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Progressions of the correlation
between lipid metabolism and
immune infiltration
characteristics in gastric
cancer and identification of
BCHE as a potential biomarker
Shibo Wang1†, Xiaojuan Huang1†, Shufen Zhao1, Jing Lv1, Yi Li2,
Shasha Wang1, Jing Guo1, Yan Wang1, Rui Wang1,
Mengqi Zhang1 and Wensheng Qiu1*

1Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
Background: Globally, gastric cancer (GC) is a category of prevalent malignant

tumors. Its high occurrence and fatality rates represent a severe threat to public

health. According to recent research, lipid metabolism (LM) reprogramming

impacts immune cells’ ordinary function and is critical for the onset and

development of cancer. Consequently, the article conducted a sophisticated

bioinformatics analysis to explore the potential connection between LM and GC.

Methods: We first undertook a differential analysis of the TCGA queue to

recognize lipid metabolism-related genes (LRGs) that are differentially

expressed. Subsequently, we utilized the LASSO and Cox regression analyses

to create a predictive signature and validated it with the GSE15459 cohort.

Furthermore, we examined somatic mutations, immune checkpoints, tumor

immune dysfunction and exclusion (TIDE), and drug sensitivity analyses to

forecast the signature’s immunotherapy responses.

Results: Kaplan-Meier (K-M) curves exhibited considerably longer OS and PFS

(p<0.001) of the low-risk (LR) group. PCA analysis and ROC curves evaluated the

model’s predictive efficacy. Additionally, GSEA analysis demonstrated that a

multitude of carcinogenic and matrix-related pathways were much in the

high-risk (HR) group. We then developed a nomogram to enhance its clinical

practicality, and we quantitatively analyzed tumor-infiltrating immune cells

(TIICs) using the CIBERSORT and ssGSEA algorithms. The low-risk group has a

lower likelihood of immune escape and more effective in chemotherapy and

immunotherapy. Eventually, we selected BCHE as a potential biomarker for

further research and validated its expression. Next, we conducted a series of

cell experiments (including CCK-8 assay, Colony formation assay, wound healing

assay and Transwell assays) to prove the impact of BCHE on gastric cancer

biological behavior.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327565/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1327565&domain=pdf&date_stamp=2024-01-31
mailto:wsqiuqdfy@qdu.edu.cn
https://doi.org/10.3389/fimmu.2024.1327565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1327565
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2024.1327565

Frontiers in Immunology
Discussion: Our research illustrated the possible consequences of lipid

metabolism in GC, and we identified BCHE as a potential therapeutic target for

GC. The LRG-based signature could independently forecast the outcome of GC

patients and guide personalized therapy.
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1 Introduction

Global data in 2020 displays about 1.09 million new instances

reported and 769,000 deaths of gastric cancer (GC), placing fifth in

prevalence rate and fourth in fatality among malignant tumors (1).

Although emerging treatments like targeted therapy and

immunotherapy have demonstrated significant promise in

improving the prognosis of advanced GC (2), their overall

treatment efficacy is still lacking, and the 5-year survival rate

presents a challenge (3).

Lipids, including phospholipids, fatty acids (FA), triglycerides,

and cholesterol, are widely distributed in human tissues and organs

(4). Lipid metabolism disorders can induce and infiltrate various

chronic diseases, such as atherosclerosis, obesity, diabetes, and

cancer (5–8). One of the most critical characteristics of cancer is

lipid metabolic reprogramming, which is vital for encouraging the

derivation and progression of cancer and remodeling TME. Among

that, abnormal cholesterol metabolism is one of the most common

pathways. Cholesterol can encourage tumor proliferation by

activating the Hedgehog and mTORC1 signaling pathways (9),

and promote tumor metastasis through epithelial-mesenchymal

transition (EMT) (4). Reprogramming cholesterol metabolism in

tumor cells or TIICs may influence tumor immune recognition and

facilitate immune escape.

Moreover, FA metabolism reprogramming also is a significant

process in cancer progression (10). The main enzymes in FA

synthesis include sterol regulatory element binding protein

(SREBP), fatty acid synthase (FASN), and acetyl CoA carboxylase

(ACC). SREBP-1 and SREB-2 expression levels are markedly

elevated in glioblastoma and prostate cancer, and ACC is

upregulated in head and neck squamous cell carcinoma (11–13).

Overexpression of FASN in breast cancer (BC) leads to

chemoresistance, and improving chemotherapy-susceptibility can

be achieved through targeted suppression of FASN (14–16).

CPT1a, or carnitine palmitoyl transferase, is the primary enzyme

involved in the catabolism of FA. Inhibiting the activity of CPT1a
can decrease FA b- Oxidize, thereby reducing energy supply to

tumor cells and exerting anti-tumor effects (17, 18). Furthermore,

lipid droplets are formed in the endoplasmic reticulum when

cellular lipids are excessive (19), which provide sufficient energy

for cancer metastasis (20).
02
Over the past decade, immune checkpoint inhibitors (ICIs)

have substantially improved clinical immunotherapy for GC (21,

22). There is mounting evidence that the tumor microenvironment

(TME) significantly influences cancer growth and induces

chemotherapy and immunotherapy resistance, and tumor-

infiltrating immune cells (TIICs) have been demonstrated to

assist in the advancement of cancer (23, 24). For instance,

regulatory T cells (T-reg cells) have vital immunosuppressive

functions, which regulate the activation and differentiation status

of CD4+ or CD8+T cells and impede anti-tumor immune defenses,

boosting tumor development and metastasis (25–27). Nevertheless,

there is still a lack of comprehensive investigation into the

relationship between gastric cancer, TME, and lipid metabolism.

This study utilized lipid metabolism-related genes (LRGs) to

construct a predictive signature for GC, which has a reliable

predictive effect on OS and PFS. Analyze the potential

mechanism of this model through functional enrichment and

further illuminate its relationship with immune infiltration

characteristics. Additionally, we also forecast the immunotherapy

effectiveness of GC persons. In summary, this investigation offers

new directions for locating viable prognostic biomarkers and more

efficient treatment options for GC.
2 Materials and methods

2.1 Data collection

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/) were the sources of the

RNA-sequencing data and the associated clinicopathological data.

The TCGA-STAD cohort represents 36 normal and 410 cancer

specimens, and the GSE15459 cohort includes 192 cancer samples.

A total of 13 gene sets, and 895 LRGs were derived from the

Molecular Signatures Database (MisgDB) website (http://

www.gsea-msigdb.org/gsea/msigdb/index.jsp). Supplementary

Table S1 lists specific gene sets and corresponding genes. The

copy number variation (CNV), somatic mutation, and RNA

stemness scores (RNAss) were attained from the UCSC Xena

database (https://xenabrowser.net/datapages/). Download
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information on immunotherapy from The Cancer Immunome

Atlas (TCIA, https://tcia.at/patients). This study excluded samples

from TCGA-STAD with a survival period of ≤ 30 days.

Subsequently, 366 GC specimens were categorized into training

and testing sets (n = 183 for each) at random (28). The lipid

metabolism-based prognostic signature was constructed using the

training set, while the test set and GSE15459 set were applied as the

validation set.
2.2 Differential expression analysis

Based on the predetermined cutoff parameters, the “limma”

package determined the differentially expressed genes (DEGs)

between tumor and standard specimens. Afterward, DELRGs

were discovered by intersecting DEGs with LRGs. The functional

and pathway enrichment analysis was also undergone on these

DELRGs using the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG).
2.3 Development and verification of the
lipid metabolism-related
prognostic signature

We first employed univariate Cox analysis to determine OS-

related LRGs and evaluate their CNV alterations. The optimal

LRGs-based signature was created using LASSO and multivariate

Cox regression analyses. The following explains how the risk scores

were calculated:

Risk score =on
i=1(Coefi*Expi)

The terms “n,” “Coefi,” and “Expi” signify the number of

signature genes, coefficients, and gene expression levels, respectively.

According to the median risk score, all specimens were

separated into different risk subgroups. We plotted the K-M

curves using the “survival” and “survmine” packages to

demonstrate the effectiveness of the signature for forecasting OS.

The reliability of the risk signature was appraised by the receiver

operating characteristic (ROC) curves and validated via the testing

and GSE15459 sets. Moreover, principal component analysis (PCA)

was visualized for dimensionality reduction to analyze the

signature’s capacity for grouping.
2.4 Functional enrichment analyses

GO and KEGG enrichment analyses were carried out utilizing

the “clusterProfiler” package to derive biological processes and

signal pathways (q-value< 0.05). Gene Set Enrichment Analysis

(GSEA) (29) has also been employed to screen for potential

mechanistic pathways between risk categories. The reference

molecular database chosen was “c2.cp.Kegg.Hs.symbols.gmt”

[KEGG], and |NES| > 1 and q-value< 0.1 were deemed

statistical meaningful.
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2.5 Construction and assessments of
a nomogram

In both the TCGA and GSE15459 cohorts, univariate and

multivariable Cox analyses were employed to determine if risk scores

could function as a meaningful predictive element (p<0.05). Utilizing

the R “rms” and “regplot” packages, we designed a clinical-related

nomogram according to risk signature and other clinicopathological

characteristics (30). Afterward, we generated calibration and ROC

curves to verify the nomogram’s capacity for prediction.
2.6 Relationships of the signature with
tumor environment and tumor-infiltrating
immune cells

We employed the ESTIMATE algorithm (31) to determine stromal

scores (the content of stromal cells), immune scores (the content of

immunity cells), and tumor purity (the number of tumor cells) in the

TME. Besides, the abundance of 22 different types of TIICs was

measured by applying the LM22 signature and CIBERSORT

algorithms (32). Single-sample gene set enrichment analysis

(ssGSEA) scores were computed by the “GSVA” package (33) to

gauge the level of TIICs in each tumor sample. We then employed

the Wilcoxon test to explore the discrepancies in immune cell

compositions between LR and HR classes. The association between

risk scores and partial TIICs was performed by Spearman analysis.
2.7 Immunotherapy prediction and
chemotherapy drug sensitivity

We downloaded somatic mutation data and calculated tumor

mutation burden (TMB) values. The somatic mutation landscape

was depicted via waterfall plots. We inspected the values of

immunological checkpoints, ICIs, RNAss, and TIDE (http://

tide.dfci.harvard.edu/) to anticipate gastric cancer individuals’

clinical immune therapy efficacy. The “oncoPredict” package was

employed to examine the sensitivity of standard chemotherapy

medications. The IC50 value demonstrates drug sensitivity.
2.8 Human protein atlas

Human normal and cancerous tissue protein expression data

were available in the HPA database (https://www.proteinatlas.org/)

(34). This study validated the signature genes’ protein levels

between gas tr ic cancer and normal t i s sues through

immunohistochemistry (IHC) in the HPA database.
2.9 Quantitative real-time polymerase
chain reaction

The human gastric epithelial cell line (GSE-1) and two human

GC cell lines (HGC-27, AGS) used in this study were furnished by the
frontiersin.org
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Chinese Academy of Sciences. Using TRIzol® reagent extract RNA

from various cells and reverse transcribed into cDNA. 1 μl of reverse

transcription product, 3.6μl of DEPC, 5 μl of SYBR, and 0.2 μl each of

forward and reverse primer were used in the qRT-PCR procedure.

The amplification program for qRT-PCR was configured as follows:

95°C 3 minutes, followed by a cycle of 95°C 30 seconds, 55°C 20

seconds, and finally 72°C 20 seconds. Draw the PCR product’s

melting curve (95°C for 15 seconds, 60°C for 15 seconds, and 95°C

for 15 seconds) after the amplification reaction. All samples used

GAPDH as the internal reference, and the 2-DDCT approach was

applied to compare the expression levels of five signature genes. In

GraphPad Prism 9, One-way ANOVA was utilized to detect

statistical differences in five signature genes between gastric cancer

and gastric epithelial cells. The primers used are as follows: APOA1-

F, 5’-GACAGCGTGACCTCCACCTTC-3’ and APOA1-R, 5’-

CTTCACCTCCTCCAGATCCTTGC-3’. BCHE-F, 5’-AAGCC

ATTCATTGTTCACCAGAGC-3’ and BCHE-R, 5’-AAAGAGA

TGTTACCGCCCAAGGAG’. CYP19A1-F, 5’-CACATCTGGACA

GGTTGGAGGAG-3’ and CYP19A1-R, 5’-AGCATGACACGACG

CAGAAGG-3 ’ . PLA1A-F , 5 ’ -GACGCTGTCTGGATT

GCTTTAACC-3’ and PLA1A-R, 5’-CCACCTTGTTCCACC

AGTCCTATC-3’. STARD5-F, 5’-GGAGGTGTGGGACTGTG

TGAAG -3’ and STARD5-R, 5’-AGCGGAGGGAGTGGAGGTTC-

3’. GAPDH-F, 5’-TGCACCACCAAC TGCTTAGC-3’and GAPDH-

R, 5’-GGCA TGGACTGTGGTCATGAG-3’.
2.10 Construction of RNAi lentivirus vector

Construction of RNAi lentivirus vector by the Gikai gene (http://

www.genechem.com.cn/). The name of the target lentiviral vector:

GV493. Element sequence: hU6-MCS-CBh-gcGFP-IRES-puromycin.

RNAi negative control (sh-NC) sequence: TTCTCCGA

ACGTGTCACGT. The shRNA sequence designed for BCHE is as

follows: sh-BCHE-1: CCTTGAATACAGAGTCAACAA. sh-BCHE-

2: CCAGACATATTACTTGAACTT. Transfect AGS and HGC-27

cell lines under the guidance of RNAi lentivirus vector construction

and packaging manual (version 5.0).

2.11 Western blotting

Total proteins were extracted from corresponding cell lines using

RIPA lysate (Beyotime, Shanghai, China), separated by sodium dodecyl

SDS-PAGE, and transferred to the PVDF membrane. Subsequently,

the membrane was incubated with 5% milk at room temperature for 1

hour and then incubated overnight with an appropriate primary

antibody at four °C. Afterward, we used horseradish peroxidase-

conjugated secondary antibody to visualize the target proteins. The

membranes were washed with TBST both before and following

antibody incubation. This article uses the antibodies listed below:

BCHE (Proteintech, Wuhan, China) and b- Actin was purchased

from Abcam. b- Action as the internal reference.
2.12 CCK-8 assay

Inoculate GC cells transfected with sh-NC or sh-BCHE

lentivirus into a 96-well plate. Measure the OD value at a
Frontiers in Immunology 04
wavelength of 450 nm using the Cell Counting Kit-8 (Beyotime,

Shanghai, China) according to the manufacturer’s operating

guidelines. Monitor cell proliferation every 24 hours for a period

of 3 days used to evaluate cell proliferation.
2.13 Colony formation assay

Place AGS and HGC-27 cell lines transfected with sh-NC or sh-

BCHE in 6-well plates with 1000 cell densities. Subsequently, these cells

cultured in RMPI-1640 medium containing 10% fetal bovine serum for

10 days. We used methanol for fusion and colony proliferation, and

stained and proliferated the colonies with 1% crystal violet (Beyotime,

Shanghai, China), and finally took photos of the colonies.
2.14 Wound healing and transwell assays

We inoculated GC cells transfected with sh-NC or sh-BCHE

lentivirus into a 6-well plate and cultured them to a sub-fusion state

(90-100%). Create a linear scratch wound using a 200-μL pipette tip

and obtain images at 0 and 24 hours. Measure the scratch area three

times and evaluate the cell healing rate. For the transwell assay, we

inoculated cells at a density of 2×105 into the upper chamber

(Corning, New York, USA) and cultured with 200ml of serum-free

medium. Add 600ml medium containing 10% fetal bovine serum to

the lower chamber and incubate at 5% CO2 37 °C for 24 hours.

Then, the cells that migrated to the bottom of the filter were fixed

with 4% paraformaldehyde for 20 minutes, stained with 0.5% crystal

violet dyes, and photographed under an inverted phase contrast

microscope (Motic).
2.15 Statistical analysis

We employed R software (Version 4.2.2, http://www.R-

project.org) and GraphPad Prism software (Version 9.3.1, CA,

USA) to conduct all statistical analyses. Partial data was processed

by Perl software (Version 5.30.0.1, https://strawberryperl.com/). K-

M curves were evaluated for various risk groupings’ prognoses. The

ROC and DCA curves were performed to assess the pragmatic

capabilities of the risk signature and nomogram model. Cox

regression analyses were exploited to pursue meaningful risk

factors for GC. Wilcoxon rank-sum test and Spearman analysis

were applied for comparative and correlation analyses between risk

subgroups. P< 0.05 was regarded as the threshold for statistical

significance (ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001).
3 Results

3.1 Identification of differentially expressed
lipid metabolism-related genes

Figure 1 depicts this study’s flowchart. Based on the |log FC| > 1

and p<0.05 criteria, 5814 DEGs were discovered in the TCGA-STAD
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database. Subsequently, we discovered 148 DELRGs (39 up-regulated

and 109 down-regulated) by DEGs intersected with lipid metabolism-

related genes (LRGs) (Figures 2A, B). Afterward, we further carried

out GO and KEGG analyses to investigate these DELRG’s possible

mechanisms. Not surprisingly, these genes were primarily implicated

in fatty acid metabolic, lipid catabolic, steroid metabolic, and lipid

transporter activity (Figure 2C). Furthermore, KEGG analysis

displayed that these DELRGs were predominantly associated with

the “PPAR signaling pathway,” “glycerophospholipid,” and

“arachidonic acid “ metabolisms (Figure 2D), all of which were

significantly associated with inflammation and cancer emergence.
3.2 Establish a lipid metabolism-related
prognostic signature

In the TCGA-STAD cohort, researchers collected 366 cancer

samples, excluding samples with a survival period of under 30 days.

They were randomly separated into training and testing sets (n =

183 for each) for further study. The LRGs-based prognostic

signature model was built using the training set (Supplementary

Table S2). Initially, we screened out 17 DELRGs related to OS using

univariate Cox regression analysis to establish each DELRG’s

potential predictive value (Figure 2E). Figure 2F displayed OS-

related gene expression levels in tumor and normal tissues.

CYP1B1, ADH4, ELOVL4, and GC did not differ statistically

significantly. Most of these genes were risk factors for gastric
Frontiers in Immunology 05
cancer, and the regulatory network showed that they were

generally positively associated (Figure 2G).

Moreover, these 17 genes exhibited a high frequency of CNVs,

with GAIN occurring more frequently than LOSS. ANKRD1 had the

most significant loss, and BCHE had the highest gain (Figure 2H).

The chromosomal locations of these CNV-altered genes are shown in

Figure 2I. According to Figure 3A, we performed Lasso Cox analysis

and cross-validation to avoid the signature from overfitting.

Ultimately, we conducted a multivariate Cox regression analysis to

ensure the stability and optimality of the signature. Five pivotal lipid

metabolism-related genes—APOA1, BCHE, CYP19A1, PLA1A, and

STARD5—were discerned and utilized to create the prognostic

signature (Figure 3B). Consequently, each sample’s risk score was

determined by its Cox coefficient and gene expression as: Risk score=

(0.24012*BCHE expression) +(-0.88977*STARD5 expression)

+(0.52063*CYP19A1 expression) +(0.09367*APOA1 expression)

+(0.15832*PLA1A expression).

The training set’s median risk score was employed to categorize

all GC samples into high- or low-risk groupings. Supplementary

Table S3 contains the risk score results.
3.3 Assessment and verification of the
risk signature

In the TCGA-STAD and GSE 15459 cohorts, K-M analysis

displayed that the OS of the LR subgroup was considerably longer
FIGURE 1

The flowchart of this research.
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than the HR subgroup (Figures 3C, 4A). Figures 3D, 4B exhibited

the AUC values of risk signature 1, 3, and 5-year survival ROC

curves. By contrasting the 5-year ROC curve with additional clinical

characteristics, the superiority of the signature was even more

evident (Figures 3E, 4C). We also plotted the distribution of risk

scores, survival status, and time in the training group. The findings

indicated that persons in the HR subgroup had a poor prognosis

and validated in other sets (Figures 3F, 4D, E). In addition, the

heatmaps manifested the expression differences of signature genes

in LR and HR groups (Figures 3G, 4F). Finally, we generated

boxplots and K-M curves of each signature gene to further

excavate their expression levels and independent prognostic

ability. As shown in Figures 3H, APOA1, BCHE, CYP19A1, and

PLA1A were prominently expressed in the high-risk subgroup,
Frontiers in Immunology 06
while STARD5 was significantly lower. In K-M analysis, the low

expression groups of APOA1, BCHE, and STARD5 exhibited

longer OS, but the expression levels of PLA1A and STARD5 did

not significantly impact the OS of GC patients (Figure 3I).

After that, we explored the LRGs-based signature’s capacity for

prediction stratified based on different clinicopathological

parameters in the TCGA database. The K-M curves suggested

that patients in LR group had considerably better outcome than

that of HR group in all categories fragmented by Age (>65/<=65;

Figure 5A), Gender (female and male; Figure 5B), Grade (low/

high; Figure 5C), Stage (I-II/III-IV; Figure 5D), T stage (T1-T2/T3-

T4; Figure 5E), N stage (N0/N1-N3, Figure 5F), and M stage (M0,

Figure 5G). Furthermore, we investigated the association between

risk scores, clinicopathological features, and patient outcomes. The
A

B

D

E F

G IH

C

FIGURE 2

Identifying DELRGs with prognostic value. (A) Veen diagram between DEGs and LRGs in the TCGA cohort. (B) Volcano maps of 148 DELRGs. (C, D) GO and
KEGG analyses of these DELRGs. (E) Univariate Cox regression analysis identified 17 OS-related DELRGs. (F) Expression of OS-related DELRGs in tumor and
normal samples of the TCGA cohort. (G) The interaction network of these OS-related DELRG. (H) CNVs alteration in OS-related DELRGs in GC specimens.
(I) Chromosomal locations of CNV alterations in OS-related DELRGs. *P< 0.05; **P< 0.01; ***P< 0.001. DEGs, differentially expressed genes; TCGA, The
Cancer Genome Atlas; DELRGs, differentially expressed lipid metabolism-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; OS, overall survival; CNV, copy number variation; GC, gastric cancer. ns: p>0.05.
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results exhibited that greater pathological Grade, T stage, and death

(fustat=1) populations had considerably higher risk scores

(Figures 5H, K, L). Nevertheless, there were no statistical

differences in risk scores among Age, Gender, T-stage, and M-

stage categories (Figures 5I, J, M, N).
3.4 Independent predictive significance of
the risk signature

To better demonstrate risk scores could independently predict

prognosis, we first performed univariate Cox analysis in the TCGA

cohort, finding that Age (HR=1.018,95% CI = 1.001-1.035, p<0.05),

Stage (HR=1.662,95% CI =1.331-2.075,p<0.001) and Risk Score

(HR=1.426,95% CI =1.247-1.630,p<0.001) were related to OS.

Multivariate regression confirmed the independence of Age

(HR=1.030,95% CI =1.012−1.048,p<0.001), Stage (HR=1.775,95%

CI =1.410−2.235,p<0.001), and Risk Score (HR=1.534,95%

CI =1.313−1.792,p<0.001) (Figure 6A). The GSE15459 set’s risk

score P-value was less than 0.01 in both univariate and multivariate
Frontiers in Immunology 07
Cox analyses, further supporting the viability of using risk scores to

predict prognosis independently (Figure 6B). Additionally, there was

a statistically significant difference (p<0.001) in PFS, with persons in

the LR subgroup having noticeably longer PFS (Figure 6C). PCA

analysis revealed distinct dimensions among different subgroups

based on signature genes, DELRGs, all LRGs, and the whole gene

expression profiles (Figures 6D-G). Among that, the substantially

diverse distribution directions for HR and LR groups were observed

based on the risk signature (Figure 6D), confirming the efficacy of our

prognostic signature in identifying various GC patients.
3.5 Functional enrichment analysis

Originally, we performed differential gene analysis (|log FC| > 1

and p< 0.05) across two risk groupings, yielding 544 DEGs (496 up-

regulated and 48 down-regulated in the high-risk subgroup). In

Figure 7A, we plotted a heatmap of the most prominent 100 DEGs.

On these DEGs, we then carried out enrichment analyses. GO

analysis demonstrated that these DEGs were predominantly
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FIGURE 3

Construction of the lipid metabolism-based risk signature. (A) Lasso Cox regression analysis and cross-validation. (B) Multivariate Cox regression analysis for
identifying the optimum signature genes. (C) Kaplan-Meier curve of high and low-risk subgroups in the training set. (D) ROC curves of the risk signature for
predicting 1, 3, and 5-year survival. (E) ROC curve for predicting 5-year survival based on risk signatures and other clinical characteristics. (F, G) Distributions
of risk scores, survival statuses and gene expression. (H) Expression of signature genes in high and low-risk subgroups in the entire TCGA set. (I) Kaplan-
Meier curves of signature genes in the entire TCGA set. ROC; receiver operating characteristic; TCGA, The Cancer Genome Atlas.
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abundant in the “signal release” and “hormone transport” of

biological processes (BP) and the collagen−containing

extracellular matrix in cellular components (CC). Regarding

molecular function (MF), DEGs exhibited an enrichment in

receptor-ligand activity and signaling receptor activator

(Figure 7B). Following KEGG analysis, these DEGs were

preponderantly concentrated in the PI3K−Akt, Calcium, cAMP,

and PPAR signaling pathways (Figure 7C), all associated with
Frontiers in Immunology 08
tumor development and metastasis. Additionally, GSEA analysis

was utilized to anatomize functional distinctions between risk

subgroups (Supplementary Table S4). The findings indicated that

the LR subgroup had enriched metabolic pathways, including fatty

acid metabolism, citrate cycle TCA cycle, and glycolysis

gluconeogenesis (Figure 7D). On the contrary, the paths

remarkably situated in the HR subgroup contained PPAR, TGF-b,
Calcium, and WNT signaling pathways and matrix-activated
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FIGURE 4

Validation of the risk signature. (A) Kaplan-Meier curves for high and low-risk subgroups in the testing set, the entire TCGA and GSE15459 cohorts.
(B) ROC curves of the risk signature for predicting 1, 3, and 5-year survival in the testing set, the entire TCGA and GSE15459 cohorts. (C) ROC curve
for predicting 5-year survival based on risk signatures and other clinical characteristics in the testing set, the entire TCGA and GSE15459 cohorts.
(D–F) Distributions of risk scores, survival statuses and gene expression in the testing set, the entire TCGA and GSE15459 cohorts. TCGA, The Cancer
Genome Atlas; ROC; receiver operating characteristic.
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related pathways like gap junction and focal adhesion (Figure 7E).

Accordingly, we speculated that the worse outcome of individuals in

the HR subgroup was related to activating these carcinogenic

pathways and matrix pathways leading to tumor metastasis.
3.6 Development and evaluation of
a nomogram

To improve the clinical practicality of our signature even more,

we constructed a nomogram using risk scores and other

clinicopathological characteristics to predict OS (Figure 7F). The
Frontiers in Immunology 09
accurate predictability of the nomogram was demonstrated by the

calibration curve (C-index:0.686), consistent with its OS estimates,

confirming the satisfactory predictive ability of the nomogram

(Figure 7G). In order, the 1-, 3-, and 5-year ROC curves had area

under the curve (AUC) values of 0.689, 0.748, and 0.765 (Figure 7I).

Additionally, the DCA curve (Figure 7H) and ROC curve

(Figure 7J) demonstrated that the nomogram outperformed the

risk signature and other conventional clinicopathological

parameters in forecasting the prognosis of GC. In conclusion, the

effectiveness and reliability of our nomogram were elucidated from

various aspects.
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FIGURE 5

Analyses of the relationship between the risk signature and clinicopathological parameters. (A–G) The overall survival between the high and low-risk
subgroups from the TCGA database are shown classifying patients by age, gender, tumor grade, clinical stage, T stage, N stage and M0 stage. Low-
risk patients display longer overall survival than high-risk patients. (H–N) Systematic evaluation of risk scores and clinical parameters for GC samples,
including survival status, age, gender, tumor grade, T stage, N stage, and M stage. TCGA, The Cancer Genome Atlas; GC, gastric cancer.
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3.7 The relevance between immune
infiltration and risk signature

The tumor microenvironment (TME) was known for its

hypoxia, chronic inflammation, and immune suppression, and it

was a crucial player in tumor development. We thus employed the

ESTIMATE method to ascertain the fraction of tumor, stromal,

and immune cells in the TME (Supplementary Table S5).

According to the findings, the LR group had greater tumor

purity scores, whereas the HR group had higher stromal and

estimation values. Immune score differences were not statistically

significant (Figure 8A). The K-M curve revealed that individuals

with low stromal scores exhibited prolonged OS (Figure 8B). Next,

we employed the CIBERSORT algorithm to measure the

percentage of 22 TIICs in each tumor sample of the TCGA

database. As shown in Figures 8C, D, the LR subgroup observed
Frontiers in Immunology 10
elevated infiltration of B memory cells, activated NK cells, and

activated Dendritic cells, all of which exerted anti-tumor effects.

Conversely, the high-risk group had more tumor-associated

macrophages (TAMs; M2 phenotype) infiltration, which could

release immunosuppressive cytokines and stimulate cancer

invasion. Additionally, we utilized ssGSEA to investigate the

connection between the risk signature and TIICs, discovering

that most immunosuppressive cells were closely associated with

the HR group (Figures 8E, F). The Spearman analysis showed that

risk scores had a positive correlation with regulatory T cells,

MDSC, and TAMs but a negative correlation with CD4+ and

type 17 helper T cells (Figure 8G). These discoveries suggested

that persons in the high-risk category might promote immune

escape by inducing immune suppression, resulting in a worse

prognosis. The results of ESTIMATE, CIBERSORT, and ssGSEA

are all summarized in Supplementary Table S5.
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FIGURE 6

Independent verification of the risk signature. (A) Univariate and multivariate Cox regression analyses of the risk signature and clinical parameters in the TCGA
cohort. (B) Univariate and multivariate Cox regression analyses of the risk signature and clinical parameters in the GSE15459 cohort. (C) The Kaplan-Meier
curve shows the PFS of high and low-risk subgroups in the TCGA cohort. (D–G) PCA between low- and high-risk subgroups based on the lipid metabolism
related signature, differently expressed lipid metabolic genes, all lipid metabolism-related genes, and the entire gene expression profiles. The Cancer
Genome Atlas; PFS, progression free survival; PCA, principal components analysis.
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3.8 Mutation analysis and immune efficacy
prediction of the prognostic signature

Previous research has demonstrated a close correlation between

somatic mutations and cancer development (35). These mutations

were also crucial in formulating targeted treatments for cancer. As a

result, we conducted somatic mutation analysis on the TCGA

database. It was demonstrated that compared to the HR

subgroup, the LR-scoring population had a greater mutation

incidence (91.35% vs. 87.28%), and the most frequent mutation

type was missense mutation, trailed by nonsense and frameshift

deletion. The waterfall plot exhibited that TTN, TP53, MUC16,

LRP1B, and ARID1A were the five most prominent genes with

mutation frequency (Figure 9A). Subsequently, we calculated the
Frontiers in Immunology 11
TMB values for each specimen. The LR group appeared to have

higher TMB scores (Figure 9B), and individuals with elevated TMB

values maintained prolonged OS. Patients with low-risk and high-

TMB scores had the best prognosis among the four groups,

according to our analysis of the combination of TMB and risk

scores (Figure 9C).

Afterward, we predicted the immune therapy response of GC

patients by analyzing several common biomarkers. Figure 9D

suggested significant differences across various microsatellite

groupings, where the MSI-H category had considerably lower risk

scores. The overlay graph demonstrated that the microsatellite

instability (MSI) percentage was more significant in the LR group

(43%). Moreover, we performed TIDE analyses and discovered that

the HR group displayed a more significant proportion of
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FIGURE 7

Functional analysis of risk signatures and construction of nomogram. (A) Heatmap of the top 100 DEGs between high and low-risk subgroups.
(B, C) GO and KEGG analyses of DEGs between high and low-risk groups. (D, E) GSEA analysis of the primary enriched pathways in high and low-risk
groups. (F) The nomogram constructed based on the risk signature and other clinicopathological parameters. (G) Calibration plots for nomograms at
1, 3, and 5-years. (H) DCA of the nomogram, risk signature, and other clinicopathological parameters. (I) ROC curve of the risk signature for
predicting 1, 3, and 5-year survival. (J) ROC curve for predicting 5-year survival based on the nomogram and other clinical characteristics. DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; DCA;
decision curve analysis; ROC, receiver operating characteristic.
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immunological non-responders along with higher TIDE, exclusion,

and dysfunction scores (Figure 9E). This implied that the HR group

may be more susceptible to immunological escape and not

responsive to immunotherapy.

Using immunotherapy data from TCIA, we additionally

explored the connection between the risk signature and ICIs.

Programmed cell death protein 1 (PD-1) positive, cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) positive, and PD-1/

CTLA-4 positive groups showed greater immunotherapy efficacy

in the LR subgroup (Figure 9F). According to immune checkpoints

analysis, the low-risk population displayed increased programmed

cell death-ligand 1 (PD-L1) expression (Figure 9G), indicating a

greater chance of benefiting from immunotherapy. Furthermore, it

was intriguing to note that there is a negative association between

risk scores and RNAss (Figure 9H) that the lower the risk score, the
Frontiers in Immunology 12
more distinct the stem cell characteristics of GC cells and the lower

the level of cell differentiation.
3.9 Drug sensitivity analysis and signature
genes validation

The IC50 of many common targeted drugs and standard

chemotherapy drugs (such as 5-fluorouracil, oxaliplatin, cisplatin,

and irinotecan) was positively correlated with risk scores based on

the drug sensitivity analysis shown in Figure 10. This suggests that

these drugs may benefit patients with low-risk scores more.

Bioinformatics analysis revealed that APOA1, BCHE, and

STARD5 were significantly expressed in normal samples, while

CYP19A1 and PLA1A were considerably expressed in tumor
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FIGURE 8

The correlation between immune infiltration and our risk signature. (A) The content of stromal cells, immune cells, and tumor purity in the TME
of the TCGA cohort. (B) Kaplan-Meier curve indicates that patients with low stromal scores have longer OS. (C) The proportion of 22 types of TIICs
in the GC population using the CIBERSORT algorithm. (D) Expression levels of 22 TIICs in high and low-risk groups. (E) Analyzing the infiltration
levels of TIICs in high and low-risk groups using the ssGSEA algorithm. (F) Spearman correlation analysis between risk signature and TIICs. (G)
Correlation analysis between risk scores and TIICs. *P< 0.05; **P< 0.01; ***P< 0.001. TME, tumor microenvironment; TCGA, The Cancer Genome
Atlas; OS, overall survival; TIICs, tumor-infiltrating immune cells; GC, gastric cancer; ssGSEA, single-sample gene set enrichment analysis. ns: p>0.05.
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samples in the TCGA-STAD cohort (Figure 11A). Subsequently, we

employed qRT-PCR to confirm our signature’s dependability

further (Supplementary Table S6). Consistent with the preceding

analytical results, the expression of APOA1, BCHE, and STARD5 in

human gastric cancer cells (AGC, HGC-27) was significantly lower

(p<0.0001) compared to normal gastric epithelial cells (GSE-1). In

contrast, the expression of CYP19A1 and PL1A1 was significantly

elevated (p<0.05) (Figure 11B).
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3.10 Identification and verification of BCHE
as a potential biomarker

To investigate the five genes in our signature in more detail, we

plotted their 1, 3, and 5-year ROC curves and AUC values showed

BCHE as the most prominent gene in the signature (Figure 11C).

Consequently, the researchers made the decision to study BCHE in-

depth. We first detected the protein levels of BCHE through
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FIGURE 9

Prediction of immunotherapy for gastric cancer. (A) Somatic cell mutation frequencies in high and low-risk groups. (B) TMB levels in high and low-risk
groups. (C) Kaplan-Meier curve of OS in high and low-TMB groups; Kaplan-Meier curve survival curves show different survival among the four groups that
combined TMB with risk signature. (D) Analysis of risk signature and microsatellite state. (E) TIDE, dysfunction, exclusion, and immunotherapy response in
high and low-risk groups. (F) Joint analysis of anti-PD-1 antibody and anti-CTLA-4 antibody in risk signature. (G) Expression of ICIs in high and low-risk
groups, and the correlation between risk scores and PD-L1. (H) RNAss value in high and low-risk groups, and the association between risk scores and RNAss.
*P< 0.05; **P< 0.01; ***P< 0.001. TMB, tumor mutational burden; OS, overall survival; TIDE, tumor immune dysfunction and exclusion; ICIs, immune
checkpoint inhibitors; RNAss, RNA stemness scores.
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immunohistochemistry (ICH) in the HPA database, and the

findings indicated that the ICH staining level of BCHE in normal

tissue was more pronounced than in gastric cancer tissue, and the

staining site was mainly located in Cytoplasmic/membranous

nuclear (Figure 11D). After that, we employed the TCGA

database to perform a pan-cancer analysis on BCHE. Results

demonstrated that BCHE was low expressed in the tumor tissues
Frontiers in Immunology 14
of BLCA, BRCA, LUAD, and LIHC, but considerably expressed in

the tumor tissues of GBM, HNSC, and KIRP (Figure 11E). In order

to explore the clinical relevance of BCHE even further, we examined

its connection to the clinicopathological features of patients with

gastric cancer. As evidenced by Figures 12A, B, BCHE is more

pronounced in populations with lower differentiation (G3), later

clinical and T-stages, death patients, as well as subgroups with
FIGURE 10

Drug sensitivity analysis. Chemotherapy drugs used for standard treatment of gastric cancer, such as oxaliplatin, cisplatin, paclitaxel, 5-fluorouracil,
and irinotecan, are more effective in the low-risk group with lower IC50 values.
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shorter PFI, DFI, and DSS, indicating that BCHE may be an

oncogene that can induce cancer development and lead to poor

prognosis. Likewise, we conducted functional analysis on BCHE,

and GO displayed that it is primarily related to muscle system

process, extracellular structure, and matrix organization, as well as

the binding of some compounds (Figure 12C). Additionally, BCHE

is significantly related to the majority of TIICs, according to an

assessment of its immune infiltration characteristics. BCHE

expression exhibits a positive relationship with other TIICs but a

negative correlation with activated CD4 T cells (Figure 12D).

To illustrate the tumor-promoting effect of BCHE in gastric cancer,

we successfully constructed knockdown BCHE lentiviral vectors (sh-

BCHE-1, sh-BCHE-2) and RNAi negative control (sh-NC) vectors.We
Frontiers in Immunology 15
transfected them into AGS and HGC-27 cell lines. The Western blot

results confirmed the transfection effect and the knockdown effect of

sh-BCHE-2 in AGS and sh-BCHE-1 in HGC-27 was quite substantial

(Figure 13A). We next performed the CCK-8 and colony formation

assays, and the findings exhibited that the viability and proliferation

ability of gastric cancer cells in the knockdown (sh-BCHE) groups were

considerably decreased compared to the control group (sh-NC)

(Figures 13B, C). Additionally, researchers also carried out Transwell

and wound healing experiments. The outcomes unambiguously

indicated that the migration ability of gastric cancer cells in the sh-

BCHE groups was markedly diminished (Figures 13D, E). Therefore,

we can preliminarily infer that BCHE has a promoting effect on the

growth and migration of gastric cancer.
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FIGURE 11

Verification of signature genes and Identifying BCHE as a potential biomarker. (A) Expression of APOA1, BCHE, CYP19A1, PL1A1, and STARD5 in
tumor and normal samples of the TCGA cohort. (B) The qRT-PCR validation of signature genes. A human gastric epithelial cell line (GSE-1) and two
human gastric cancer cell lines (AGS and HGC-27). (C) ROC curves of the five signature genes. (D) The protein expression of BCHE by HPA
database. (E) Pan-cancer analysis of BCHE in TCGA database. *P< 0.05; **P< 0.01; ***P< 0.001. ****P< 0.0001. qRT-PCR, quantitative real-time
polymerase chain reaction.
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4 Discussion

Gastric cancer is a malignant digestive tract tumor with a poor

prognosis and high fatality rate. It ranks third among malignant

tumors in China (36). Early-stage GC patients’ outcomes have

dramatically improved in the last several years thanks to

advancements in surgical and gastroscopy techniques (37).

However, the primary treatment option for advanced GC is still

chemotherapy, having a dismal prognosis and less than 20%

survival rate for five years (38, 39). Lipid metabolic
Frontiers in Immunology 16
reprogramming is one of the most prominent biological processes

involved in the initiation and development of cancer (40). Tumor

cells modify their lipid-related metabolic pathways and nutritional

structures to accommodate metastasis. Research has proclaimed

that tumor cells can upregulate the PI3K/Akt/mTOR pathway,

which enhances glucose uptake and aerobic glycolysis while also

increasing the production of metabolites required for the synthesis

of FA and cholesterol (41–43). Additionally, the PI3K/Akt/mTOR

pathway upregulates SREBP-1 to promote lipogenesis gene

transcription and enhance lipid metabolism (44). Moreover,
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FIGURE 12

Clinicopathology, immune infiltration, and functional analyses of BCHE. (A) The correlation between BCHE and clinical pathological parameters of
gastric cancer. (B) PFI, DFI, and DSS analyses in high- and low-BCHE expression subgroups. (C) Functional analysis of BCHE. (D) The relationship
between BCHE and tumor-infiltrating immune cells. *P< 0.05; **P< 0.01; ***P< 0.001. PFI, Progression Free Interval; DFI, Disease Free Interval; DSS,
Disease Specific Survival. ns: p>0.05.
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tumor cells can affect the activity of stromal or immune cells

through lipid metabolism (LM), forming immune escape and

immunosuppression, leading to treatment resistance and cancer

recurrence. All these factors encourage the development of cancer.

Given this, reducing the available lipids of tumor cells and

intervening in their lipid metabolism may provide new

therapeutic opportunities for gastric cancer.

For several years, constructing prognostic signatures according

to particular biological characteristics has become a standard

method in cancer research. Therefore, in the present research, we

comprehensively and systematically created a signature according

to lipid metabolism-related genes, further analyzed its clinical

significance, evaluated the TME landscape, and forecasted
Frontiers in Immunology 17
immunotherapy’s efficacy in GC patients. In the beginning, we

identified 148 DELRGs using RNA-seq data from the TCGA-STAD

database and LRGs from the MsigDB website. GO and KEGG

analyses revealed enrichment of these genes in lipid metabolism and

carcinogenesis pathways. Subsequently, we screened 17 prognostic-

related genes through univariate Cox analysis and identified their

frequent CNV alterations, confirming that LM plays an essential

role in GC lesions. Next, LASSO and multivariate Cox analyses were

employed to create a suitable prognosis signature related to LM, and

its excellent reliability and stability were verified in the GSE15459

cohort. According to K-M curves, patients in the LR subgroup

exhibited noticeably longer OS and PFS (p<0.001), and the 5-year

ROC curve (AUC value>0.70) demonstrated that our signature was
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FIGURE 13

Verification of the tumor-promoting effect of BCHE in gastric cancer. (A) The expression level of BCHE control and knockdown groups in the AGS and
HGC-27 cell lines was measured using Western blot. (B) The CCK-8 assay was used to access the proliferation and viability of BCHE in AGS and HGC-27 cell
lines. (C) Using colony formation experiments to verify the effect of BCHE on the proliferation of AGS and HGC-27 cell lines. (D) Transwell assay was used to
verify the role of BCHE in the migration of AGS and HGC-27 cell lines. (E) The wound healing experiments to explore the migration effect of BCHE in AGS
and HGC-27 cell lines, and calculate its migration rate. *P< 0.05; **P< 0.01; ***P< 0.001. ****P< 0.0001. ns: p>0.05.
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satisfactory in forecasting prognosis. In the TCGA-STAD queue,

relations between the signature and specific clinicopathological

parameters (like age, gender, survival status, grade, T, N, and M

stages) were analyzed. The outcomes indicated that the high-risk

category had more severe clinical characteristics and worse

prognoses for GC patients. Both univariate and multivariate Cox

analyses confirmed that LRGs-based risk scores were a reliable

predictor of GC prognosis. We then developed a nomogram to

improve our signature’s clinical applicability. This nomogram has a

certain predictive effect on the prognosis of GC individuals at 1-, 3-,

and 5- years and exhibited optimal predictive capacities. In

addition, GSEA analysis applied that the LR group mainly was

linked to metabolic processes, while the HR group enriched

stromal-activated and tumor-associated signaling pathways more,

including Focal adhesion, cell adhesion molecules CAMs, PPAR,

Wnt, Calcium, and TGF beta signaling. This could be connected to

the dismal prognosis for the group with high-risk scores.

Afterward, we performed landscape analysis on the signature

tumor microenvironment (TME) and observed that the HR group

had elevated stromal activity. Previous studies have indicated that

stromal cells can accelerate the growth and dissemination of tumors

by inhibiting immune cells from penetrating and entering the

tumor parenchyma, preventing T cells from killing tumor cells,

and inducing angiogenesis (45–48). Furthermore, our research

demonstrated positive correlations between risk scores and the

infiltration of most TIICs, especially regulatory T cells (Tregs),

myeloid suppressor cells (MDSC), and macrophages, suggesting

that high levels of infiltration of these cells exist in populations with

high-risk scores. Tregs are a highly immunosuppressive subset of

CD4+ T cells and as a gatekeeper for immunological homeostasis,

suppressing effective anti-tumor immunity through different

mechanisms (49). Notably, tumor-associated macrophages

(TAMs) are typically the most abundant myeloid cells in different

TMEs. TAMs have high functional plasticity and can affect many

tumor processes, including immunosuppressive TME formation,

tumor angiogenesis activation, and ECM remodeling (49–51). It is

reported that cholesterol efflux from cells can encourage TAMs to

polarize towards the M2-like phenotype, often associated with

worse prognosis and poor treatment response in human

malignancies (52). Besides, 27-HC (one of the primary

metabolites of cholesterol) can promote the differentiation of

MDSCs, inducing immune escape of tumor cells (53).

With the arrival of the era of immunotherapy, the outcome of

gastric cancer individuals has significantly improved.

Pembrol izumab (PD-1 inhibi tor) is the world ’s first

immunotherapy approved for treating advanced solid tumors in

the MSI-H/dMMR state. According to KEYNOTE-158 global data

(K cohort), the objective response rate (ORR) of gastric or

gastroesophageal junction cancer patients is 39% (54). In Chinese

patients (L cohort), the ORR is as high as 63%, indicating that the

MSI-H/dMMR population in China can achieve more prominent

benefits from the treatment of pembrolizumab. However, the

effectiveness of immunotherapy differs in various groups due to

individual characteristics, and determining which populations are

more probable to benefit from immunotherapy is therefore crucial.
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Somatic mutations have been proven to participate in

immunotherapy by generating tumor-specific neoepitopes (55).

After removing germline mutations, the total somatic mutations

in the tumor genome are known as tumor mutation burden (TMB),

which can activate CD8+cytotoxic T cells and initiate T cell-

mediated anti-tumor effects (56). Theoretically, the greater the

TMB values, the more neoepitopes can be identified by T cells

and the superior immunotherapy efficacy. As a result, we examined

somatic mutations and TMB in two risk subgroups, detecting that

the LR group exhibited a significantly higher mutation rate and

TMB scores. Another important discovery was that the low-risk

category’s TIDE, Dysfunction, and Exclusion scores were

considerably lower, while the expression of PD-L1 and MSI-H

was much more remarkable. This suggested that individuals in the

low-risk subgroup may experience less immune escape and be more

sensitive to immunotherapy. More importantly, in the joint analysis

of ICIs (anti-PD-1 and anti-CTLA-4 antibodies), immunotherapy

will provide greater therapeutic benefit to low-risk GC patients,

leading to superior outcomes. According to drug sensitivity

analysis, the low-risk group also showed a lower IC50 for several

commonly used chemotherapeutic and targeted drugs. This

indicated that persons in the low-risk category were better

responsive to these medications and had a greater likelihood

of benefiting.

In this study, researchers recognized five genes that serve as risk

signature genes- APOA1, BCHE, CYP19A1, PLA1A, and STARD5.

Apolipoprotein A1 (APOA1) is a crucial component of high-

density lipoprotein (HDL) and an essential cofactor of cholesterol

transferase (LCAT) (57). LCAT can catalyze the production of

cholesterol esters and lysophosphatidic from free cholesterol in the

plasma. In addition, the increase of HDL/ApoA1 in plasma can

prevent the progression of diabetes (58), nervous system disease

(59), and inflammation (60, 61), as well as play a protective role in

atherosclerosis and related cardiovascular diseases (62, 63).

Significantly, APOA1 is specifically and negatively correlated with

survival in various solid tumor forms, including colorectal, breast,

and esophageal (64–66). Furthermore, research has demonstrated

that APOA1 expression in small cell lung cancer (SCLC) is higher

than in normal lung tissue or non-small cell lung cancer (NSCLC),

and that APOA1 expression is significantly lower in patients with

recurrent SCLC and those who underwent neoadjuvant

chemotherapy prior to surgery (67). Consequently, APOA1 may

have s i gn ifi can t po t en t i a l a s an an t i - t umor d rug .

Butyrylcholinesterase (BCHE) is a non-specific esterase

synthesized by the liver. It contributes to the inactivation of the

neurotransmitter acetylcholine and degrades neurotoxic

organophosphate esters. Previous studies on BCHE have mostly

focused on Alzheimer’s disease (AD) and inhibiting the expression

of BCHE can potentially treat new symptoms of AD (68, 69).

Additionally, BCHE is associated with tumorigenesis, cell

proliferation, and differentiation (70). It is highly expressed in

breast, oral, and ovarian cancers (70–72) but has low expression

in colorectal and endometrial cancer (73, 74). In prostate cancer,

BCHE expression is down-regulated early on and up-regulated in

the late stage (75). Cytochrome P450 family 19 subfamily A
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1327565
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1327565
member 1 (CYP19A1) can catalyze the conversion of androgen/

testosterone to estradiol/estrone, the main enzyme involved in

estrogen production (76). Breast cancer, endometrial cancer, and

Alzheimer’s disease are intimately associated with CYP19A1 (77–

79). The research has pointed out that it is prominently increased in

human colon cancer tissue and mediated immunosuppression

through the GPR30-Akt pathway, promoting colon cancer

progression and chemotherapy resistance (80). Phospholipase A1

member A (PLA1A) is a type of pancreatic lipase expressed in

multiple tissues and organs of the human body, which regulates the

maturation and function of numerous immune cells (81). PLA1A

can promote tumor progression via activating the PI3K/Akt

pathway induced by GPR34 (82) or converting lysozyme PS into

LPA (a lipid mediator related to cancer progression and metastasis)

mediated by ATX (83, 84). The invasion, metastasis, and worse

prognosis of colorectal, glioma, and prostate cancer correlate with

elevated PLA1A expression (81, 85, 86). Furthermore, PLA1A is a

potential diagnostic marker for advanced and BRAF mutant

melanoma (87). The STARD4 subfamily, which STARD5 is a

member of, consists primarily of a START domain without a

specific organelle targeting sequence. Several physiological

processes, including lipid transport and metabolism, signal

transduction, and transcriptional control, are associated with the

START domain (88). Research has shown that STARD5 expression

is induced upon endoplasmic reticulum (ER) stress and participates

in regulating cholesterol balance. Abnormal cholesterol metabolism

is directly correlated with tumor occurrence and growth. It has been

established that STARD5 is a valuable biomarker for assessing

hepatocellular carcinoma (HCC) prognosis, and high expression

of STARD5 implies a better prognosis (89).

Based on the comprehensive ROC curves and qRT-PCR

expression, we have decided further to explore the role of BCHE

in gastric cancer progression. Patients with high BCHE expression

have later stages, lower differentiation (G3), shorter OS, PFS, and

DFS. Through CCK-8, colony formation, Transwell, and wound

healing assays, we preliminarily infer that BCHE can promote the

growth and migration of gastric cancer cells.

It’s critical to recognize the limitations of this study. Even though

we used bioinformatics analysis to create a prediction signature

based on lipid metabolism and verified it using the GEO database

and partial cell experiments, more experimental confirmation is still

needed. Then, although we have preliminarily demonstrated the

promoting effect of BCHE on the growth and migration of gastric

cancer, further exploration of its mechanism of action is still needed.

Furthermore, while this signature has demonstrated considerable

promise in predicting the response to immunotherapy, it needs

validation in a cohort of GC patients receiving immunotherapy.

Therefore, an in-depth study is essential to comprehend the precise

mechanism underlying this predictive model.
5 Conclusions

In conclusion, our study successfully constructed a risk

signature based on lipid metabolism-related genes that can

independently predict prognosis and develop a nomogram to
Frontiers in Immunology 19
improve its clinical practicality. In addition, this study elucidated

the relationship between lipid metabolism and immune infiltration

characteristics and predicted the immunotherapy efficacy of GC

patients based on risk scores. By using bioinformatics analysis and

partial cell experiments, we were able to establish that BCHE is an

oncogenic gene and to identify it as a potential biomarker for gastric

cancer. Briefly, this investigation offers new directions for locating

viable prognostic biomarkers and more efficient treatment options

for GC.
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