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College, Stantou, China, 4The First Clinical Medical College, Lanzhou University, Lanzhou,
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Background: Numerous observational studies have identified a linkage between

the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear

causative association between the gut microbiota and GERD has yet to be

definitively ascertained, given the presence of confounding variables.

Methods: The genome-wide association study (GWAS) pertaining to the

microbiome, conducted by the MiBioGen consortium and comprising 18,340

samples from 24 population-based cohorts, served as the exposure dataset.

Summary-level data for GERD were obtained from a recent publicly available

genome-wide association involving 78 707 GERD cases and 288 734 controls of

European descent. The inverse variance-weighted (IVW)methodwas performed as a

primary analysis, the other four methods were used as supporting analyses.

Furthermore, sensitivity analyses encompassing Cochran’s Q statistics, MR-Egger

intercept, MR-PRESSO global test, and leave-one-out methodology were carried

out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse

MR assessment was conducted to investigate the potential for reverse causation.

Results: The IVW method’s findings suggested protective roles against GERD for

the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae

UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum

Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus

Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as

potential GERD risk factors. In assessing reverse causation with GERD as the

exposure and gut microbiota as the outcome, the findings indicate that GERD

leads to dysbiosis in 13 distinct gut microbiota classes. The MR results’ reliability

was confirmed by thorough assessments of heterogeneity and pleiotropy.
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Conclusions: For the first time, the MR analysis indicates a genetic link between

gut microbiota abundance changes and GERD risk. This not only substantiates

the potential of intestinal microecological therapy for GERD, but also establishes

a basis for advanced research into the role of intestinal microbiota in the etiology

of GERD.
KEYWORDS

causal association, gastroesophageal reflux disease, genome-wide association study,
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Introduction
Gastro-esophageal reflux disease (GERD) prevalently affects

both adult and pediatric cohorts (1, 2). The worldwide incidence

of GERD is rising substantially (3). The predominant phenotype of

this condition is non-erosive reflux disease (NERD) (4, 5). NERD is

typified by the hallmark symptoms of GERD, yet devoid of

esophageal erosion. GERD syndromes encompass typical reflux

symptoms, characterized by heartburn and regurgitation,

potentially accompanied by belching, water brash, or nausea.

Additionally, manifestations may include chest pain resembling

angina and extra-oesophageal symptoms like chronic cough and

laryngitis (6–8). Moreover, persistent gastroesophageal reflux may

result in the transformation of the distal esophagus’s stratified

squamous epithelium to columnar epithelium, precipitating the

onset of Barrett’s esophagus (BE) (9). BE, characterized by the

presence of metaplastic columnar mucosa in the distal esophagus,

heightens the risk of cancer. This condition is uniquely identified as

the antecedent to esophageal adenocarcinoma, a malignancy whose

prevalence has surged notably in the preceding decades (10–13).

Hence, numerous researchers aim to devise prevention strategies

for esophageal adenocarcinoma by investigating the pathogenesis of

GERD and Barrett’s esophagus (14, 15). The human gastrointestinal

tract is host to a complex and varied microbiota, which holds a

pivotal function in health and pathophysiology. This includes

processes such as the digestion and assimilation of nutrients,

production of vital vitamins like B and K, in vivo degradation of

molecules, orchestration of innate and adaptive immune reactions,

and preservation of the intestinal barrier’s integrity (16–18).

In recent years, numerous studies have elucidated the correlation

between the onset and progression of various intestinal diseases and

the intestinal flora (19). Consequently, scholars have redirected their

attention to the study of esophageal microbiota, aiming to elucidate

the pathogenesis, early detection, and therapeutic approaches for

esophageal disorders. It has been noted that the esophageal

microflora composition varies markedly between GERD-affected

and normal esophagus. A preliminary research conducted by Yang

in 2009 identified a potential association between modifications in the

distal esophageal microbiome and disorders related to reflux.
02
Bacterial populations from 34 patients were analyzed using 16S

rRNA gene sequencing following biopsies of the distal esophagus.

Based on gene analysis outcomes, the authors delineated the human

esophageal microbiome into two categories. Type I esophageal

microbiome corresponded more closely with the normal

esophagus, whereas Type II was more associated with the

pathological esophagus (20). Studies indicate a heightened

colonization of Gram-negative organisms, particularly

Campylobacters, in the esophageal mucosa of GERD patients

compared to healthy cohorts (21). Dysregulation of the mycobiota

has been implicated in the onset of visceral hypersensitivity, a

condition closely associated with intractable symptoms of GERD

(22). These observations prompt consideration of potential dysbiosis

involvement in the pathogenesis of GERD ailments. In observational

research, the relationship between the gut microbiota and GERD is

susceptible to confounding variables, including dietary habits,

environmental factors, age, and lifestyle. These confounders

complicate the process of establishing a direct causal link between

gut microbiota and GERD. Utilizing the Mendelian randomization

(MR) approach allows for the inference of causative associations

between exposures and subsequent outcomes (23, 24). This

methodology employs genes as instrumental variables (IVs), which,

due to their reliance on the random assortment of genetic variation at

conception, are less prone to confounding influences (25). In the

present research, we executed a two-sample MR analysis to assess the

putative causal relationship between the gut microbiota and GERD.

Through this endeavor, we aspire to elucidate novel perspectives on

the potential involvement of the gut microbiome in the pathogenesis

of GERD and discern potential pathways for preventative and

therapeutic strategies. To our knowledge, this is the first time that

Mendelian randomization has been used to study the pathogenic

impact of the gut microbiome on the pathogenesis of GERD.
Materials and methods

Study design

In our study, we performed two-sample MR analyses with gut

microbiota as the exposure and GERD as the outcome. To
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investigate the causal relationship between intestinal microflora and

GERD, we utilized a bi-sample MR approach, drawing on data from

the MiBioGen consortium (N = 18,340) and recent GWAS (78 707

GERD cases and 288 734 controls) findings. Figure 1 depicts the MR

study flowchart detailing the relationship between GM taxa and

GERD. For reliable results, the MR study adhered to these three

assumptions (1). They are significantly associated with the exposure

(2); They don’t influence the confounders linking exposure and

outcome; and (3) They don’t impact the outcome via alternative

pathways (26). The current MR study was executed and chronicled

in accordance with the STROBE-MR guidelines, established to

enhance the reporting caliber of observational epidemiological

investigations (27–29).
Data sources

Gut microbiota and GERD data were sourced from GWAS

datasets. The intestinal microbiome information came from the

MiBioGen consortium’s GWAS analysis, which included 18,340

individuals spanning 24 whole-genome genotype cohorts and 16S

fecalmicrobiome data (30).We gathered summary-level data on SNP-

GERD associations from the recent publication’s GWAS results. This

analysis encompassed 78,707 GERD cases and 288,734 controls of

European ancestry (31). GERD is characterized by abnormal

esophageal acid exposure leading to GERD symptoms and/or

mucosal injury due to gastro-oesophageal reflux.

Selection of SNPs

We conducted quality control procedures to select appropriate

instrumental variants (IVs) (32–35). SNPs associated with each

microbiota unit, meeting the locus-wide significance threshold

(P< 1.0 × 10−5), were designated as potential IVs. The linkage

disequilibrium (LD) assessment among these SNPs is as follows

(36–38): LD denotes the non-random co-occurrence of alleles at

distinct loci. It is evaluated via two metrics, r2 and kb. An r2 value
Frontiers in Immunology 03
spans from 0 to 1, with lower values signifying a heightened level

of complete linkage equilibrium between two SNPs, suggesting a

stochastic arrangement of these SNPs. An appropriate LD window

size and r2 threshold are selected to guarantee independence, given

the profound impact of linkage disequilibrium. SNPs were

clumped for independence using the European 1000 Genomes

Project reference panel with criteria r2 < 0.001 and clump

distance > 10,000 kb. SNPs exhibiting a Minor Allele Frequency

(MAF) of 0.01 or lower were systematically excluded from the

analysis. We excluded both redundant and palindromic SNPs from

our analysis. To ensure a robust association between instrumental

variables (IVs) and exposure measures, the F-statistic of each SNP

was employed to evaluate the strength of correlation, mitigating

potential biases from weak IVs. IVs were considered devoid of bias

if the F-statistic exceeded 10. To minimize the likelihood of SNPs

being associated with potential confounders or risk determinants

(e.g., coronary heart disease, Idiopathic pulmonary fibrosis), the

Phenoscanner tool was utilized to meticulously assess and exclude

such correlations.
MR analysis and quality assessment

We derived the primary MR estimates using the inverse-

variance weighted (IVW) method. We also assessed the

robustness of these IVW findings by contrasting them with

results from other MR techniques, such as MR-Egger, weighted

median, simple mode, and weighted mode estimation. The analyses

conducted encompassed evaluations of heterogeneity, an

assessment of horizontal pleiotropy, and a systematic leave-one-

out examination. For the assessment of heterogeneity, the

Cochrane’s Q test was employed, with a P-value of less than 0.05

being considered indicative of significant heterogeneity. The

Mendelian Randomization Pleiotropy Residual Sum and Outlier

(MR-PRESSO) approach, in conjunction with the MR-Egger

method, were utilized to scrutinize horizontal pleiotropy. A P-

value of less than 0.05 was deemed indicative of the presence of

horizontal pleiotropy. we performed a leave-one-out analysis to

evaluate the results’ sensitivity, wherein each SNP was sequentially

excluded to determine if the estimates were influenced by outliers or

bias. We determined the statistical power for MR analysis by

utilizing the mRnd web application, accessible at https://

shiny.cnsgenomics.com/mRnd/ (39). In particular, for the

purpose of refining our outcomes in the context of multiple

hypotheses, we employed both the Bonferroni correction method

and the Hochberg’s False Discovery Rate (FDR) approach. The

criterion for deeming results statistically significant was established

on the basis of a P-value less than 0.05, adjusted by dividing it by the

effective count of unique bacterial taxa present at the respective

taxonomic level, a value hereinafter referred to as ‘n’, An association

was deemed statistically significant in instances where the p-value,

after undergoing Bonferroni correction, was found to be below the

threshold of 0.05. Conversely, the presence of a p-value lesser than

0.05, which nonetheless corresponded to a Bonferroni-corrected p-

value exceeding 0.05, was interpreted as indicative of suggestive,

rather than conclusive, evidence of an association.
FIGURE 1

The study design of the present Mendelian randomization study of
the associations of the gut microbiota and GERD risk.
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Reverse MR analysis

To investigate the putative causal association between GERD

and distinct bacterial genera, a reverse MR analysis was undertaken.

In this context, GERD was posited as the exposure variable, while

the gut microbiota composition functioned as the outcome variable.

SNPs associated with GERD were utilized as instrumental variables

in this analytical framework. SNPs that exhibited a statistically

significant association with GERD were selected as instrumental

variables, adhering to a significance threshold of P < 5 × 10−8.
Ethical approval

written informed consents were meticulously secured from all

participating individuals. Concurrently, these investigations were

granted the requisite endorsements from the pertinent ethical

oversight bodies (30).
Results

In the current research, preliminary endeavors were undertaken

to procure high-quality IVs through stringent quality assurance

measures. Subsequently, these IVs were employed in a MR analysis

to evaluate the presumptive causal association between 196 gut

microbiota taxa and GERD. In each retained SNP, the F-statistic

surpassed a threshold of 10, as delineated in the Supplementary

Tables S1, S2. The statistical efficacy of MR analysis was greater than

70%.This indicates a robust statistical strength in the association
Frontiers in Immunology 04
between the IV and its respective bacterial taxa. For all MR results,

we conducted comprehensive sensitivity analyses to assess both

heterogeneity, as denoted by Cochran’s Q statistic, and potential

pleiotropic influences, as appraised via MR-Egger regression and

the MR-PRESSO approach. The P-values were subjected to a more

stringent Bonferroni correction, and all results were greater

than 0.05.
Causal effect of gut microbiota on GERD

In the MR study on gut microbiota, employing microbiota-linked

SNPs as instrumental variables, the primary IVW analysis identified

seven taxa with a probable causal association to GERD onset.

Through the application of the IVW analytical approach, the

following associations with GERD susceptibility were discerned:

The Family Clostridiales Vadin BB60 group (OR 0.95, 95%

CI 0.91–0.99, P = 0.027), Genus Lachnospiraceae UCG004 (OR 0.91,

95% CI 0.84–0.99, P = 0.026), Genus Methanobrevibacter

(OR 0.95, 95% CI 0.91–0.99, P = 0.026), and Phylum Actinobacteria

(OR 0.93, 95% CI 0.88–0.99, P = 0.019) manifested an inverse

correlation with GERD vulnerability. In contrast, the Class

Mollicutes (OR=1.09, 95% CI:1.01–1.19, P=0.037); Genus

Anaerostipes (OR=1.09, 95% CI:1.01–1.16, P=0.017) and

Phylum Tenericutes (OR=1.11, 95% CI:1.01–1.22, P=0.024)

demonstrated association with the risk of GERD. (Figures 2, 3)

The P-values obtained from both the Cochran Q test and the MR-

Egger intercept test surpassed the 0.05 threshold. This provides

robust evidence indicating an absence of heterogeneity and

pleiotropy in the research (Table 1; Supplementary Table 2,

Figures 2; 4–6).
FIGURE 2

(A) Causal effect of gut microbiota with GERD Schematic representation of the MR analysis results (B) Forest plot of the MR analysis results.
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Causal effect of GERD on gut microbiota

In the bidirectional MR analysis, we explored the potential

causal association between GERD and gut microbiota. Employing

GERD as the exposure and gut microbiota as the outcome, we

evaluated potential reverse causation implications. Following the
Frontiers in Immunology 05
MR analysis, GERD exhibited a causal influence on one Phylum,

two Families, and ten Genera. Utilizing the IVW approach, several

associations with the onset of GERD were identified. Specifically, a

down-regulation was observed in the Family Christensenellaceae

(OR=0.85, 95% CI:0.73–0.99, P=0.045), Family Rikenellaceae

(OR=0.88, 95% CI:0.80–0.97, P=0.012), Genus Anaerotruncus
FIGURE 3

(A) Forest plot of the MR analysis results. (B) Forest plot of the MR analysis results Causal effect of GERD with gut microbiota Schematic
representation of the Reverse MR analysis results. OR odds ratio, CI confidence interval, IVW inverse variance weighted method, Significant threshold
was set at P-value <0.05 for the Inverse Variance Weighted method (IVW).
TABLE 1 Summary results of MR (Target Gut microbiome on GERD).

Taxa Exposure Outcome Nsnp Methods Beta SE
OR
(95%
CI)

P
value

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept P

MR-
PRESSO

P

Phylum Actinobacteria GERD 11
Inverse
variance
weighted

-0.068 0.029
0.93
(0.88-
0.99)

0.019 6.835 0.740 0.579 0.78

Phylum Tenericutes GERD 3
Inverse
variance
weighted

0.108 0.048
1.11
(1.01-
1.22)

0.024 2.468 0.291 0.364 NA

Family
Clostridiales vadin

BB60 group
GERD 10

Inverse
variance
weighted

-0.049 0.022
0.95
(0.91-
0.99)

0.027 4.406 0.882 0.490 0.85

Class Mollicutes GERD 5
Inverse
variance
weighted

0.087 0.042
1.09
(1.01-
1.19)

0.037 6.032 0.196 0.745 0.27

Genus Anaerostipes GERD 7
Inverse
variance
weighted

0.083 0.035
1.09
(1.01-
1.16)

0.017 5.506 0.480 0.246 0.49

Genus
Lachnospiraceae

UCG004
GERD 8

Inverse
variance
weighted

-0.09 0.042
0.91
(0.84-
0.99)

0.026 13.72 0.056 0.789 0.14

Genus Methanobrevibacter GERD 4
Inverse
variance
weighted

-0.047 0.021
0.95
(0.91-
0.99)

0.026 0.333 0.953 0.931 0.95
fro
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(OR=0.90, 95% CI:0.83–0.99, P=0.028), Genus Christensenellaceae

R 7 group(OR=0.90, 95% CI:0.83–0.99, P=0.018), Genus

Rikenellaceae RC9 gut group (OR=0.78, 95% CI:0.64–0.95,

P=0.015), Genus Ruminococcaceae NK4A214 group (OR=0.89,

95% CI:0.81–0.98, P=0.013), Genus Ruminococcaceae UCG005

(OR=0.90, 95% CI:0 .82–0 .98 , P=0.019) , and Phylum

Euryarchaeota (OR=0.82, 95% CI:0.68–0.99, P=0.039).

Conversely, an up-regulation post GERD onset was documented

for Genus Collinsella (OR=1.15, 95% CI:1.04–1.26, P=0.005), Genus

Eggerthella (OR=1.24, 95% CI:1.06–1.46, P=0.007), Genus

Eubacterium rectale group (OR=1.12, 95% CI:1.01–1.24, P=0.029),

Genus Eubacterium ventriosum group (OR=1.12, 95% CI:1.01–1.23,

P=0.026), and Genus Family XIII UCG001 (OR=1.12, 95% CI:1.01–
Frontiers in Immunology 06
1.24, P=0.046) (Figures 4, 5). Within the IVs, neither weak

instrument bias nor significant heterogeneity metrics were

identified. Further, the MR-PRESSO evaluation indicated no

discernible outliers. The data’s robustness was further affirmed by

the leave-one-out analysis (Table 2; Figures 3, 6–10).
Discussion

To our knowledge, this is the first MR study to assess the causal

relationship between the gut microbiome and susceptibility to

gastroesophageal reflux disease. Using GWAS summary data, we

confirmed an association between GERD and the gut microbiome.
B

C D

E F

A

FIGURE 4

(A–F) Scatter plots of significant causality of the GM and GERD.
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Our research findings are consistent with extant academic

literature, revealing a bidirectional relationship between GERD

and the gut microbiome. We identified specific risk factors,

including the Class Mollicutes, Genus Anaerostipes and Phylum

Tenericutes. In contrast, protective factors, such as the Family

Clostridiales Vadin BB60 group,Genus Lachnospiraceae UCG004,

Genus Methanobrevibacter and Phylum Actinobacteria, were

observed to be linked with GERD within the gut microbiome.

The emergence of GERD manifested alterations in the gut

microbiome composition. Following the MR analysis, GERD

exhibited a causal influence on one Phylum, two Families, and

ten Genera. Furthermore, the Phylum Actinobacteria, Family
Frontiers in Immunology 07
Clostridiales Vadin, and Genus Methanobrevibacter have been

identified as contributors to the biosynthesis of Short-chain fatty

acids (SCFAs). SCFAs emerge from the bacterial fermentation of

indigestible dietary fibers within the gastrointestinal tract. The

primary constituents of SCFAs are acetate, propionate, and

butyrate. These acids not only serve as a principal energy source

for colonocytes but also play a pivotal role in the dual-directional

regulation of colonic motility, the preservation of intestinal

homeostasis, and the enhancement of the integrity of the

intestinal barrier (40–42). The human gastrointestinal epithelium

is inhabited by a myriad of microbial entities that are instrumental

in multiple physiological processes. An imbalance within this
B

C D

E F

A

FIGURE 5

(A) Scatter plots of significant causality of the GM and GERD. (B–F) Leave-one-out analysis for the impact of individual SNPs on the association
between GM and GERD risk.
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microbial composition, termed intestinal dysbiosis, has been

intricately linked to the etiology of numerous human pathologies.

Innate lymphoid cells (ILCs), encompassing NK cells, ILC1s, ILC2s,

ILC3s, and LTi cells, represent a subset of the innate immune

system. Predominantly localized within the body’s mucosal tissues,

these cells have lately been the subject of significant academic

scrutiny (43). Research has demonstrated a correlation between

the presence of Clostridiales and a spectrum of esophageal

pathologies, including esophagitis and BE. This association is

hypothesized to influence the inflammatory processes of the

esophageal mucosa and contribute to the development of

intestinal metaplasia (44–46).
Frontiers in Immunology 08
Recently, numerous research endeavors have delved into the

association between gut microbiota and GERD. Ning L et al.

documented a diminished prevalence of the phylum

Actinobacteria in GERD patients, a result that is congruent with

the findings of this study (47, 48). research indicated a substantial

elevation in the levels of Proteobacteria and Bacteroidetes in

pediatric subjects suffering from GERD. Concurrently, there was a

notable decrease in the concentrations of Firmicutes and

Actinobacteria (49). A Japanese research endeavor employed a

distinctive method using quantitative 16S rRNA gene PCR to

ascertain total bacterial quantities. The findings suggest that the

relative proportions of taxa, including Proteobacteria, Firmicutes,
B

C D

E F

A

FIGURE 6

(A, B) Leave-one-out analysis for the impact of individual SNPs on the association between GM and GERD risk. (C–F) In reverse MR analysis, The
scatter plots for association between GERD and gut microbiota.
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TABLE 2 Summary results of bidirectional MR (GERD on target Gut microbiome).

Heterogeneity Horizontal pleiotrop

ochran’s Q P value
Egger

intercept P
MR-PRESSO P

49.131 0.899 0.859 0.904

22.259 0.384 0.052 0.398

81.301 0.071 0.527 0.072

64.943 0.443 0.708 0.438

56.898 0.723 0.110 0.712

58.047 0.685 0.325 0.71

57.356 0.708 0.147 0.706

82.493 0.059 0.216 0.078

70.367 0.273 0.391 0.28

70.735 0.262 0.395 0.28

53.945 0.784 0.594 0.768

50.213 0.895

0.3660.-
884GE-
GERD-
Genus-
Rumino-
cocca-
ceae UC-
G00565-
Inverse
variance
weigh-
ted-
0.1080.-
0460.90
(0.82-
0.98)
0.01960-
.1940.6-
110.689-
0.6
Exposure Taxa Outcome Nsnp Methods Beta SE OR (95%CI) P value
C

GERD Phylum Euryarchaeota 64 Inverse variance weighted -0.197 0.095 0.82 (0.68-0.99) 0.039

GERD Family Christensenellaceae 22 Inverse variance weighted -0.161 0.080 0.85 (0.73-0.99) 0.045

GERD Family Rikenellaceae 65 Inverse variance weighted -0.125 0.050 0.88 (0.80-0.97 0.012

GERD Genus Anaerotruncus 65 Inverse variance weighted -0.101 0.046 0.90 (0.83-0.99 0.028

GERD Genus Christensenellaceae R 7group 65 Inverse variance weighted -0.109 0.046 0.90 (0.82-0.98) 0.018

GERD Genus Collinsella 65 Inverse variance weighted 0.137 0.049 1.15 (1.04-1.26) 0.005

GERD Genus Eggerthella 65 Inverse variance weighted 0.219 0.082 1.24 (1.06-1.46) 0.007

GERD Genus Eubacterium rectale group 65 Inverse variance weighted 0.111 0.051 1.12 (1.01-1.24) 0.029

GERD Genus Eubacterium ventriosum group 65 Inverse variance weighted 0.111 0.050 1.12 (1.01-1.23) 0.026

GERD Genus Family XIII UCG001 65 Inverse variance weighted 0.109 0.054 1.12 (1.00-1.24) 0.046

GERD Genus Rikenellaceae RC9 gut group 64 Inverse variance weighted -0.249 0.102 0.78 (0.64-0.95) 0.015

GERD Genus Ruminococcaceae NK4A214 group 65 Inverse variance weighted -0.118 0.047 0.89 (0.81-0.98) 0.013



Wang et al. 10.3389/fimmu.2024.1327503
Bacteroidetes, Fusobacteria, and Actinobacteria, hold greater

relevance to esophageal disorders than the absolute bacterial

counts (47).

Our study initially demonstrated that the Family Clostridiales

Vadin BB60 group, Genus Methanobrevibacter, and Genus

Lachnospiraceae UCG004 function as protective agents against

GERD. These results underscore the putative roles of distinct gut

microbiome entities in the pathogenesis of GERD, further

accentuating the imperative for comprehensive studies to

elucidate the foundational mechanisms and identify prospective

therapeutic avenues. The hypothesis posits bacterial biofilm’s role in
Frontiers in Immunology 10
GERD etiology (21). A recent investigation identified differential

microbiota in NERD patients relative to control individuals and

those with esophageal adenocarcinoma (EAC). Researchers

employed 16S rRNA sequencing and mass spectrometry-based

proteomics to profile the esophageal microbiota and the host

mucosal proteome, respectively. An aggregate of 70 individuals

spanning four patient categories (NERD, reflux esophagitis,

Barrett’s esophagus, and EAC) along with a control group were

examined. The findings revealed a singular microbiota

configuration in NERD, divergent from the control and other

cohorts (50). Proton pump inhibitors (PPI) remain a
B
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FIGURE 7

(A–F) In reverse MR analysis, The scatter plots for association between GERD and gut microbiota.
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foundational component in the therapeutic approach to reflux

disease. Modifications in the esophageal microbiome due to the

diminished gastric acidity induced by PPI have been investigated in

multiple research endeavors, illustrating their consequential impact

on microbial community configurations (51–61). The gut

microbiota comprises an extensive array of microorganisms

residing in the human gastrointestinal tract, facilitating various

physiological and biochemical processes for the host (62).

Alterations in the composition of esophageal microbiota can be

attributed to environmental influences. A diet rich in fats has been

strongly correlated with localized mucosal inflammatory
Frontiers in Immunology 11
modifications in murine representations (63). The postulated

mechanism for this advantage is the decelerated fermentation,

resulting in enhanced luminal accessibility in contrast to

conventional fiber-laden products. The preliminary investigation

demonstrated notable beneficial impacts of sugarcane flour on

alleviating GERD symptoms, necessitating a more expansive

randomized controlled trial (64).Probiotics introduce bacterial

strains via dietary supplementation, aiming to optimize the gut

microbiota composition towards a more favorable equilibrium.

Evaluations of probiotics encompassing Lactobacilli spp. and

Bifidobacteria spp. have shown efficacy in alleviating GERD
B

C D

E F

A

FIGURE 8

(A–C) In reverse MR analysis, The scatter plots for association between GERD and gut microbiota. (D–F) In reverse MR analysis, Plots for "leave-one-
out" analysis for causal effect of GERD on gut microbiota risk;.
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manifestations (65–68). This research seeks to determine a causal

link between particular gut microbiota and GERD through MR

analysis. Comprehending the relationship between gut microbial

dysbiosis and the onset of GERD, as well as pinpointing the specific

gut microbiota associated with GERD, can facilitate the proactive

identification of individuals at elevated risk. This understanding

permits the prompt initiation of targeted preventative measures

and the tailoring of clinical interventions, which can mitigate

symptoms such as regurgitation and heartburn. Furthermore,

such approaches can enhance patients’ overall well-being and

curtail economic burden.
Frontiers in Immunology 12
Our study possesses key strengths. Firstly, MR represents an

analytical methodology employing genetic variants as IVs to

elucidate the causal relationship between exposure and outcome.

The MR framework mitigates unobserved confounders and

counteracts reverse causation, which are prevalent in observational

research. Second, we employed the most extensive GWAS pertaining

to the gut microbiota currently available, though its sample size

remains notably constrained (n = 14,306). Prospective GWAS

investigations concerning the gut microbiota should endeavor to

augment the sample size to conventional GWAS benchmarks (n >

100,000) to enhance statistical power and minimize potential
B

C D

E F
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FIGURE 9

(A–F) In reverse MR analysis, Plots for “leave-one-out” analysis for causal effect of GERD on gut microbiota risk.
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inaccuracies. Our research, admittedly, possesses certain limitations.

First, A segmented analysis considering overarching determinants

like age and gender was not feasible owing to the constraints inherent

in the GWAS summary data. Second, we refrained from adjusting for

multiple testing, as stringent corrections for multiple comparisons

might overlook strains that have a causal association with GERD.

Thirdly, the summary-level data from GWAS predominantly

originate from European cohorts, constraining the universal

applicability of our results.

In conclusion, while we have postulated a causal link between

gut microbiota and GERD at the genetic dimension, the underlying

biological pathways warrant further investigation. Our findings may

serve as a foundational framework for delving into the mechanisms

of specific gut microbiomes in individuals with GERD. In future
Frontiers in Immunology 13
clinical endeavors, it may be feasible to gauge the prevalence of gut

microbiota in fecal samples as a prognostic tool for assessing GERD

risk. Additionally, modulating the gut microbiota could serve as a

preventive and therapeutic strategy for GERD.
Conclusion

This research identified certain microbial taxa as either

protective or risk determinants for GERD. Such findings may

offer valuable biomarkers for diagnostic purposes and potential

therapeutic intervention points for GERD. Subsequent research

endeavors ought to corroborate these results in human subjects

and delve deeper into elucidating the underlying mechanisms.
B
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FIGURE 10

(A–D) In reverse MR analysis, Plots for "leave-one-out" analysis for causal effect of GERD on gut microbiota risk.
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