2.10 Genomic variation landscape

The Mutation Annotation Format (MAF) file from TCGA,

containing somatic variants, was analyzed using the R package

“maftools” (40). Copy number variation (CNV) data was obtained

from UCSC Xena, an online platform for accessing genomic

datasets (https://xenabrowser.net/datapages/) (58). To annotate

the genes in the CNV region, the genome research consortium

Human Build 38 was used.
2.11 Drug sensitivity

The semi-inhibitory concentration (IC50) values of drugs were

determined by the R package “pRRophetic,” which allows the

prediction of drug response based on pharmacogenomic data (59).
2.12 Cell culture

The normal human gastric mucosa cells (GES-1) and human

GC cells (BGC-803, AGS, HGC-27, SGC-7901, and BGC-823) were

obtained from ATCC (Shanghai, China) and cultured in McCoy’s

5a Medium (Gibco, Grand Island, NY, USA), supplemented with

10% fetal bovine serum (Gibco, sourced from Australia) and 1%

streptomycin/penicillin, at a temperature of 37°C with 5% CO2.
2.13 RNA interference

GC cells with reduced expression of CLEC11A were produced

using 5 mg/ml polybrene and lentiviruses (multiplicity of infection

[MOI], 100; packaged by Cyagen Biosciences). Stable CLEC11A-

downregulated cells (sh-CLEC11A cells) were screened using

Puromycin, and the control shRNA (sh-control) was obtained

from Cyagen Biosciences. Cell transfection was performed in line

with the manufacturer’s instructions. The sequences of shRNA

utilized were as follows: sh-CLEC11A: 5’-TGAGGACATCGT

CACTTACATCTCGAGATGTAAGTGACGATGTCCTCA-3’; sh-

Control: 5’-CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGG

CGACTTAACCTTAGG-3’.
2.14 RT-qPCR analysis

Total RNA was extracted from the cells using TRIzol reagent

(Invitrogen, USA). Subsequently, reverse transcription was

performed using the PrimeScript RT Reagent Kit acquired from

TaKaRa. The following PCR conditions were employed on the

StepOnePlus PCR System (TaKaRa) using 2x RealStar Power SYBR

Mixture (TaKaRa): an initial predenaturation at 95°C for 2 min,
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then 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s, for a total of 40

cycles. The PCR amplification primer sequences were as follows::

CLEC11A, forward: 5’-CTGCCGGAACTGTTGAGGG-3’, and

reverse: 5’-CCCAGGATGTAAGTGACGATGT-3’; b-actin,
forward: 5′ -TCCATCATGAAGTGTGACGT-3′, reverse: 5′
GAGCAATGATCTTGATCTTCAT-3′ . The relative RNA

expression was determined using the comparative Ct method and

normalized to b-actin transcripts. Each assay was repeated at least

three times.
2.15 Transwell assay

A total of 1 × 105 cells were seeded onto a fibronectin-coated

polycarbonate membrane insert in a transwell apparatus

manufactured by Corning (NY, USA), with a pore size of

0.8 mm. In the lower chamber of the transwell, 600 ml of RPMI

1640 medium supplemented with fetal bovine serum from

Beyotime Insti tute of Biotechnology was added as a

chemoattractant. Following a 12-hour incubation, the insert was

carefully washed with PBS to remove any non-adherent cells from

the upper surface. Next, the GC cells that migrated through the

membrane and attached to the lower surface of the insert were fixed

using 4% formaldehyde. To visualize and quantify the migrated

cells, the fixed cells were stained with a 0.2% crystal violet solution

obtained from Shanghai Qiaoxing Trading Corporation in

Shanghai, China. Cell counts were determined using ImageJ

software, and photographs were captured. The Matrigel invasion

assay was conducted following a procedure similar to the cell

migration assay described above. However, in the Matrigel

invasion assay, the transwell membrane was pre-coated with

ECMatrix™, and the cells were incubated for 14 hours. Each

experiment was repeated a minimum of three times.
2.16 In vivo cell proliferation assay

All animal studies were performed in line with the guidelines set

by the National Regulation of China for the Care and Use of

Laboratory Animals. Animal models were constructed using

female BALB/c mice (4~6 weeks old, purchased from the

Laboratory Animal Center of Southern Medical University). For

each group, 5 × 106 treated MFC cells (sh-CLEC11A and sh-

control) were collected and subcutaneously injected into female

BALB/c mice (n = 5). After 7 days of subcutaneous tumor

formation, the tumor volume of mice was measured every 96

hours by the electronic scale and vernier caliper. After the

initiation of treatment for 27 days, all mice were euthanized by

cervica l d is locat ion, and the tumor was excised for

further experiments.
2.17 Cell cycle assay

Following a 72-hour transfection with sh-control and sh-

CLEC11A, the cells were washed with PBS and then fixed in 1
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mL of pre-cooled 70% ethanol for 4 hours at -20°C. After

centrifugation at 200 x g for 5 minutes, the cells were

resuspended in 0.5 mL of PBS containing 40 mg/mL of propidium

iodide solution and 100 mg/mL of RNase A. Subsequently, the cells

were incubated at 37°C for 30 minutes and then analyzed using

flow cytometry.
2.18 Flow cytometry
immunophenotyping analysis

Tumors were harvested from mice in different groups to

investigate the immune cells in sh-control and sh-CLEC11A

tumors. Single-cell suspensions were prepared via filtration using

a 70 mm mesh after digestion with collagenase IV (0.3 mg/mL) for

one h at 37°C. Next, the harvested cells were incubated with CD16/

CD32 antibodies to block non-specific binding, followed by culture

in eBioscience™ Fixable Viability Dye eFluor™ 506. Subsequently,

the percentage of multiple immune cells was examined by flow

cytometry after staining with several antibodies: CD8+ T cells

(CD8, CD3, and CD45 antibodies), CD4+ T cells (CD3, CD45,

and CD4 antibodies), MDSCs (CD45, Gr-1, and CD11b antibodies),

Tregs (CD45, CD25, CD3, CD4, and Foxp3 antibodies), and

macrophages (CD45, CD11b, F4/80, CD206, and CD86 antibodies).
2.19 Statistical analysis

Statistical analyses were conducted using GraphPad Prism v9.5

and R software v4.0.3. The statistical significance of the expression

differences between different groups was assessed using a non-

parametric Wilcoxon rank sum test. The log-rank test was used to

evaluate the prognostic significance. The Spearman method was

employed for conducting the correlation analysis. Univariate and

multivariate Cox regression analyses were used to identify the

related factors affecting the overall survival of GC patients. The

detailed Cox regression results can be found in Supplementary

Table 1. Statistical significance was established at a P < 0.05.
3 Results

3.1 CLEC11A was up-regulated in GC

To identify the CLEC11A expression in pan-cancer, we used

TCGA RNA-seq data to determine the differential expression of

CLEC11A in tumor tissues compared to normal tissues. Our

analysis revealed that CLEC11A exhibited a significant

upregulation in various cancers, including GC (Figure 2A,

p<0.001). The upregulated CLEC11A expression in GC was

confirmed by GSE13861, GSE13911, GSE26899, GSE29272,

GSE54129, and GSE66229 (Figure 2B). Additionally, in TCGA-

STAD, the expression of CLEC11A varied among different T

staging (Chisq.test, p = 0.021; Supplementary Table 2).

Moreover, we used RT-qPCR analysis to assess the CLEC11A

mRNA expression levels in GC cells. Our results revealed a
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significant increase in the relative mRNA expression of CLEC11A

in six different human GC cell lines (BGC-803, AGS, SGC-7901,

BGC-823, and HGC-27) when compared to GES-1, a human gastric

mucosal epithelial cell line (Figure 2C). Among the 6 GC cell lines,

HGC-27 cells exhibited the most elevated expression levels of

CLEC11A, suggesting HGC-27 cells are a viable model for

investigating the functions of CLEC11A through a loss-of-

function approach.

Using the HPA database, we examined the CLEC11A protein

expression in GC. The immunohistochemical images uncovered

that the expression of CLEC11A protein was elevated in

GC (Figure 2D).
3.2 CLEC11A was linked to an unfavorable
prognosis in GC

To determine the prognostic significance of CLEC11A, we

conducted univariate Cox regression to explore the relationship

between CLEC11A and patient survival time across TCGA cancers.

We observed that high expression levels of CLEC11A could be a

negative prognostic factor for GC patients (HR = 1.47, p < 0.05;
Frontiers in Immunology 06
Figure 3A). Additionally, we examined the correlation between

CLEC11A expression and overall survival in GC. As shown in

Figures 3B–L), patients exhibiting high expression of CLEC11A

experienced shorter overall survival time compared to those with

low expression of CLEC11A in TCGA-STAD (p < 0.05), GSE26899

(p < 0.05), GSE13861 (p < 0.05), GSE26901 (p < 0.001), GSE15459

(p < 0.001), GSE29272 (p < 0.05), GSE26253 (p < 0.05), GSE62254

(p < 0.001), GSE84426 (p < 0.01), GSE84433 (p < 0.001), and

GSE84437 (p < 0.01).
3.3 CLEC11A was associated with genomic
instability and epigenetic modification

Genomic instability is a crucial factor that influences gene

expression and the TME, which generally promotes tumor

progression (60, 61). To investigate the genomic alterations of

CLEC11A, we employed the cBioportal to examine the alteration

frequencies of CLEC11A in GC (Figure 4A). The results showed

that the main types of CLEC11A alteration in GC are mutation and

amplification. Furthermore, we calculated the TMB, ploidy, LOH,

HRD, and MSI correlations with CLEC11A in GC due to the
A

B

DC

FIGURE 2

CLEC11A was over-expressed in GC. (A) CLEC11A mRNA expression across TCGA pan-cancer. (B) CLEC11A mRNA expression in GSE13861,
GSE13911, GSE26899, GSE29272, GSE54129, and GSE66229. (C) The CLEC11A mRNA expression in GC was verified by PCR analysis. (D)
Immunohistochemical analysis of CLEC11A in GC and normal stomach tissues by HPA database. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P <
0.0001, ns: not significant.
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unignorable impact of these genomic alterations on patient

prognosis and therapeutic responses (62–66). The results

(Figure 4B) uncovered a negative correlation between CLEC11A

and TMB (R = -0.166, p < 0.001) as well as MSI (R = -0.173, p <

0.001). No statistically significant correlation was observed between

CLEC11A and HRD (p = 0.098), LOH (p = 0.097), ploidy (p =

0.321). MMR genes are responsible for fixing errors that occur

during DNA replication, which helps maintain cancer genomic

stability (67). Thus, we examined the correlations between

CLEC11A and MMR genes (PMS2, MSH6, MSH2, MLH1, and

EPCAM). The results revealed a negative correlation between

CLEC11A and multiple MMR genes (Figure 4D). Furthermore,

we explored the relationship between gene mutation frequency,

chromosome gain/loss, and CLEC11A expression in patients with

GC (Figure 4F). Patients with high CLEC11A expression had lower
Frontiers in Immunology 07
mutation frequencies in PCLO (p < 0.05) and PIK3CA (p < 0.01)

than those with low levels of CLEC11A. However, no significant

differences in chromosome gain/loss were found between the high-

and low-expression groups of CLEC11A.

Epigenetic changes play a vital role in the initiation of

carcinogenesis, tumor progression, and metastasis (68, 69). We

sought the influences of CLEC11A on cancer epigenetic

modulations. As illustrated in Figure 4C, among 4 DNA

methyltransferases, CLEC11A exhibited a weak negative

correlation with DNMT3B in GC (Cor = -0.02, p < 0.001). We

further explored the correlation between CLEC11A and RNA

modulator genes. There was a significant association between

high CLEC11A expression and RNA modulator genes in GC,

specifically m6A, m5C, and m1A (Figure 4E), suggesting the

involvement of CLEC11A in RNA modifications.
A B

D E

F G

IH

J K L

C

FIGURE 3

Prognosis analyses of CLEC11A in GC. (A) Cox regression of CLEC11A across TCGA cancer types. Overall survival analyses of CLEC11A in (B) TCGA-
STAD, (C) GSE26899, (D) GSE13861, (E) GSE26901, (F) GSE15459, (G) GSE29272, (H) GSE26253, (I) GSE62254, (J) GSE84426, (K) GSE84433, and
(L) GSE84437.
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3.4 GO and KEGG

To investigate the biological significance of CLEC11A in GC, we

captured the co-expressed genes for conducting functional

enrichment analysis. As shown in Figure 5A, the top 20

differential genes with |log fold change>1| were detected. Using

the GO approach, we observed that the biological processes were

mainly concentrated in the extracellular matrix (Figure 5B).

Moreover, the results of KEGG indicated that CLEC11A exhibited

a close association with ECM-receptor interaction, TGF-beta

signaling pathway, focal adhesion, and protein digestion and

absorption (Figure 5C).
Frontiers in Immunology 08
3.5 Reduced CLEC11A inhibited cell cycle
progression, migration and invasion

Given the functional enrichment analyses suggested that

CLEC11A may play a role in GC development, we attempted to

reduce CLEC11A expression to understand the biological function

of CLEC11A in GC. Concretely, we utilized a lentiviral vector with

shRNA targeting and suppressing the expression of CLEC11A in

HGC-27 cells, a GC cell line with elevated levels of CLEC11A. Cell

migration and invasion are vital stages in tumor progression and

metastasis. During the investigation into the migratory and invasive

capabilities of HGC-27 cells, we found that the downregulation of
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FIGURE 4

CLEC11A was related to epigenetic modulations and genomic instability in GC. (A) The genomic alterations of CLEC11A in GC were explored by the
cBioPortal online web tool, including mutation and amplification. (B) The correlation between CLEC11A and genomic heterogeneity. The correlation
between CLEC11A and (C) 4 methyltransferases, (D) 5 MMR genes, and (E) 44 RNA modulations. (F) The gene mutation frequency and chromosomal
gain/loss were analyzed between CLEC11A subgroups in TCGA-STAD. * P < 0.05, ** P < 0.01, *** P < 0.001.
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CLEC11A resulted in a significant decrease in cell migration and

invasion compared to the sh-control cells (P < 0.01) (Figure 6A).

Additionally, we assessed the impact of CLEC11A knock-down on

cell cycle progression. Through flow cytometry analysis, we

observed a significant decrease in the proportion of cells in the

G2/S phase and an increase in the G1 proportion in CLEC11A-

deficient cells compared to the sh-control HGC-27 cells (P <

0.05) (Figure 6B).
3.6 Reduced CLEC11A inhibited tumor
growth in vivo

Besides investigating the biological functions of CLEC11A in vitro,

we also evaluated its in vivo role using a tumor transplantation model.

Following the subcutaneous transplantation of cells containing sh-

control or sh-CLEC11A lentiviral vectors into nude mice, we observed

and recorded the progression of tumor growth for a duration of 20

days. Figure 6C demonstrated a significant inhibition of tumor growth

in mice through CLEC11A knockdown. Analysis of tumor volume and

weights revealed that shRNA-CLEC11A cells yielded markedly smaller

tumors compared to sh-control cells (P < 0.001) (Figure 6C).
3.7 CLEC11A mediated immune infiltration
in TME

It is well known that TME plays a critical role in regulating

malignancy progression and modulating therapeutic response (70).

A better understanding of the TME could contribute to the

evolution of immunotherapy for GC (71). To investigate whether

CLEC11A was connected with TME, we used the ESTIMATE

algorithm to compute the stromal score, immune score, and

ESTIMATE score in the TCGA-STAD cohort. As shown in

Figure 7A, the ESTIMATE score (p <0.001), stromal score (p
Frontiers in Immunology 09
<0.001), and immune score (p <0.001) were significantly higher

in the high CLEC11A expression group. Next, we performed the

correlation analysis between CLEC11A expression and immune

cells in the TISDB (Figure 7B). Our findings revealed that CLEC11A

was correlated with active CD4+ T cells (Spearman: R = -0.192, p <

0.001), macrophages (Spearman: R = 0.533, p < 0.001), MDSCs

(Spearman: R = 0.375, p < 0.001), and Tregs (Spearman: R = 0.453,

p < 0.001) infiltration. Using flow cytometry analysis, we explored

the impact of decreased CLEC11A expression on immune cells. As

shown in Figure 7C, by knock-down of CLEC11A expression, both

cytotoxic CD8+ and helper CD4+ T cells infiltrated into the tumors

effectively. Moreover, knocking down endogenous CLEC11A could

dramatically decrease the percentage of Tregs, M2 macrophages,

and MDSCs (Figures 7D–F). The abundance of immune cells in the

TME significantly correlates with the survival prognosis of cancer

patients (72, 73). In TCGA-STAD, we found that high levels of M2

macrophages and T cells CD4 memory resting were associated with

poor prognosis in patients, while high levels of T cells CD8 and T

cells CD4 memory activated indicate a favorable prognosis

(Supplementary Figure 1). We also detected that the CLEC11A

was corre lated with mult ip le immunoinhibi tors and

immunostimulators in TISIDB (Figure 8A).
3.8 Increased expression of CLEC11A was
associated with a diminished response
to immunotherapy

In 2014, a study based on the TCGA program proposed four

molecular subtypes of GC: chromosomal instability (CIN),

microsatellite instability (MSI), Epstein–Barr virus (EBV), and

genomically stable (54). Specific subtypes within GC, such as

MSI-H tumors, demonstrate high sensitivity to immunotherapy

(74). When compared to the MSI subtype, we found that CLEC11A

expression was higher in genomically stable gastric tumors
A
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FIGURE 5

Functional analysis of CLEC11A in GC. (A) Top 20 differential genes between different CLEC11A expression subgroups. (B) GO analysis and (C) KEGG
analysis of differential genes of CLEC11A.
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(Figure 8B); a molecular subtype indicates poor prognosis and few

clear treatment targets (54, 75).

The TIDE is an algorithm designed to predict the effectiveness

of tumor immunotherapy, which considers both Dysfunction and

Exclusion in the TME (55). Based on the TIDE analysis, we found

that patients with high CLEC11A expression had significantly

higher TIDE scores, dysfunction scores and exclusion scores

compared to those with low CLEC11A expression (Figure 8C).

The IPS has been demonstrated as a dependable predictor of

immune checkpoint inhibitors (ICIs) treatment (56). We calculated

the IPS of GC patients from TCGA-STAD and found that patients

with low levels of CLEC11A expression presented significant

therapeutic benefits from ICI treatments (CTLA4-/PD-1- and

CTLA4+/PD-1-) (Figure 8D).
3.9 The CLEC11A-derived immune
signature for GC prognosis

According to TISIDB, we detected 33 immunostimulators and

16 immunoinhibitors that were significantly associated with

CLEC11A. To examine the prognostic values of CLEC11A-
Frontiers in Immunology 10
associated immunomodulators in GC, we conducted a univariate

Cox regression analysis on these variables. This analysis revealed

that seven genes exhibited a p-value less than 0.05, indicating

potential significance in predicting prognosis (Figure 9A). The

importance of the prognostic genes mentioned above was ranked

using random survival forest analysis (Figure 9B). Based on the

importance score being greater than zero, a total of six immune

genes were identified: CSF1R, TGFB1, TGFBR1, CD86, CXCR4,

and TNFSF18 (Figure 9B). Using the Kaplan-Meier curves, we

found that patients with low-risk scores had significantly longer

survival compared to patients with high-risk scores (log-rank test,

P<0.001) (Figure 9C). Moreover, we found that five genes (CSF1R,

CXCR4, TGFB1, TGFBR1, and TNFSF18) included in the signature

exhibited significant associations between the prognosis of GC (log-

rank test, p<0.05) (Figure 9E). When testing one-, three-, and five-

year overall survival probabilities, we found that CLEC11A-derived

immune signature possessed good potency in the TCGA training

cohort and external validation cohorts (GSE26899 and GSE15459)

(Figure 9D). By conducting univariate and multivariate Cox

regressions, the CLEC11A-derived immune signature was

considered an independent prognostic indicator of GC

(Figures 9F–H).
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C

FIGURE 6

The oncogenic effect of CLEC11A in GC. (A) Migration and invasion assays. (B) Cell cycle assay. (C) Reduced CLEC11A expression inhibited tumor
growth in vivo. * P < 0.05, ** P < 0.01, *** P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1324959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1324959
3.10 Development and verification of
a nomogram

Since clinical features are typically used in clinical practice to

evaluate the survival outcome of GC patients, we examined the

associations between the CLEC11A-derived immune signature and

multiple clinical features. Within the TCGA-STAD cohort, we

found that the distribution of risk scores was significantly

different in grade, stage, and T (p < 0.01, Dunn’s test)

(Figure 10A). With the aim of making the CLEC11A-derived

immune signature more clinically applicable, we combined the

prognostic signature and independent clinical features to establish

a nomogram (Figure 10B). To evaluate the independent prognostic

value of the nomogram in GC, we performed univariate and

multivariate Cox regression analyses on overall survival using the

TCGA-STAD dataset. The results demonstrated that the

nomogram significantly influenced the overall survival rate in the

univariate analysis (HR > 1, p < 0.001) (Figure 10C). Furthermore,

the nomogram showed consistent value as an independent
Frontiers in Immunology 11
prognostic factor for overall survival in the multivariate analysis

(HR = 1.160, 95% CI 1.099-1.224, p < 0.001) (Figure 10D). The area

under the curve (AUC) of the nomogram reached 0.715, 0.761, and

0.820 at one-, three-, and five-year intervals, respectively, signifying

a robust level of predictive accuracy (Figure 10E). The calibration

curves demonstrated a good fit between the predictions of the

nomogram and the actual observations (Figure 10F). These findings

indicated that the CLEC11A-based nomogram is a dependable and

accurate tool for predicting prognosis in GC.
3.11 Genomic variation landscape of
CLEC11A-derived immune signature

To determine the genomic variation of CLEC11A-derived

immune signature, we utilized the waterfall graphs to visualize the

mutational landscape of the top 20 genes occurring in the risk score

subgroups (Figures 11A, B). GC patients in the high-risk group

were discovered to have fewer TNN and TP53 mutations than GC
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C

FIGURE 7

CLEC11A mediated immune lymphocytes in TME. (A) Distributions of TME scores between CLEC11A subgroups. (B) Correlations between CLEC11A
and immune lymphocytes in TISIDB. Flow cytometry immunophenotyping analysis of the populations of (C) cytotoxic CD8+ and helper CD4+ T
cells, (D) Tregs, (E) M2 macrophages, and (F) MDSCs in MFC tumor-bearing mice after reducing CLEC11A expression.
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patients in the low-risk group. When summmaring the occurrence

of CNVs and somatic mutations of 6 signature genes, we observed

that these genes were mutated in 32 GC patients with a frequency of

7.38% (Figure 11C). Moreover, we found that the frequencies of

copy number gain and loss were common in 6 signature genes

(Figure 11D). The positions of signature genes on chromosomes

were visualized in Figure 11E.
3.12 The TME characteristics of CLEC11A-
derived immune signature

To understand the molecular mechanisms mediated by

CLEC11A-derived immune signature in GC, we performed a

GSEA analysis. According to the GO gene set, the high-risk

group exhibited enrichment in complement activation,

immunoglobulin complex, and immune response mediated by

circulating immunoglobulin (Figure 12A), whereas the low-risk
Frontiers in Immunology 12
group showed enrichment in mitochondrial protein-containing

complex and mitochondrial translation (Figure 12B). Considering

the strong association between CLEC11A-derived immune

signature and the immune microenvironment, we employed the

ESTIMATE algorithm to evaluate the immune infiltration status in

GC samples. As expected, CLEC11A-derived immune signature

exhibited correlations with multiple immune microenvironment

scores. In the high-risk group, the immune score, stromal score, and

ESTIMATE score were significantly higher than the low-risk group

(Figure 12C). Moreover, employing the ssGSEA algorithm, we

observed that the high-risk group demonstrated significantly

enhanced activities in pathways associated with T cell co-

inhibition pathways, cytolytic activity, and inflammation

promotion (Figure 12D). To further investigate the variations of

immune cell infiltration between risk score subgroups, we

quantified the abundance of infiltrating immune cells by

CIBERSORT algorithm. As shown in Figure 12E, T cells follicular

helper, T cells CD4 memory, and Macrophages M2 were more
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FIGURE 8

Immune-related genes and immune response analyses. (A) Expression correlations between CLEC11A and immunoinhibitors, immunostimulators
according to TISIDB database. (B) The expression patterns of CLEC11A in four TCGA molecular subtypes of GC. (C) TIDE and (D) IPS between
CLEC11A subgroups. * P < 0.05, ** P < 0.01, *** P < 0.001.
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abundant in the high-risk group. Furthermore, our findings

indicated a strong correlation between the signature genes and

tumor-infilrating immune cells. Interestingly, CD86, CSF1R,

TGFBR1, and TNFSF18 showed a positive correlation with

macrophage M2, as depicted in Figure 12F.
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3.13 Analysis of immunotherapy response
and drug sensitivity

To understand the response of CLEC11A-derived immune

signature to immunotherapy, we assessed the relationships
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FIGURE 9

A CLEC11A-derived immune signature was developed and validated. (A) The results of univariate Cox regression were presented by forest plot. (B)
The importance of CLEC11A-related immune genes was calculated by random survival forest analysis. (C) Overall survival analysis between risk score
subgroups in TCGA-STAD cohort, GSE26899, and GSE15459. (D) ROC curves of CLEC11A-derived immune signature in predicting one, three, and
five-year overall survival in the TCGA training set, GSE26899 and GSE15459. (E) Five genes (CSF1R, CXCR4, TGFB1, TGFBR1, and TNFSF18) included
in the signature showed associations with the overall survival of patients in the TCGA-STAD cohort. Independent prognostic analyses of the clinical
features and CLEC11A-derived immune signature in (F) TCGA-STAD cohort, (G) GSE26899, and (H) GSE15459.
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between risk score and TMB, MSI/MSS, TIDE, and IPS. The results

revealed that the high-risk group demonstrated a lower TMB, a

well-established predictor of immunotherapy response

(Figure 13A). Among the three microsatellite types, the risk score

exhibited the highest distribution in the MSS subgroup

(Figure 13B). Moreover, high-risk scores exhibited higher TIDE

scores, which indicated the reduced efficacy of immunotherapy

(Figure 13C). Conducting IPS analysis, we discovered that the IPS

in the low-risk group was elevated for CTLA4+/PD1-treatment,

which indicated that patients in the low-risk group had a better

response to anti-CTLA4 therapy compared to those in the high-risk

group (Figure 13D).

Furthermore, we investigated the response of risk score

subgroups to drug treatments, with a focus on currently clinically

used medications. As shown in Figure 13E, we found that the

patients in the low-risk score group had higher IC50 values for
Frontiers in Immunology 14
Pazopanib, Dasatinib, and Sunitinib, while patients in the high-risk

score group had higher IC50 values for Vinorelbine, Sorafenib,

Doxorubicin, Pyrimethamine, and Etoposide.
4 Discussion

This study presented the evidence that CLEC11A was up-

regulated in GC tissues and cell lines. Our analysis also proved

that CLEC11A expression indicated undesirable clinical outcomes

in GC patients. These findings suggested the clinical significance of

CLEC11A as a potential biomarker for GC prognosis.

During the progression of malignant tumor, dysregulated

growth factor signaling drives uncontrolled growth and division

of cancer cells (76). It is worth noting that the specific role of

CLEC11A, acting as a stem cell growth factor in GC, remains largely
A

B

D E F

C

FIGURE 10

A nomogram was developed and validated. (A) The distributions of risk scores in clinical features. (B) Nomogram construction based on the
CLEC11A-derived immune signature and clinical characteristics, including stage, N, TMB, and MSI. (C, D) Independent prognostic analyses of the
CLEC11A-derived immune signature and clinical features in the TCGA-STAD cohort. (E) ROC curves showed the prediction performances of the
nomogram in one-, three-, and five-year overall survival. (F) Calibration curves of the nomogram for one, three, and five-year overall survival.
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unknown. Our data indicated that CLEC11A was involved in the

genomic instability and epigenetic modification, which is closely

associated with the progression of GC. Furthermore, to understand

the biofunction of CLEC11A, we employed functional enrichment

analysis and uncovered that the biological processes of CLEC11A

co-expression genes were mainly concentrated in the extracellular

matrix organization and primarily involved in the cancer signaling

pathway. To confirm these findings, we knocked down the

expression level of CLEC11A and uncovered the contributions of

CLEC11A in promoting cell cycle, migration and invasion. In

animal models, we observed that CLEC11A promoted the growth

of subcutaneous tumors in mice. Collectively, these results strongly

demonstrated the oncogenic role of CLEC11A in GC development.

TME refers to an intricate biological environment that surrounds

the growing cancer cells, which comprises extracellular matrix, stromal

cells, immune cells, blood vessels, and lymphatic networks (77, 78). It

has been found that TME favours the proliferation and expansion of

cancer cells (79). To investigate whether CLEC11A exerts its

carcinogenic effect by affecting the TME of GC, we performed the

ESTIMATE algorithm and found that the cluster with higher

CLEC11A expression had a significantly higher ESTIMATE score.

Results from TISIDB further revealed that in the microenvironment of

GC, CLEC11A was negatively correlated with CD4+ T cells and

positively correlated with macrophages, MDSCs, and Tregs. These

findings were confirmed by flow cytometry, where the knock-down of

CLEC11A led to an increase in intratumoral CD8+ and CD4+ T cells

and a decrease in immunosuppressive cells (M2macrophages, MDSCs,

and Tregs). As is well known, T cells play a central role in the immune

response, and a decrease in T lymphocytes in the TME allows tumor

cells to escape immune system attack (80). Moreover, as immune

suppressive cell populations, M2 macrophages, MDSCs, and Tregs can

accumulate in the GC microenvironment, promoting tumor escape by
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blocking cytotoxic T cells attack against the tumor (12). Knockdown of

CLEC11A reshaped the composition of immunocytes in the TME,

indicating the potential impact of CLEC11A on immune responses.

Thus, we investigated the impact of CLEC11A on immunotherapy for

GC. Unsurprisingly, heightened expression of CLEC11A correlated

with elevated Dysfunction and Exclusion scores in the TIDE algorithm,

signifying increased immune system exclusion by the tumor and a

diminished response to immunotherapy. The results from IPS scoring

analyses revealed that GC patients with lower levels of CLEC11A were

more likely to benefit from immunotherapy in two specific groups

(CTLA4-/PD-1- and CTLA4+/PD-1-). Additionally, there existed a

negative correlation between CLEC11A and TMB/MSI, both serving as

markers that are associated with cancer neoantigens and predicting

immune response (81, 82). These results presented the influence of

CLEC11A on immunotherapy, suggesting its potential as a target for

enhancing immune therapy.

Due to the heterogeneity of GC, the survival durations among

patients exhibit huge distinction, which covers a range of 5 months to

10 years (83, 84). Patients suffering from early-stage localized GC

have a 5-year overall survival rate of above 60%, while for those

diagnosed with distant metastasis, it is fewer than 5% (85). Such

substantial variations in survival durations lead to a great challenge

for clinicians in predicting the prognosis of GC patients.

Encouragingly, the exploration of reliable biomarkers through

bioinformatics has demonstrated remarkable potential in clinical

applications. For example, a tumor immunophenotyping-derived

signature constructed by Wang et al. can effectively evaluate the

prognosis and response of GC patients to neoadjuvant ICI therapy

(86). Additionally, Sui et al. developed a prognosis signature

associated with immunocytes based on the cachexia-related genes,

providing a deeper understanding of the immune mechanisms

underlying cachexia in GC (87). In the present study, based on the
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FIGURE 11

Somatic mutations and CNVs analysis in GC patients. (A, B) Waterfall graphs illustrated the mutational landscape in risk score subgroups. (C) Genetic
alteration of 6 signature genes. (D) CNV frequencies of 6 signature genes. (E) Genomic positions of 6 signature genes. The bands on the inner circle
represented the corresponding expression levels.
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CLEC11A-derived immune genes, we identified a stable and robust

6-gene prognosis signature for GC patients by incorporating TCGA

data and verified its practicability using the GEO datasets. The

predictive performance from multiple GC cohorts suggest that our

developed prognosis signature holds potential in dealing with the

heterogeneous survival prognoses of GC. To further offer a

quantitative method for predicting the prognosis of GC patients in

clinical practice, we constructed a nomogram that combined

CLEC11A-derived immune signature and clinical features, which

accurately predicted the survival rate of GC patients.

Some biomarkers included in the signature (CD86, CSF1R,

CXCR4, TGFBR1, and TGFB1) have been discovered to be

correlated with GC. As early as 1998, Japanese scholars discovered

that CD86 was highly expressed in various gastric cancer cell lines (88).

Later, Yang et al. found that CD86 expression could induce tumor

angiogenesis in GC by activating VEGF-A expression (89). As the

receptor of colony-stimulating factor-1 (CSF1), CSF1R is associated

with the occurrence and prognosis of GC (90). CSF1R can promote the

proliferation, migration, and resistance to anoikis in GC cell lines (91).

CXCR4, as a chemokine receptor, can bind to CXCL12 and result in
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increased invasiveness of GC (92–94). Furthermore, the cross-talk

between CXCR4 and EGFR, as well as the downstream Akt/ERK

signaling pathway, can also promote the migration of GC (95). The

transforming growth factor-beta (TGF-b) signaling pathway plays a

crucial role in cell cycle regulation, growth, differentiation, extracellular

matrix synthesis, and immune response (96). As two members of this

signaling pathway, TGFB1 and TGFBR1 are expressed at high levels in

GC and are associated with the initiation, progression, and metastasis

of GC (97–99). Through the TGF-b1 signaling pathway, GC may gain

strength by inducing Tregs under hypoxic conditions, allowing tumor

cells to escape immunosurveillance (100). In this study, based on these

key genes, we calculated the risk score, which was discovered to be

strongly associated with the TME score. Moreover, in accordance with

the CIBERSORT algorithm, the high-risk group had an elevated

abundance of M2 macrophage fraction and signature genes were

positively correlated various immunesupressive cells. Hence, we

demonstrated that the effect of signature genes on the poor survival

of GC patients was probably related to the mediation in the tumor

microenvironment. Collectively, these findings offer novel insights for

further molecular biology research on the mechanisms through which
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FIGURE 12

The TME characteristics of CLEC11A-derived immune signature. (A, B) GO terms enriched in risk score subgroups were determined by GSEA analysis.
(C) Immune fractions between the risk score subgroups were quantified by TME scores. (D) Differences of immune-related pathways between risk
score subgroups. (E) The relationships between TME infiltrated cells and genes included in CLEC11A-derived immune signature. (F) CIBERSORT
algorithm quantified the TME infiltrated cells between risk score subgroups. * P < 0.05, ** P < 0.01, *** P < 0.001.
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the signature genes modulate the immune microenvironment of

GC patients.

Based on the relationships between the risk score and TMB, MSI,

we concluded that individuals with high-risk scores are less likely to

benefit from immunotherapy. The TIDE score analysis also displayed

similar results. Given this, we attempted to use gene expression data

from GC to further investigate the candidate agents for GC patients

with unfavorable prognoses. The findings indicated that GC patients

in the high-risk group exhibited sensitivity to Pazopanib, while those

in the low-risk group exhibited sensitivity to sorafenib. Currently,

Pazopanib and Sorafenib are targeted agents utilized in the clinical

management of GC. As tyrosine kinase inhibitors, both Pazopanib

and Sorafenib can inhibit the vascular endothelial growth factor

receptor (VEGFR), thereby inhibiting angiogenesis in GC (101, 102).

The commonly used clinical parameters, grading, and staging

systems that currently guide the treatment decisions for GC have

certain limitations. Specifically, patients with the same cancer staging

often exhibit significant differences in response to the same treatment

(103). By combining our prognostic features, clinicians can go

beyond existing staging systems and provide more accurate

treatment for patients with GC.
5 Conclusion

In the present research, we explored the molecular features,

oncogenic effects, and TME characteristics of CLEC11A in GC.

Moreover, we established a CLEC11A-derived immune signature
Frontiers in Immunology 17
that exhibited accurate prognosis prediction in GC patients.

Overall, our study uncovered the prognostic and immunological

value of CLEC11A and provided a potential option to predict the

clinical outcome of GC patients.
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