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GlcNAcylation in acute myeloid
leukemia blasts and stem cells
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1Department of Pathology, Case Western Reserve University, Cleveland, OH, United States,
2Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States,
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Introduction: Acute myeloid leukemia (AML) is the most common acute

leukemia in adults with an overall poor prognosis and high relapse rate.

Multiple factors including genetic abnormalities, differentiation defects and

altered cellular metabolism contribute to AML development and progression.

Though the roles of oxidative phosphorylation and glycolysis are defined in AML,

the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-

GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined.

Methods: We studied the expression of the key enzymes involved in the HBP in

AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We

performed flow cytometry to study OGT protein expression and global O-

GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation

on transcriptional activation in AML cells by Western blotting and real time PCR

and on cell cycle by flow cytometry.

Results:We found higher expression levels of the key enzymes in the HBP in AML

as compared to healthy donors in whole blood. We observed elevated O-GlcNAc

Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk

cells as compared to normal hematopoietic stem and progenitor cells (HSPCs).

We also found that both AML bulk cells and stem cells show significantly

enhanced OGT protein expression and global O-GlcNAcylation as compared

to normal HSPCs, validating our in silico findings. Gene set analysis showed

substantial enrichment of the NF-kB pathway in AML cells expressing high OGT

levels. Inhibition of O-GlcNAcylation decreased NF-kB nuclear translocation and

the expression of selected NF-kB-dependent genes controlling cell cycle. It also

blocked cell cycle progression suggesting a link between enhanced O-

GlcNAcylation and NF-kB activation in AML cell survival and proliferation.
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Discussion:Our study suggests the HBP may prove a potential target, alone or in

combination with other therapeutic approaches, to impact both AML blasts and

stem cells. Moreover, as insufficient targeting of AML stem cells by traditional

chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation

in AML stem cells may represent a novel promising target to control relapse.
KEYWORDS

hexosamine biosynthetic pathway, O-GlcNAcylation, AML, OGT, OGA, leukemic stem
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1 Introduction

Acute myeloid leukemia (AML) is the most common acute

leukemia among adults. It has an overall poor prognosis, high

relapse rate and its incidence increases with age (1, 2). Therapeutic

progress for AML for the past 4 decades has been limited and an

AML cure remains a major challenge with the existing treatment

modalities. To date, most AML patients still rely on traditional

chemotherapy and allogeneic bone marrow transplantation, which

show the need to discover novel pathways and mechanisms

involved in AML to develop new treatment strategies (3, 4).

There have been several new agents approved in recent years to

treat AML such as IDH (5, 6), and Fms-Like Tyrosine kinase 3

(FLT3) (7) inhibitors. However, these drugs have led to only modest

improvements in patient survival and are only useful for subsets of

patients with the relevant genetic abnormalities (8).

Targeting cell metabolism is emerging as a promising avenue for

cancer therapy (9). For example, inhibitors of the metabolic enzyme

IDH have been approved for use in AML patients with IDH

mutations (6). Previous studies have shown AML cells are

adaptable to diverse metabolic pathways and use fatty acids and

amino acids to enable mitochondrial metabolism (10). We have

previously shown drug resistant AML stem cells (LSCs) prioritize

oxidative metabolism over glycolysis and LSCs also increase their

dependence on fatty acids and amino acids during disease

progression (11). Thus, differential utilization of metabolic

pathways has been reported to play a role in specific AML cell

subsets and represents a unique vulnerability for targeting cancer cells

as opposed to normal cells.

In general, cancer cells, including AML cells, depend on

anaerobic glycolysis which is known as the Warburg effect (12)—

a less efficient way of energy production compared to mitochondrial

oxidative phosphorylation. This results in increased uptake of

glucose by cancer cells for their increased energy need and

proliferation (13). Cancer cells also consume large amounts of

glutamine, a precursor amino acid for the synthesis of

glucosamine. Increased glucose flux and glutamine consumption

has been shown to act as prominent initiators of the hexosamine
02
biosynthetic pathway (HBP), which is a minor arm of glucose

metabolism (14). The HBP usually accounts for a minor fraction of

total glucose metabolism, with its end product, UDP-GlcNAc,

acting as the substrate for a post-translational modification

(PTM) called O-GlcNAcylation (14)–a reversible, dynamic,

covalent modification analogous to phosphorylation. Just a single

pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase

(OGA) mediates O-GlcNAcylation of all cellular proteins. OGT

transfers GlcNAc from UDP-GlcNAc to target proteins and OGA

removes O-GlcNAc from modified proteins (14) (Figure 1).

O-GlcNAcylation occurs primarily at serine and threonine

residues of intracellular proteins, and it often competes with or

alters phosphorylation (15). O-GlcNAcylation regulates various

cellular processes including transcription, cell signaling,

metabolism, cell cycle, cell survival, stress, and oncogenesis (15, 16).

Increased O-GlcNAcylation is implicated in both hematopoietic

and solid cancers where it controls cell proliferation andmetastasis (17,

18). O-GlcNAcylation is a key player in hematological malignancies

such as chronic lymphocytic leukemia (CLL), pre-B-cell acute

lymphocytic leukemia (preB ALL) and AML (19). Specific O-

GlcNAcylation of signal transducer and activator of transcription 5

(STAT5) at threonine 92 has been reported both in CLL and AML

cells. STAT5 O-GlcNAcylation at T92 enhances its tyrosine

phosphorylation and promotes neoplastic proliferation of myeloid

cells (20). Overall, it appears suppressing O-GlcNAcylation limits

oncogenesis, and an increase in O-GlcNAcylation supports

oncogenesis (21). Previously, it has been shown global O-

GlcNAcylation is increased in AML cell lines and primary bulk cells

and HBP inhibition resulted in AML cell apoptosis, sparing normal

peripheral blood mononuclear cells (PBMC) (22), but a direct

comparison of O-GlcNAcylation in AML and HSPC was lacking.

Interestingly, moderate HBP or O-GlcNAcylation inhibition induced

AML cell differentiation (22). These data suggest the HBP and O-

GlcNAcylation play a role in bulk AML cell survival and differentiation

arrest. Another study found there is a positive correlation between O-

GlcNAcylation levels and AML chemoresistance. Combination

treatment of the OGT inhibitor, OSMI-1, with doxorubicin resulted

in a synergistic increase in apoptosis of AML cells (23).
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As AML is a heterogeneous disease with a wide range of genetic

subtypes, it is important to understand the role of the HBP in AML

across patients (24). Likewise, it is important to appreciate the HBP

at both the AML blast stage as well as in LSCs, which are crucial for

AML initiation. Because LSCs are typically chemoresistant, it is

particularly important to study HBP enzyme expression patterns in

this population. To elucidate the biology of AML and to gain further

understanding of O-GlcNAcylation dysregulation in AML, we

analyzed single-cell and bulk RNA-sequencing data to evaluate

the expression of HBP enzymes in AML patient’s blasts and LSCs in

comparison to healthy controls. This study contributes to a better

understanding of the regulation of the HBP and O-GlcNAcylation

in AML blasts and LSCs. It also provides insight into the functional

consequences of enhanced O-GlcNAcylation by studying its role in

promoting NF-kB signaling. This implicates the HBP as a relevant

metabolic pathway that may be targeted to develop prognostic

biomarkers as well as improve AML therapeutics.
Frontiers in Immunology 03
2 Methods

2.1 Cell culture conditions

OCI-AML3 cells (DSMZ) were cultured in RPMI-1640 media

with 10% SCS, 100 U/mL penicillin/streptomycin, and 1% L-

glutamine. Cells were incubated at 37°C with 5% CO2.
2.2 Western blotting for global
O-GlcNAcylation

OCI-AML3 cells (5 x 105 cells/mL) were cultured with 25 µM

Thiamet-G (Cayman Chemicals, Cat# 1009816-48-1), 25 µM

OSMI-1 (MedChem Express, Cat # HY-119738), or vehicle

control (DMSO) for 16 hours. Cells were lysed for 15 minutes on

ice with Triton lysis buffer (1% Triton-X100, 20 mM HEPES [pH

7.6], 0.1% SDS, 0.5% Sodium deoxycholate, 150 mM NaCl, 1 mM

EDTA) supplemented with protease inhibitor cocktail

(ThermoFisher, Cat# A32955). Cell lysates were resolved through

7% SDS-PAGE gels. Proteins from the gel were transferred onto

nitrocellulose membranes which were blocked with 5% Bovine

Serum Albumin (prepared using Tris-buffered Saline containing

0.1% Tween). Membranes were probed with primary antibodies

followed by HRP-conjugated secondary antibodies. The blots were

developed with enhanced chemiluminescence substrate

(GenDepot) and exposed to X-ray films (Fujifilm). The following

antibodies were used: O-GlcNAc (Santa Cruz, Cat# sc-59624), and

b-tubulin (Santa Cruz, Cat# sc-9104).
2.3 Western blotting for cytoplasmic and
nuclear NF-kB

OCI-AML3 cells (5 x 105 cells/mL) were cultured with 25 µM

OSMI-1 or vehicle control for 4 hours. For cytoplasmic and nuclear

fractionation, cells were lysed with cytoplasmic lysis buffer (10 mM

HEPES pH 7.6, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA) on ice

for 15 minutes. NP-40 was added to lysates to a final concentration

of 0.625% and vortexed for 10 seconds. Lysates were then

centrifuged at 12,000 xg for 30 seconds at 4°C and supernatants

were collected for the cytoplasmic fraction. Pellets were washed

once with cytoplasmic lysis buffer and resuspended in nuclear lysis

buffer (20 mM HEPES pH 7.6, 400 mM NaCl, 1 mM EDTA, 1 mM

EGTA). Lysates were kept on ice for 30 minutes before being

centrifuged at 12,000 xg for 10 minutes at 4°C. The supernatant

was then collected for the nuclear fraction. Both lysis buffers were

supplemented with protease inhibitor cocktail (ThermoFisher, Cat#

A32955). Cell lysates were resolved through 7% SDS-PAGE gels.

Proteins from the gel were transferred onto nitrocellulose

membranes which were blocked with 5% Bovine Serum Albumin

(prepared using Tris-buffered Saline containing 0.1% Tween).

Membranes were probed with primary antibodies followed by
FIGURE 1

Hexosamine Biosynthetic Pathway (HBP). Schematic showing
enzymes and substrates involved in de novo and salvage HBP.
Created with BioRender.
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HRP-conjugated secondary antibodies. The blots were developed

with enhanced chemiluminescence substrate (GenDepot) and

exposed to X-ray films (Fujifilm). The following antibodies were

used: O-GlcNAc (Santa Cruz, Cat# sc-59624), b-tubulin (Santa

Cruz, Cat# sc-9104), p65 (Santa Cruz, Cat# sc-372), p50 (Cell

Signaling, Cat# 13586S), c-Rel (Cell signaling, Cat# 4727S), and

Lamin A/C (Santa Cruz, Cat# sc-20681).
2.4 Quantitative real-time PCR

OCI-AML3 cells (5 x 105 cells/mL) were cultured with 25 µM

OSMI-1 or vehicle control for 4 hours. RNA was isolated from cells

using EZ10 DNAaway RNA miniprep kit (BioBasic) and quantified

with a NanoDrop spectrophotometer. cDNA was synthesized from

1 µg of RNA using the High Capacity cDNA Reverse Transcription

Kit (Applied Biosystems). Quantitative real-time PCR was

performed using HotStart™ 2X Green qPCR Master Mix

(APExBIO). Gene expression values were normalized to the

housekeeping gene RPL32 and fold changes were calculated using

the DDCt method. The following primers were used:

R P L 3 2 F : A G C T C C C A A A A A T A G A C G C A C ,

R: TTCATAGCAGTAGGCACAAAG

c - M y c F : C C T G G T G C T C C A T G A G G A G A C ,

R: CAGACTCTGACCTTTTGCCAGG

Cy c l i n D1 F : GCGGAGGAGAACAAACAGAT ,

R: TGAACTTCACATCTGTGGCA

C y c l i n E 1 F : C C CGGTCATCATCTTCT T TG ,

R: AGAAATGGCCAAAATCGACA
2.5 Primary AML and healthy donor cells

Peripheral blood and bone marrow samples from AML patients

and healthy donors were obtained from the Case Western Reserve

University Hematopoietic Biorepository and Cellular Therapy

Core. The core performed Ficoll-density purification to isolate

mononuclear cells (MNC) and cryopreserved them in liquid

nitrogen. For healthy PBMCs, MNCs were isolated from healthy

blood using Ficoll-Paque Premium density gradient media (Cytiva,

Cat# 17544652) and Leucosep™ tubes (Grenier Bio-One, Cat#

227290). PBMCs were cryopreserved prior to processing for flow

cytometry analysis.
2.6 Intracellular O-GlcNAcylation staining
and flow cytometry

Patient samples were thawed, washed, and treated with 25 mg/
ml of DNase I in 1% BSA/PBS to dissociate cell clumps. Cells were

washed to remove DNase I and 2.5 x 106 cells per sample were

transferred to a well in a 96-well round bottom plate (Fisher, Cat#

12-565-65). Cell viability was assessed using Zombie NIR Fixable

dye following manufacturer’s instructions (BioLegend, Cat#

423105). Cells were then blocked with TruStain Human FcX

Blocking Buffer followed by incubation with antibodies against
Frontiers in Immunology 04
CD34 (BV421, BD Biosciences, Cat#745259) and CD38 (PE,

BioLegend, Cat# 303506). After surface staining, cells were fixed

and permeabilized using the True Nuclear Transcription Factor

Buffer Set (BioLegend, Cat# 424401) and then stained with the RL2

antibody recognizing O-GlcNAcylated proteins (Invitrogen, Cat#

51-9793-42) and an anti-O-GlcNAc Transferase (OGT) antibody

(Santa Cruz, Cat# sc-32921). For OGT staining, anti-rabbit IgG

(AF488, Cat# A-11008) was used to detect presence of the anti-

OGT antibody. Samples were then acquired using an Attune NxT

acoustic focusing flow cytometer and analyzed using FlowJo V10.

Fluorescence minus one (FMO) controls were used to set positive

gates for RL2 and OGT positive cells. Median fluorescence

intensities across groups were compared using a one-way

ANOVA with Dunnett’s multiple comparison test for analyses

with more than two groups or a Student’s t-test with analyses

with two groups.
2.7 Cell cycle and proliferation analysis

OCI-AML3 (3 x 105 cells/mL) cells were cultured with OSMI-1

(25 mM) or vehicle control for 2 days. Cells were permeabilized with

70% ethanol for 30 minutes at 4°C and stained with propidium

iodide. To quantify cell numbers, acquisition settings were kept

consistent across all samples. Cell cycle progression was measured

using an Attune NxT acoustic focusing flow cytometer and analyzed

using FlowJo V10.
2.8 Bioinformatic processing of single-cell
sequencing data

For the analysis of data from Stetson et al. (11), RNA was

normalized using SCTransform (25, 26). Differential expression was

done using logistic regression with log fold change cutoffs reduced

to 0. CCA integration between all samples was performed using

Seurat v4 (27–30). HBP members were spiked into the list of

integrated features to ensure their presence during integration.

Clustering was performed using FindNeighbors and FindClusters

with the default parameters and the 2000 most highly

variable genes.

For the analysis of data from Van Galen et al. (31), RNA counts

were CPM normalized and log-scaled. Cell types were used as

previously defined (31). GMP, HSPC and Progenitor cells were

grouped into a HSPC group (Healthy Donors) or LSC-like group

(AML patients), and remaining malignant cells were labeled AML

Blasts. Differential expression was done using logistic regression

with log fold change cutoffs reduced to 0 on the imputed values.
2.9 Analysis of TCGA, BeatAML, TARGET,
St. Jude, and GTEx data

Samples were imported into R and categorized by age (Adult >

29) for TCGA, BeatAML, TARGET, and data from St. Jude

Children’s Research Hospital’s St. Jude Cloud (SJC-DS-1013 and
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SJC-DS-1009) cohorts. Whole blood samples from GTEx were used

as a normal comparison along with normal cells from GSE198919.

Genes not found across all datasets were removed. Counts were

normalized using voom from limma (32–34) v3.54.2. GSVA (35)

v1.46.0 was used to generate enrichment scores for gene ontology

and hallmark gene sets. Cutoffs for OGA and OGT were determined

using the 10% and 90% quantile across all samples. Differential

expression was conducted using eBayes and topTable for both RNA

counts and GSVA enrichment scores (32, 33).
2.10 Statistics

Differential expression was conducted using limma-eBayes (32–

34) for bulk RNA-sequencing data and Seurat FindMarkers with

method=“LR” and fold change cutoffs set to 0 (25, 28, 30, 36) for

single-cell RNA-sequencing data. For flow cytometric analyses,

median florescence intensity values were compared using a one-

way ANOVA with Dunnett’s multiple comparison test for analyses

with more than two groups or a Student’s t-test for analyses with

two groups.
3 Results

3.1 OGA and OGT expression is
heterogeneous in LSCs

Bulk AML cells show enhanced HBP activity and O-

GlcNAcylation compared t0 PBMCs and chemotherapeutic drugs

have been shown to further enhance O-GlcNAcylation in AML cells

(19, 22, 23). In this manuscript, we use bulk cells to refer to MNC

from blood or bone marrow in AML patients and AML blasts to
Frontiers in Immunology 05
refer to non-LSC AML cells. A comparison of O-GlcNAcylation in

AML to their comparable healthy counterpart myeloid progenitors

has not been done previously. Recently, it was also shown that

inhibition of O-GlcNAcylation promotes the differentiation of LSCs

(37). Previous single-cell studies analyzing primary AML samples

demonstrate it is a highly heterogeneous disease both within a

patient and between patients (38). The metabolic pathways,

oxidative phosphorylation and glycolysis, also show remarkable

gradience among patients and cell types of individual patients,

however, the role of O-GlcNAc cycling enzymes at the single-cell

level remains unknown. To study whether patient and cell type

specific heterogeneity exists in these enzymes at the single-cell level

in leukemic stem cells (LSCs), we integrated single-cell RNA-

sequencing data on LSCs from serial diagnostic and relapse

samples from 5 AML patients (11). Uniform manifold

approximation and projection (UMAP) visualization of shared-

nearest neighbor clustering of all the cells from these patients found

7 unique clusters (Figure 2A) with intermixed expression of OGT

and OGA between patients (Figure 2B) and timepoints, i.e.,

diagnosis and relapse (Figure 2C). Differential expression analysis

of OGT and OGA (Figure 2D, Supplementary Table 1) showed

clusters with lower expression levels with less cells expressing OGA

and OGT (cluster 3) as well as higher expression levels of OGT and

OGA in a higher proportion of cells (cluster 6). Cluster 2 shows

higher OGT expression without higher OGA expression, suggesting

cells in this cluster are skewed towards higher levels of O-

GlcNAcylation (Figure 2D). We observed no difference (p = 1.0)

in OGT and OGA expression between patients (Figure 2E).

Interestingly, the expression of OGT and OGA were unchanged

between diagnosis and relapse samples (Figure 2F). These

differences in the expression of OGT and OGA suggest cycling of

O-GlcNAcylation may be different in LSC subsets/clusters that may

affect their function.
A

B

C

D

E

F

FIGURE 2

OGT expression is increased across several RNA-sequencing datasets. (A–C) Integrated UMAP embeddings of clusters (A), patients (B) and
timepoints (C). (D, E) Dot plot with scaled average expression of OGA and OGT per cluster (D) and patient (E). (F) Dot plot with log-normalized
expression of OGA and OGT per timepoint. (D–F) Size of dots represents the percentage of cells with more than one UMI count for OGT or OGA,
respectively. Data is from Stetson LC, et al (11). Data includes 721 cells from 5 patients.
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3.2 Expression of OGT and classical HBP
enzymes are increased in AML blasts
and LSCs

To assess differences in the expression of enzymes involved in

the HBP between healthy and AML cells, we collected publicly

available single-cell RNA-sequencing data on AML and healthy

donor bone marrow (31). This study used a combination of single-

cell sequencing and single-cell genotyping to classify cells into non-

malignant or AML cells, based on known AML mutations. The

AML cells were separated into blasts and LSCs. We compared OGT

and OGA expression between LSCs and HSPCs. We found LSCs

had a higher expression of OGT compared to HSPCs (p < 0.001,

logFC = 0.17, Figure 3A). We also found an increase in OGA

expression in LSCs compared to HSPCs (p < 0.001, logFC = 0.20,

Figure 3A), although overall OGA expression was lower than OGT.

We also analyzed the expression levels of HBP enzymes which

control UDP-GlcNAc generation using bulk RNA-sequencing data

across several cohorts (TCGA, BeatAML, TARGET, and St. Jude

Children’s Research Hospital). We found HBP enzymes involved in

de novo UDP-GlcNAc generation such as GFPT1 (transcribing

GFAT1, logFC = 1.43, p < 0.001), GNPNAT1 (logFC = 2.06, p <

0.001), PGM3 (logFC = 0.90, p < 0.001), andUAP1 (logFC = 0.83, p <

0.001) were upregulated in AML patients as compared to healthy

donors, suggesting elevated HBP activity (Figure 3B, Supplementary

Table 2). We also saw OGT expression was higher in samples from

AML patients (logFC = 0.78, p < 0.001), which mirrored the same

trend observed in the single-cell sequencing analysis (Figure 3A). On
Frontiers in Immunology 06
the other hand, AML patients had a moderately lower expression of

OGA (logFC = -0.40, p < 0.001) as compared to healthy donors.

However, the fold change observed was very small, warranting

further studies on OGA expression at RNA and protein levels in

AML to understand its biological significance and correlate it with

altered O-GlcNAcylation. We also included normal HSPCs (n = 13)

as a reference for the expression of HBP proteins in healthy

hematopoietic progenitors—the cell type from which AML is

thought to originate. Due to the low sample size making the

comparison between normal HSPCs and AML cells underpowered,

it is not possible to make any definitive conclusions on changes in the

expression of HBP proteins among these groups.

While most HBP enzymes had increased expression in AML,

NAGK expression was lower in AML than the healthy controls

(Figure 3B, logFC = -2.10, p < 0.001). NAGK is the key enzyme

involved in the salvage pathway (39), where it interacts with free N-

Acetylglucosamine removed from previously O-GlcNAcylated

proteins and converts it to N-Acetylglucosamine-6-Phosphate

allowing it to be recycled to produce UDP-GlcNAc (Figure 1).

Downregulation of this enzyme could indicate AML cells are less

dependent on the salvage pathway to generate UDP-GlcNAc, and

instead rely more on de novo synthesis.

We also found the expression of GFPT2 (transcribing GFAT2)

was lower (logFC = -2.73, p < 0.001) in AML samples as compared

to normal controls (Figure 3B, Supplementary Table 2). GFAT2 is

one of the two proteins (GFAT1 and GFAT2) which catalyze the

rate-limiting step of the HBP which converts fructose-6-phosphate

to glucosamine-6-phosphate (40) (Figure 1). This event is the
A B

C

FIGURE 3

OGT and many HBP members are increased in AML. (A) Dot plot of OGT and OGA expression in LSCs and HSPCs from healthy donors (HD). The
scRNA-Seq data is from van Galen, P et al. (31). (B) Expression levels of HBP members from bulk RNA-sequencing. Expression has been normalized
using voom. AML: n = 1005, Normal HSPC: n = 13, Normal Whole Blood: n = 755, also shown in the legend. DE analysis results are shown where p <
0.05. (C) Scatterplot of OGT and OGA expression values in AML (green) and normal (orange) samples. r = Pearson correlation between OGA and
OGT expression. (B, C) Data is from TCGA, TARGET, BeatAML, St. Jude Children’s Research Hospital, GTEx, and GSE198919.
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important branch that directs sugar to the HBP instead of glycolysis

(Figure 1). Downregulation of GFAT2 and upregulation of its

homologue, GFAT1, suggest AML cells may preferentially rely on

GFAT1 for HBP activation. We observed small differences in OGT

(logFC = 0.16, p = 0.002), PGM3 (logFC = 0.34, p < 0.001), and

GFPT1 (logFC = 0.10, p = 0.019), between pediatric and adult AML

samples, but no difference in any other HBP enzymes

(Supplementary Table 2). Though there are slight differences in

HBP enzyme expression between adult and pediatric AML patients,

these differences are much smaller than the changes between AML

(pediatric and adult) and normal controls (Figure 3B).

We also assessed the relationship between OGT and OGA

expression. The Pearson correlation coefficient in AML patients

(r = 0.502, 95% CI = 0.454 - 0.547) and normal controls (r = 0.680,

95% CI = 0.640 - 0.717, Figure 3C), revealed a substantial

correlation between these two genes. This finding supports the

idea that flux through the HBP is regulated concurrently by co-

regulation of these genes. We also found greater OGT expression

and a higher OGT : OGA ratio in AML cells (green) compared to

normal controls (orange) which would contribute to higher levels of

protein O-GlcNAcylation. Overall, this expression analysis shows

AML cells have an increased expression of OGT including in the

LSCs as compared to HSPCs and PBMCs.
3.3 Patients with high levels of OGT and
OGA show distinct gene set enrichment

A majority of the known O-GlcNAcylated proteins are

transcription factors and changes in O-GlcNAcylation significantly

alter gene expression in several disease states (41, 42). To study the

effect of changes in O-GlcNAcylation on gene expression in AML, we

performed a gene set variance analysis using 636 samples with the

highest (n = 318) and lowest (n = 318) OGT or OGA expression. We

selected the top 10% and bottom 10% of samples based on OGT

(Figure 4A, Supplementary Table 3) and OGA (Figure 4B,

Supplementary Table 4) expression. We found samples expressing

high levels of OGT showed higher enrichment in multiple gene sets

related to proliferation including PI3K/AKT/mTOR, JAK/STAT,

Wnt/b-catenin, and NF-kB signaling (Figure 4A). Interestingly, we

also observed similar trends in samples expressing high levels of OGA

(Figure 4B), likely resulting from the ability of OGT and OGA to

transcriptionally regulate each other (43). Thus, as OGT expression

increases, OGA expression is also expected to increase. This suggests

that O-GlcNAc cycling is important in promoting cell proliferation

pathways, as shown previously in several cancer types where OGA

and OGT were both upregulated (44).

O-GlcNAcylation has been shown to influence activation of

many of these pathways by modifying multiple proteins involved in

these signaling cascades (19). Specifically, the up-regulation of gene

sets involved in NF-kB signaling, such as the formation of the NF-

kB p65/p50 complex as well as downregulation of those involved in

the inhibitor of kB (IkB) and NF-kB complex. O-GlcNAcylation

levels have been positively correlated with NF-kB activity across
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multiple cancer types (45). NF-kB p65 O-GlcNAcylation reduces

affinity to IkB allowing for nuclear translocation (46). In addition,

O-GlcNAcylation of NF-kB has also been shown to regulate its

binding to certain promoter regions (47, 48). Thus, the specific

enrichment of the NF-kB pathway in the gene set analysis

emphasizes a prominent correlation with OGT/OGA expression

and NF-kB activation, which might regulate AML survival,

proliferation, and the evasion of apoptosis.

Similarly, we also found increased expression of OGT and OGA

increases enrichment of the Hallmark c-Myc targets gene set

(Figures 4A, B). This is consistent with previous findings showing

c-Myc O-GlcNAcylation promotes its stability by inhibiting

ubiquitination (49). c-Myc regulates genes involved in

proliferation, survival, and metabolism. Importantly, c-Myc

promotes glutamine metabolism and controls GLUT-1 expression

(50), thus participating in a positive feedback loop to further

increase HBP activity through increased glucose uptake. Justifying

the enrichment of AKT/mTOR pathway in the gene set, O-

GlcNAcylation stabilizes transcriptional co-activators such as

DDX5 and TCL1, which play a role in regulating AKT expression

and subsequent mTOR activation (51, 52).

We also found higher levels of OGA and OGT were associated

increased enrichment of unfolded protein response (UPR) related

GO terms suggesting a link between O-GlcNAcylation and

endoplasmic reticulum stress in AML. Increase in OGT/OGA

expression and O-GlcNAcylation could provide a protective role

for AML cells as increased O-GlcNAcylation abrogates the pro-

apoptotic arm of the UPR (53).
3.4 AML blasts and LSCs show enhanced
protein O-GlcNAcylation and
OGT expression

To validate our single-cell RNA-sequencing and bulk RNA

analyses findings and show the upregulation of HBP enzymes is

reflected at the protein level, we performed flow cytometry to analyze

cellular O-GlcNAcylation and OGT protein expression. First, we

optimized intracellular O-GlcNAcylation staining and detection by

flow cytometry using OCI-AML3 cells and found reliable and

reproducible O-GlcNAcylation enhanced with Thiamet G (OGA

inhibitor) and diminished with OSMI-1 (OGT inhibitor)

(Figure 5A). Western blot analysis was also used to confirm O-

GlcNAcylation levels were seen through flow cytometry

(Supplementary Figure 2A). Next, we studied AML blasts and LSCs

from AML patient bone marrow and HSPCs as well as PBMCs from

healthy donors (Table 1). Consistent with our RNA expression

analyses, we found AML blasts showed higher levels of O-

GlcNAcylation compared to healthy PBMCs (Figure 5B,

Supplementary Figure 2B). However, since PBMCs mainly consist

of differentiated hematopoietic cells, many of which are lymphocytes,

they do not represent the optimal comparison to AML cells.

To better compare AML cells to their non-malignant

counterparts, we obtained control bone marrow samples without
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the presence of malignant cells and HSPCs were identified based on

CD34 expression (Supplementary Figure 1A). AML bone marrow

was stained with CD34 and CD38 antibodies to subcategorize into

LSCs (CD34+CD38-) and Blasts (CD34+CD38+) (Supplementary

Figure 1B). We found AML blasts and LSCs showed higher levels

of O-GlcNAcylation as compared to HSPCs from healthy individuals

with normal bone marrow (Figure 5C). In addition, we observed a

16.3% increase in total O-GlcNAcylation in between AML LSCs and

blasts (p = 0.51). In line with increased O-GlcNAcylation, we

observed AML blasts and LSCs both had higher OGT levels than

HSPCs from normal bone marrow (Figure 5D). Further the

expression pattern between AML LSCs and blasts followed the

same trend as O-GlcNAcylation levels, with blasts having a 28.2%

increase in OGT expression compared to the LSCs (p = 0.26)

(Figure 5D). Indeed, we found OGT protein expression and cellular

O-GlcNAcylation levels were correlated via a Pearson’s correlation

with 2000 bootstrap replicates (r = 0.376, 95% CI = 0.368 - 0.384,

Supplementary Figure 2C, Supplementary Table 5). This suggests

hyper-O-GlcNAcylation seen in AML is partly regulated through

OGT expression and not just increased uptake of glucose and

glutamine (Figure 6).
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3.5 Inhibiting O-GlcNAcylation decreases
NF-kB activity and limits cell cycle
progression in OCI-AML3 cells

The enrichment of gene sets involved in pro-proliferative

signaling pathways in AML cells expressing high amounts of

OGT and OGA (Figures 4A, B), suggests that proteins in these

pathways are altered by O-GlcNAcylation to promote AML

progression. As the most prominent enrichment was observed in

the NF-kB pathway, we examined the effect of O-GlcNAcylation

inhibition on NF-kB activity. NF-kB is commonly dysregulated in

AML patients and AML cell lines resulting in constitutive activation

of this pathway (54). NF-kB transcription factors are sequestered in

the cytoplasm by Inhibitor of kappa-B proteins (IkBs). Their
activation results from the degradation of IkB proteins, freeing

NF-kB to allow their translocation to the nucleus and binding to the

target gene promoters (55) To study the role of O-GlcNAcylation

on NF-kB signaling in AML, we inhibited O-GlcNAcylation in

OCI-AML3 cells that show constitutive NF-kB activity (56). We

treated OCI-AML3 cells with the OGT inhibitor OSMI-1 (57) and

analyzed NF-kB nuclear translocation. We inhibited O-

GlcNAcylation in OCI-AML3 cells with OSMI-1 and analyzed

levels of NF-kB subunits in the nucleus and cytoplasm. We found

that canonical NF-kB subunits: p65, c-Rel, and p50 were present in

the nucleus in basal conditions indicative of constitutive NF-kB
activity. The nuclear levels of these NF-kB subunits decreased after

OSMI-1 treatment (Figure 7A). Cytoplasmic expression of these

subunits appeared unchanged suggesting that inhibiting O-

GlcNAcylation impairs their ability to translocate to the nucleus.

Furthermore, OSMI-1 treatment also inhibited the expression of

NF-kB target genes c-Myc, Cyclin D1, and Cyclin E1 (58–60)

showing that inhibiting O-GlcNAcylation negatively regulates

NF-kB transcriptional activity (Figure 7B). Since the regulation of

c-Myc, Cyclin D1, and Cyclin E1 largely account for the role of NF-

kB in promoting cell growth (61), we studied the effect of O-

GlcNAcylation inhibition on cell cycle progression in OCI-AML3

cells. We found that OSMI-1 treatment disrupted cell cycle

progression and caused increased G1 arrest (Figures 7C, D) and

decreased overall cell numbers (Figure 7E). These results indicate

that increased O-GlcNAcylation promotes NF- kB activation and

cell cycle progression in AML.
4 Discussion

While the dysregulation of major metabolic pathways such as

glycolysis and oxidative phosphorylation in AML have been well

defined (62), the role of HBP and O-GlcNAcylation as well as the

expression of specific genes regulating this pathway in AML are less

understood. Cancers display altered metabolism and enhanced

glucose flux associated with HBP activity and O-GlcNAcylation

(63). Increased O-GlcNAcylation has been linked to altered protein

function that promotes the growth and survival of multiple cancer

types including AML (45). Here, we studied both the single-cell and
A

B

FIGURE 4

Gene Ontology and Hallmark GSVA. Heatmap of the GSVA
enrichment score per sample from AML samples. All gene sets pass
a p-value threshold of 0.05 unless otherwise noted with NS based
on a DE analysis. Gene sets were manually annotated with a
category. n = 636. (A) Upper and lower 10% of samples by OGT
expression. (B) Upper and lower 10% of samples by OGA expression.
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bulk RNA expression of key genes regulating the cycling of O-

GlcNAcylation in primary patient samples in LSCs, blasts, and the

bulk AML population. In addition, we assessed global O-

GlcNAcylation and OGT protein expression in bulk and LSC

AML populations by flow cytometry. Our findings show the HBP

is dysregulated in AML and both AML blasts and LSCs show

enhanced O-GlcNAcylation and OGT expression as compared to

healthy controls. We also found both O-GlcNAcylation and OGT

expression were relatively higher in AML blasts compared to LSCs,

which suggest increased HBP activity may accompany the
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transition from LSCs to AML blasts. We also show AML cells

exhibit enhanced expression of the enzymes controlling de novo

UDP-GlcNAc synthesis. While previous studies have shown AML

cell lines and bulk AML patient samples display increased O-

GlcNAcylation levels (22), this study shows at the single-cell level

O-GlcNAcylation as well as OGT and OGA expression are highly

heterogeneous. The elucidation of this heterogeneity is important as

strategies to target OGT and/or OGA will likely be impacted by its

differential expression within patients. In addition, the expression of

OGT/OGA and O-GlcNAcylation have not previously been

reported in LSCs. LSCs are the critical component of AML

responsible for AML initiation and relapse, and understanding of

the expression patterns in these cells is important. As O-

GlcNAcylation is upregulated in LSCs as compared to healthy

controls, targeting O-GlcNAcylation may impair the survival/

proliferation of LSCs.

Of note, it was somewhat surprising to see elevated HBP

enzyme levels and O-GlcNAcylation in LSCs as they have

previously demonstrated lower glycolysis rates and glucose uptake

than healthy HSPCs (64). Because this would decrease HBP

substrate availability, we would have expected to see that reflected

with lower O-GlcNAcylation. Since we see LSCs have higher HBP

activity and O-GlcNAcylation than HSPCs, this could potentially

suggest LSCs maintain low glycolysis rates by diverting more

glucose to the HBP. As low glycolysis rates are connected to

maintaining quiescence, which limits their elimination by

chemotherapeutics (64, 65), targeting LSC O-GlcNAcylation may

represent a strategy to combat chemoresistance.

Our study also suggests increased O-GlcNAcylation in AML

blasts and LSCs is in part due to the upregulation of enzymes

regulating HBP in addition to the increased consumption of glucose

and glutamine by cancer cells. In addition to the elevation in de

novoHBP enzymes, both AML blasts and LSCs showed significantly

upregulatedOGT, but notOGA, suggesting amplified OGT function

and minimal OGA function might be contributing to increased

protein O-GlcNAcylation in AML.

Our analysis of OGT and OGA expression showed no difference

between diagnostic and relapse samples suggesting mechanisms of

relapse do not influence HBP enzyme expression patterns.

Interestingly at the single-cell level, several clusters of cells

expressed high levels of both OGT and OGA, and there was

overall a strong correlation of OGA and OGT expression, which

was also evident in cluster 3, where both enzymes were expressed at

substantially lower levels than other clusters.

Our analysis shows GFPT1 (GFAT1) is elevated in AML while

GFPT2 (GFAT2) is downregulated as compared to normal blood

cells (Figure 3B). This suggests AML utilizes GFAT1 as the rate

limiting enzyme for the HBP, unlike other cancers such as ovarian

cancer (40, 65) and lung cancer (66), where GFAT2 appears to

predominately drive the HBP. It is also interesting to note NAGK is

downregulated in AML, suggesting a lower dependence of AML on

the salvage arm of the HBP. This appears to be cancer specific as

previously it has been shown NAGK expression is enhanced in

pancreatic ductal adenocarcinoma and blocking NAGK leads to

cancer cell death (39). It should be noted that due to limited

availability of RNA-sequencing data from normal HSPCs, we
A

B
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FIGURE 5

Intracellular flow cytometry confirms AML patients display enhanced
O-GlcNAcylation and OGT expression. (A) O-GlcNAc staining of
OCI-AML3 cells by flow cytometry with vehicle control, Thiamet G
(25 mM), or OSMI-1 (25 mM). n = 8 (B) Intracellular O-GlcNAc levels
from healthy donor derived PBMCs (Healthy PBMCs, n = 6) and
CD34+CD38+ AML cells from PBMCs or BM-MNCs (AML, n = 12).
(C, D) O-GlcNAc levels (C) and OGT protein expression (D) in BM-
MNCs isolated from healthy donors (n = 5) or AML patients (n = 5).
HSPC: CD34+ from healthy donor, LSCs: CD34+CD38dim, AML
Blasts: CD34+CD38+. (A–D) Representative histograms are shown
on the right. Statistical analysis was done using a one-way ANOVA
with Dunnett’s multiple comparison test (A, C, D) or a Student’s t-
test (B). *, P < 0.05; **, P < 0.005; ****, P < 0.0001. (B–D) FMO –

Fluorescence minus one controls.
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were unable to perform properly powered statistical comparisons

between AML cells and normal HSPCs. As more of this data

becomes available, expression levels of HBP enzymes should be

evaluated, as HSPCs will be a better healthy control than normal

PBMCs. Another limitation with this study is that the majority of

analysis, with the exception of focused flow cytometric analysis, is

based on the analysis of RNA expression. While in many cases RNA

and protein expression levels are correlated, it is possible that

protein analysis may lead to different results in some cases.

Our data show genes involved in the UPR exhibit co-expression

with OGT and OGA. In general, the UPR is induced by

accumulation of improperly folded proteins in the ER and a

major factor that prevents proper folding is insufficient N-linked

glycosylation (67). Since UDP-GlcNAc is a major component of N-

linked glycans, enhanced HBP in AML is expected to provide

sufficient UDP-GlcNAc for N-linked glycosylation, thereby

minimizing UPR activation. Therefore, enhanced co-expression of

HBP and UPR genes appears to be regulated independently. As an

alternate possibility, the UPR linked transcription factor Xbp1 was

shown to upregulate HBP enzymes such as GFAT1, GNPNAT1,

and PGM3 (68). This might contribute to UPR-induced enhanced

O-GlcNAcylation, which in turn will allow survival of AML cells as

increased O-GlcNAcylation abrogates the UPR induced apoptosis

through disrupting the PERK-CHOP pathway (53). In contrast to

this, it has also been shown that the UPR inhibits glucose

metabolism and O-GlcNAcylation in neurons (69), which

indicates a cell type specific role of the HBP. The possibility also
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exists where enhanced O-GlcNAcylation may enhance the UPR

pathway, which remains to be explored.

The UPR has also shown to play an important role in

promoting AML survival under conditions of both extrinsic and

intrinsic stress. AML cells are subject to conditions of hypoxia and

nutrient deprivation in the bone marrow microenvironment, both

of which can disrupt proteostasis (70). In addition, AML cells

produce high levels of reactive oxygen species (ROS), which

causes proteotoxic stress (71). Because of this, UPR-targeted

treatment modalities are being investigated as a therapeutic

strategy for AML (72). Thus, the relationship between O-

GlcNAcylation and the UPR in AML is an area that warrants

further investigation to better understand the response to

these treatments.

This study shows that one way which hyper-O-GlcNAcylation

promotes AML cell growth is through positively regulating NF-kB
activity. It has been previously shown that O-GlcNAcylation

regulates p65 nuclear translocation by inhibiting its interaction

with IkBa (46). Our study shows that, in addition to p65, enhanced

O-GlcNAcylation also promotes c-Rel and p50 nuclear

translocation (Figure 7A). Although p50 O-GlcNAcylation has

not been well-characterized, it is possible that both direct O-

GlcNAcylation of p50 as well as its dimerization with O-

GlcNAcylated p65 or c-Rel may regulate its nuclear translocation.

It remains to be determined whether the homodimer of p50/p50

that primarily acts as a transcriptional repressor (73) is O-

GlcNAcylated in AML, which may alter its repressive function.
TABLE 1 Patient Demographics for flow cytometric validation.

Patient # Age Sex AML subtype Recurrent Genetic Abnormalities Cell Source

1 41 F M4 FLT3-ITD, NPM1c, c-Kit BM

2 61 M M4 FLT3-ITD, NPM1c BM

3 33 M M3 PML/RARA BM

4 55 M AML-MRC NPM1c, CEBPA BM

5 70 M AML-MRC NRAS, SF3B1, ETV6 BM

6 65 M M2 None were identified BM

7 73 M M2 Tet2 BM

8 42 M M2 FLT3-ITD, c-Kit BM

9 33 F M5 None were identified BM

10 84 F M1 IDH1 BM

11 51 M M0 None were identified BM

12 49 M M2 FLT3-ITD, c-Kit PB

13 71 M M4 None were identified BM

14 76 M AML-MRC None were identified BM

15 74 M M4 NPM1c PB

16 14 M M4 None were identified BM

17 NA NA NA NA BM
AML-MRC, AML with myelodysplasia related changes; BM, Bone marrow; PB, Peripheral Blood; NA, Data not available.
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Overall, it appears that elevated HBP activity and O-GlcNAcylation

likely supports constitutive NF-kB signaling in AML patients

alluding to the therapeutic potential of targeting NF-kB O-

GlcNAcylation as a promising approach to treat AML. Current

treatments targeting NF-kB in AML include proteasome inhibitors

such as bortezomib, which shows pan-NF-kB inhibitory function

(74). Bortezomib has shown promising potential to eliminate AML

cells, particularly when used in combination with chemotherapeutic

agents (75, 76). However, adverse side effects have been observed

probably because the broad inhibition of NF-kB compromises its

diverse roles in healthy cells (77). Hence, specifically targeting NF-
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kB O-GlcNAcylation may offer an alternative approach to inhibit

aberrant NF-kB activity in AML and other cancers while preserving

its O-GlcNAcylation-independent biological functions of that

pathway. Moreover, as constitutive NF-kB activation has been

shown to occur at higher levels in LSCs than in HSPCs (78),

blocking NF-kB O-GlcNAcylation holds potential to selectively

eliminate LSCs, to prevent AML progression and relapse.

Progress in the improvement in outcomes for AML has been

modest for the past 40 years for most AML patients (4, 79). Factors

such as specific cytogenetic abnormalities or mutations greatly

influence both the choice and outcome of current treatments. It is

unclear how different combinations of mutations and cytogenetic

abnormalities may contribute to the overall role of O-

GlcNAcylation in AML. Hence, future studies should focus on

characterizing how AML heterogeneity influences the effects of O-

GlcNAcylation on specific subsets of AML survival and

proliferation. Discovery of novel pathways and molecular

mechanisms, which may function across AML subtypes are

important to fill the gap in knowledge to develop treatment

strategies to control AML progression. This study provides a

significant advancement on the role of the HBP in AML at global

and single cell levels and reveals it is enriched across AML subtypes

and AML differentiation status. However, this study was limited in

exploring the mechanistic effect of O-GlcNAcylation across

multiple AML subtypes and offers only a biased functional

perspective with OCI-AML3 cells, which represents a distinct

AML subtype. Future studies should focus on characterizing how

AML heterogeneity influences the effects of O-GlcNAcylation

on AML survival and proliferation. In addition, although this

study identified multiple signaling pathways such as TGF-b,
MAPK, Wnt, and JAK/STAT that are enriched with enhanced

expression of O-GlcNAc cycling enzymes, these pathways were not

explored from a functional perspective. Although, O-

GlcNAcylation has previously been shown to regulate these

pathways in general, further studies to understand their specific

O-GlcNAcylation-dependent regulation in the context of AML

is needed.

The dynamics of O-GlcNAcylation are linked to glucose

metabolism. It appears to act as a connecting link between the

metabolic status of the cell, especially the glycemic status, and

aberrant protein and cellular functions. Moreover, chemotherapeutic

drugs such as doxorubicin and camptothecin have been shown to

enhance O-GlcNAcylation and activate cell survival pathways (23).

Combination of HBP inhibitors with chemotherapeutic drugs has been

shown to yield better outcome in limiting cancer cell growth (23).

Similar to glucose, availability of glutamine also feeds into the

HBP—enhancing cellular O-GlcNAcylation (80). LSCs are more

reliant on amino acid, i.e., glutamine, metabolism than HSPCs to

fuel oxidative phosphorylation for their survival (53). Dependence

of LSCs on amino acid metabolism was also shown at the single-cell

level (11), suggesting both glucose and glutamine metabolism may

regulate the HBP and O-GlcNAcylation in AML LSCs. Hence,

targeting metabolism-dependent protein modification such as O-

GlcNAcylation offers a promising approach, that may be used as a

monotherapy or in combination with other treatments, toward
FIGURE 6

Expressions of de novo HBP enzymes are increased in AML. AML
LSCs show increased oxidative phosphorylation and AML blasts
show increased glycolysis (11). This study shows that HBP is
increased both in AML LSCs and AML blasts. De novo HBP in AML
may utilize the rate limiting step enzyme GFAT1. OGT is elevated in
AML. Expression of salvage HBP enzyme NAGK is decreased in AML
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developing therapeutics for AML as well as several other cancers

where deregulated glucose metabolism and hyper O-GlcNAcylation

exists as a hallmark.
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FIGURE 7

(A) OCI-AML3 cells were cultured in the presence or absence of OSMI-1 (25 mM) for 4 hours. Cytoplasmic and nuclear extracts were immunoblotted
for indicated NF-kB subunits. (B) Gene expression of c-Myc, Cyclin D1, and Cyclin E1 in OCI-AML3 cells after 4 hours of OSMI-1 (25 mM) treatment
measured by quantitative real-time PCR. Data shows 3 biological replicates performed with technical duplicates (n = 6). (C) OCI-AML3 cells were
treated with OSMI-1 (25 mM) for 48 hours prior to permeabilization and staining with propidium iodide (PI). Representative histograms showing
proportion of cells in each phase of the cell cycle: Red=G1, Blue=S, and Green= G2/M. (D) Bar graph showing cell cycle phases representing 3
individual experiments performed with technical duplicates (n = 6). (E) Quantification of cell numbers using flow cytometry after 48 hours of OSMI-1
(25 mM) treatment (n=6). *, P < 0.05; ****, P < 0.0001.
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SUPPLEMENTARY FIGURE 1

Flow cytometry gating strategy. (A)Gating strategy for AML samples including
LSCs and Bulk AML cells. (B) Gating strategy for healthy donor HSPCs.

SUPPLEMENTARY FIGURE 2

Flow cytometric validation. (A) Histograms for O-GlcNAc levels for each

patient and cell-type. (B) Western blot analysis of OCI-AML3 cells with
Thiamet G or OSMI-1. b-Tubulin used as a loading control. (C) Flow

cytometry dot plot showing co-staining of O-GlcNAc and OGT.
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Per cluster DE for HBP genes.
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Sheet 1: DE between AML samples andWhole Blood in bulk RNA-sequencing.

Sheet 2: DE between adult and pediatric in bulk RNA-sequencing data.

SUPPLEMENTARY TABLE 3

GSVA Results for OGT high v. low.
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GSVA Results for OGA high v. low.
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Pearson correlation coefficients for OGT and RL2 MFI.
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