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Neoadjuvant chemoimmunotherapy has revolutionized the therapeutic strategy for

non-small cell lung cancer (NSCLC), and identifying candidates likely responding to

this advanced treatment is of important clinical significance. The current multi-

institutional study aims to develop a deep learning model to predict pathologic

complete response (pCR) to neoadjuvant immunotherapy in NSCLC based on

computed tomography (CT) imaging and further prob the biologic foundation of

the proposed deep learning signature. A total of 248 participants administrated with

neoadjuvant immunotherapy followed by surgery for NSCLC at Ruijin Hospital,

Ningbo Hwamei Hospital, and Affiliated Hospital of Zunyi Medical University from

January 2019 to September 2023 were enrolled. The imaging data within 2 weeks

prior to neoadjuvant chemoimmunotherapy were retrospectively extracted. Patients

from Ruijin Hospital were grouped as the training set (n = 104) and the validation set

(n = 69) at the 6:4 ratio, and other participants from Ningbo Hwamei Hospital and

Affiliated Hospital of Zunyi Medical University served as an external cohort (n = 75).

For the entire population, pCR was obtained in 29.4% (n = 73) of cases. The areas

under the curve (AUCs) of our deep learning signature for pCR prediction were 0.775

(95% confidence interval [CI]: 0.649 - 0.901) and 0.743 (95% CI: 0.618 - 0.869) in the

validation set and the external cohort, significantly superior than 0.579 (95% CI:

0.468 - 0.689) and 0.569 (95% CI: 0.454 - 0.683) of the clinical model. Furthermore,

higher deep learning scores correlated to the upregulation for pathways of cell

metabolism and more antitumor immune infiltration in microenvironment. Our

developed deep learning model is capable of predicting pCR to neoadjuvant

chemoimmunotherapy in patients with NSCLC.
KEYWORDS

deep learning, neoadjuvant chemoimmunotherapy, pathologic complete response,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1327779/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1327779&domain=pdf&date_stamp=2024-03-25
mailto:songtang2004@163.com
mailto:doctoryml@126.com
mailto:sm11998@rjh.com.cn
https://doi.org/10.3389/fimmu.2024.1327779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1327779
https://www.frontiersin.org/journals/immunology


Qu et al. 10.3389/fimmu.2024.1327779
Introduction

Surgical excision remains the cornerstone of curative treatment

for non-small-cell lung cancer (NSCLC) at early and locally

advanced stages (1). Nevertheless, despite achieving a radical

removal, disease controls remain disheartening, with postsurgical

relapses observed in 30% to 60% of cases (2). Furthermore, an

inclusion of chemotherapy at neoadjuvant or adjuvant context

provides marginal advantages for decreasing recurrent rates,

resulting in a mere 5% improvement in overall survival (3), this

underscores the imperative for innovative approaches in managing

resectable lung cancer. In recent years, immunotherapy, specifically

immune checkpoint inhibitors (ICIs), presented remarkable

antitumor efficacy, fundamentally reshaping the therapeutic

landscape for lung cancer (4). This offers a compelling

rationale for adopting neoadjuvant immunotherapy for resectable

lung cancer.

The effectiveness of neoadjuvant chemoimmunotherapy has

been thoroughly explored in numerous studies (5–8), indicating

that it has the potential to reduce the tumor burden before

surgical resection, thereby decreasing the risks of recurrence.

This approach unveils promising avenues for resectable NSCLC

treatment. However, a significant proportion of patients do not

attain pathologic complete response (pCR) to neoadjuvant

immunotherapy (9), underscoring the urgent and unmet need to

identify NSCLC patients who might positively respond to this

therapeutic strategy.

Existing evidence suggests that various biomarkers, including

tumor mutation burden (10), PD-L1 expressions (11), tumor-

infiltrating lymphocytes (4) and inflammatory cytokines (12), are

linked to the response to ICIs. However, the identification of these

biomarkers relies primarily on biopsy, which carries a significant

morbidity risk due to its invasive nature and cannot capture the

tumor’s full heterogeneity due to the small specimens (13, 14).

Consequently, developing a robust and non-invasive biomarker for

predicting pCR to neoadjuvant immunotherapy in lung cancer is of

utmost significance.

Deep learning, with a capability to quantify high-throughput

radiomics features which elude human perception then directly

develop corresponding prediction signatures for diverse clinical

scenarios (15), provides a non-invasive tool for tumor diagnosis

(16), treatment decisions (17) and survival estimations (18). Prior

studies have illuminated the associations of radiomics features with

the response to neoadjuvant chemotherapy in resectable NSCLC

(19, 20) and the prognosis of immunotherapy in advanced NSCLC

(21, 22). However, limited evidence currently supports the efficacy

of the deep learning algorithm to estimate responses to neoadjuvant

immunotherapy for lung cancer. In this perspective, this study,

rooted in multi-institutional population, purposes on using

computed tomography (CT) imaging to develop a deep learning

signature to predict pCR for NSCLC patients undergoing

neoadjuvant ICI treatment.
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Methods

Population and study design

Included in the current study were patients who underwent

neoadjuvant chemoimmunotherapy followed by surgical resection for

NSCLC at multiple medical institutions, including Ruijin Hospital,

Affiliated Hospital of Zunyi Medical University, and Ningbo Hwamei

Hospital, during the period from January 2019 to September 2023

(Figure 1). The regimens for neoadjuvant chemoimmunotherapy

usually included 2 to 4 cycles of pembrolizumab or nivolumab in

combination with platinum-based chemotherapy. We retrospectively

gathered baseline information and imaging data taken within 2 weeks

prior to the initiation of neoadjuvant treatment.

The study design was illustrated in Figure 2. Patients treated at

Ruijin Hospital were grouped as the training set and the validation set

with the 6:4 ratio for primarily constructing a CT-based deep learning

model. Additionally, all patients treated at Affiliated Hospital of Zunyi

Medical University and Ningbo Hwamei Hospital were grouped into

an external cohort to validate the proposed deep learning model.

Finally, the biological basis of the proposed deep learning model was

investigated by analysing genetic pathways and microenvironment

infiltrations associated with the deep learning scores.
Pathologic estimation

Pathologic responses were estimated in accordance with the

following standard (23): we firstly calculated the proportions of

tumor cell, necrosis and stroma. pCR was estimated to be no viable

tumor cell present in primary tumors and lymph nodes. Above

procedures were implemented by two pathologists with experiences

of more than 10 years independently, if a disagreement arose,

discussion was conducted to achieve a consensus.
Imaging acquisition and
tumor segmentation

CT scans were conducted on Somatom Definition AS+

(Siemens Medical Systems, Germany), and iCT256 (Philips

Medical Systems, Netherlands). All CT images were resampled as

1 x 1 x 1 mm3 to uniform data and then input into 3D slicer

software (www.slicer.org) for annotation. The primary tumor was

delineated using a cuboid which encompassed the whole tumor

region. Two junior radiologists, each with over 5 years of

experience, independently conducted tumor segmentation within

a lung window setting (mean, −500HU; width, 1550HU). In

instances where interobserver discrepancies arose, they consulted

a senior radiologist with experiences of more than 10 years for

resolution. Finally, to reduce the batch effect error, pixel-wise CT

image data were normalized by z-score normalization.
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Model construction

The deep learning signature to predict pCR to neoadjuvant

immunotherapy was constructed using the deep learning algorithm.

The final signature comprised a convolutional part and a

classification part, was developed at 3 primary steps: Employing a

deep learning architecture to serve as a feature extractor.

Connecting it to a fully connected layer to further quantify high-

dimensional phenotypes for precise classification. Unfreezing all

network parameters to train the final model using a reduced

learning ratio. In terms of the deep learning architecture, we

chose to utilize Resnet-152 (Figure 3) for feature extraction from

CT images of tumor regions. For the fully connected layer, we added

512 nodes prior to the output to enhance the fusion of phenotypes

extracted with Resnet-152. Since the Softmax function is

incorporated, our model provides direct pCR probability output.
Frontiers in Immunology 03
Biological basis investigation

To elucidate the biologic mechanisms behind the deep learning

predictions, we conducted a genetic analysis on a subset of 130

patients from the TCIA dataset who had available RNA-sequencing

data. These patients were stratified based on their deep learning

scores. We utilized the limma package to determine differentially

expressed genes between patients with high and low deep learning

score, applying standard of log fold changes more than 2 and

adjusted p values less than 0.05.

Following this analysis, we performed Gene Ontology

(GO) pathway analyses using the clusterProfiler package to

determine pathways associated with the deep learning scores.

Additionally, we conducted immune microenvironment analyses

using to quantify the proportions of specific immune cells

in microenvironment.
FIGURE 2

Flowchart illustrates the study design.
FIGURE 1

Flowchart illustrates the patient selection.
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Statistics

The nominal and numerical baseline information was

respectively summarized to be frequencies (percentages) and

means ± standard deviations. We conducted comparisons via the

Chi-square test for nominal data and the t-test for numerical data.

For estimating our model’s performance, we primarily plotted

receiver operating characteristic curves (ROCs) then computed

the corresponding areas under the curve (AUCs). To determine

the statistical significance of differences between AUCs, we

utilized the DeLong’s test. Univariate and multivariate logistic

regression was performed for identifying clinical predictors for

pCR and construct clinical model based backward elimination

method. Aforementioned statistic procedures were carried out by

utilizing R and Python software. A significance level of p < 0.05 was

considered as statistically significant.
Results

Clinicopathologic information

Table 1 presents a summary of the baseline information. In

total, 248 patients participated in this study, with 104 assigned for

training, 69 for internal validation, and 75 for external validation.

The overall cohort had a mean age of 61.8 years, with 12.5% (n = 31)

of patients being female. Among the cases, 148 (59.7%) were

diagnosed as squamous cell carcinomas, while 78 (31.5%) were

identified as adenocarcinomas. In terms of pretreatment stage, most

participants were staged to be T2 (n = 96, 38.7%) and N2 (n = 167,

67.3%), with stage III (n = 215, 86.7%) being the most common

stage in the entire population. Regarding the assessment of

pathologic response, 29.4% (n = 73) of patients achieved pCR. No

significant differences were observed across the training set,

validation set, and external cohort.

To prob the clinical predictors for pCR, we implemented the

logistic regression for patients at the training set. As presented in

Table 2, only pretreatment TNM stage (stage II: odds ratio [OR],

0.238; 95% confidence interval [CI], 0.008 – 7.232; p=0.410; stage
Frontiers in Immunology 04
III: OR, 0.016; 95% CI, 0.001 – 0.961; p=0.048) and histology of

adenocarcinoma (OR, 0.309; 95% CI, 0.092 – 0.934; p=0.047) were

identified to be significantly associated with pCR.
Efficiency the deep learning model

With an increase of the deep learning score, more participants

achieving pCR were identified in all datasets (Figure 4A). The AUCs

of the deep learning model for distinguishing pCR were 0.775 (95%

CI: 0.649 - 0.901) and 0.743 (95% CI: 0.618 - 0.869) in the validation

set and external cohort, respectively, which were significantly better

than the clinical model (Validation set: 0.579 [95% CI: 0.468, 0.689],

p=0.013; External cohort: 0.569 [95% CI: 0.454, 0.683], p=0.029)

(Figures 4B, C).

Based on the cutoff values calculated based on the training cases,

the performance metrics of predictive models were generated. In the

validation set, the sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV) and accuracy of the deep

learning model were 0.750, 0.773 0.600, 0.846 and 0.739, respectively,

higher than those of the clinical model (sensitivity: 0.042; specificity:

0.889; PPV: 0.167; NPV: 0.645; accuracy: 0.594). Similarly, in the

external cohort, the sensitivity, specificity, PPV, NPV and accuracy of

the deep learning model were 0.792, 0.569 0.463, 0.853 and 0.640,

respectively, higher than those of the clinical model (sensitivity: 0.917;

specificity: 0.333; PPV: 0.393; NPV: 0.895; accuracy: 0.520).

To evaluate the clinical usefulness of the deep learning model for

pCR prediction, the calibration curve and decision curve analyses were

performed, revealing that the deep learning model conferred better

predictive performances (Figures 5A, B) and higher net benefits

(Figures 5C, D) than the clinical model in the validation set and

external cohort. In addition, Table 3 shows the positive value of net

reclassification improvement (NRI) and integrated discrimination

improvement (IDI) of the deep learning model compared to the

clinical model. The deep learning model could achieve positive NRI

and IDI no matter in the validation set (NRI: 0.222 [95% CI: 0.039,

0.299], p=0.028; IDI: 0.143 [95% CI: 0.059, 0.227], p<0.001) or external

cohort (NRI: 0.186 [95%CI: 0.018, 0.391], p=0.023; IDI: 0.128 [95%CI:

0.033, 0.224], p=0.008).
FIGURE 3

Architecture of the deep learning algorithm.
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Biological basis exploration

As depicted in Figure 6A, noticeable distinctions were evident in

gene expression patterns among patients with high and low scores.

In cases with high deep learning scores, there was a substantial

upregulation of pathways associated with cell proliferation and

metabolism, including regulation of catabolic process, catabolic
Frontiers in Immunology 05
process, cellular protein metabolic process, regulation of nitrogen

compound metabolic process, organonitrogen compound

metabolic process, and fcellular macromolecule metabolic process.

Additionally, tumors classified as high-score exhibited increased

infiltration of activated B cell, natural killer cell, and type 17 T

helper cell when compared to those classified as low-

score (Figure 6B).
TABLE 1 Clinicopathological characteristics of all included patients.

Characteristics
Entire cohort
(n = 248)

Internal cohort (n = 173)
External cohort

(n = 75)
p1 value p2 valueTraining

(n = 104)
Validation
(n = 69)

Age, Mean ± SD, years 61.8 ± 8.7 61.8 ± 9.7 60.2 ± 8.4 63.1 ± 7.4 0.278 0.334

< 65 137 (55.2) 55 (52.9) 44 (63.8) 38 (50.7) 0.157 0.769

≥65 111 (44.8) 49 (47.1) 25 (36.2) 37 (49.3)

Gender 0.340 0.074

Female 31 (12.5) 14 (13.5) 13 (18.8) 4 (5.3)

Male 217 (87.5) 90 (86.5) 56 (81.2) 71 (94.7)

Smoking status 0.159 0.072

Never 135 (54.4) 64 (61.5) 35 (50.7) 36 (48.0)

Ever 113 (45.6) 40 (38.5) 34 (49.3) 39 (52.0)

Pretreatment T 0.153 0.133

T1 35 (14.1) 18 (17.3) 9 (13.0) 8 (10.7)

T2 96 (38.7) 47 (45.2) 23 (33.3) 26 (34.7)

T3 60 (24.2) 18 (17.3) 21 (30.4) 21 (28.0)

T4 57 (23.0) 21 (20.2) 16 (23.2) 20 (26.7)

Pretreatment N 0.465 0.131

N0 36 (14.5) 13 (12.5) 5 (7.2) 18 (24.0)

N1 45 (18.2) 18 (17.3) 15 (21.7) 12 (16.0)

N2 167 (67.3) 73 (70.2) 49 (71.0) 45 (60.0)

Pretreatment TNM 0.510 0.3911

I 5 (2.0) 2 (1.9) 0 (0) 3 (4.0)

II 28 (11.3) 10 (9.6) 7 (10.1) 11 (14.7)

III 215(86.7) 92 (88.5) 62 (89.9) 61 (81.3)

Histology 0.053 0.333

SCC 148 (59.7) 63 (60.6) 35 (50.7) 50 (66.7)

Adenocarcinoma 78 (31.5) 36 (34.6) 23 (33.3) 19 (25.3)

Others 22 (8.9) 5 (4.8) 11 (15.9) 6 (8.0)

Response 0.125 0.239

pCR 73 (29.4) 25 (24.0) 24 (34.8) 24 (32.0)

Non-pCR 175 (70.6) 79 (76.0) 45 (65.2) 51 (68.0)
fr
p1 value for comparisons between the training set and internal validation set; p2 value for comparisons between the training set and external validation cohort; SD, standard deviation; pCR,
pathologic complete response; SCC, squamous cell carcinoma.
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Discussion

Neoadjuvant immunotherapy, which enhances the likelihood of

achieving curative surgery and improves long-term survival

compared with traditional neoadjuvant chemotherapy, represents

a state-of-the-art approach in treating lung cancer (5–8). However,

in spite of significant advancements, a considerable portion of lung

cancer patients fail to obtain pCR to neoadjuvant immunotherapy

(9). In such cases, there is an urgent need for an effective method to

recognize candidates who might potentially benefit from this

cutting-edge therapeutic strategy. The present multicenter study

developed a deep learning signature for pCR prediction in NSCLC

following neoadjuvant immunotherapy and the proposed model

achieved AUCs of 0.775 and 0.743 in the validation set and external

cohort, respectively.

The assessment of neoadjuvant immunotherapeutic efficacy in

NSCLC in a quantitative and efficient manner has been a topic of

passionate debate. For a long time, the absolute survival improvement

has served as the primary criterion for determining neoadjuvant

efficacy since the introduction of neoadjuvant therapy as a

systematic approach (24). However, the necessity for long-term

follow-up hampers the effectiveness of survival outcomes as the sole

endpoint. The recent surge in clinical trials for neoadjuvant therapy,

particularly neoadjuvant immunotherapy in the past few years (5–8),

has highlighted the need for more effective parameters beyond

survival. Pathologic response has emerged to be a robust indicator

of prognosis in various solid tumors (25). CheckMate-816 (26), the
Frontiers in Immunology 06
initial Phase III clinical trial investigating the effectiveness of

neoadjuvant chemoimmunotherapy in NSCLC, revealed an

enhanced event-free survival within the group of patients who

achieved pCR. This outcome underscores that obtaining pCR is

indicative of the survival benefits associated with neoadjuvant

chemoimmunotherapy. However, the incidence of pCR, as observed

in the CheckMate-816 trial, was limited to 24% of patients. In

situations like these, it becomes imperative to identify patients who

may potentially achieve pCR before initiating the treatment, thus

enabling personalized neoadjuvant chemoimmunotherapy

for NSCLC.

CT has been a standard instrument in clinical practice for

assessing treatment responses in lung cancer. To some extent, CT

imaging can evidently depict lesion diameters, which might serve as

indicators of tumor burden. Changes of tumor size could

dynamically monitor treatment responses. It has been reported

that the use of tumor diameters in CT to predict pCR in the context

of neoadjuvant chemotherapy and targeted therapy. Nevertheless,

when it comes to immunotherapy, a unique treatment approach

where drugs indirectly suppress tumor growth through activating

the immune system, treatment responses might occur before the

gross size of the tumor regresses (27). As a result, radiologic

regression might not precisely reflect pathologic regression

following neoadjuvant immunotherapy 7. In some cases where

pCR occurs, the radiological size of the tumor may even appear

to increase due to immune cell infiltration. Therefore, relying solely

on superficial CT characteristics is insufficient for accurately
TABLE 2 Logistic analyses for pathologic complete response in the training set.

Variables
Univariable Multivariable

OR (95% CI) p value OR (95% CI) p value

Age (≥65) 1.985 (0.795 – 4.961) 0.142 2.442 (0.897 – 6.648) 0.081

Gender (Male) 2.060 (0.428 – 9.901) 0.376

Smoking status (Ever) 0.871 (0.343 – 2.215) 0.772

Pretreatment T stage

T1 Reference

T2 0.686 (0.211 – 2.230) 0.531

T3 0.571 (0.130 – 2.514) 0.459

T4 0.333 (0.070 – 1.597) 0.169

Pretreatment N stage

N0 Reference

N1 0.667 (0.111 – 3.990) 0.657

N2 1.173 (0.292 – 4.719) 0.822

Pretreatment TNM stage

I Reference Reference

II 0.667 (0.032 – 14.033) 0.794 0.238 (0.008 – 7.232) 0.410

III 0.278 (0.017 – 4.640) 0.373 0.016 (0.001 – 0.961) 0.048

Histology (Adenocarcinoma) 0.954 (0.388 – 2.349) 0.919 0.309 (0.092 – 0.934) 0.047
fro
OR, odds ratio; CI, confidence interval.
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predicting the pathologic response. Instead, it becomes necessary to

extract more deeper radiologic phenotypes to predict pCR following

neoadjuvant immunotherapy in the NSCLC patients.

Emergence of radiomics based on deep learning, which holds

the advantage to uncover hidden imaging features beyond human

visual perception (15), has opened up new possibilities for

predicting the effectiveness of neoadjuvant immunotherapy.

Deep learning’s application in the analysis of radiomics features

in tumors has played an increasingly pivotal role in tumor

diagnosis, treatment decision-making, and survival prediction

(16–18). Abundant publications have validated the underlying

relationships between CT deep phenotypes and immunotherapy

efficacy in advanced lung cancer patients treated with ICIs (21, 22,

28). This offered a strong rationale for conducting the present

research. In addition, in neoadjuvant settings, prior studies

have successfully developed radiomics signatures to estimate

the likelihood of pathologic response following neoadjuvant

chemotherapy in various tumors, including lung cancer. These

models achieved AUCs ranging from 0.63 to 0.73 (19, 20).

However, despite these efforts, investigation into the feasibility of
Frontiers in Immunology 07
using radiomics representations to predict the efficacy of

neoadjuvant immunotherapy is limited.

Our study employed a deep learning technique to construct an

imaging signature to predict pCR in NSCLC patients undergoing

neoadjuvant immunotherapy, the proposed model demonstrated

satisfactory efficiency, with the AUC of 0.743 among the

multicenter external population. This suggests its potential utility

in identifying NSCLC patients who are likely to respond favorably

to neoadjuvant immunotherapy. In such instances, our proposed

signature harbors the potential to help surgeon optimize the

neoadjuvant administration for lung cancer patients. For one

thing, if a patient is predicted to have a high deep learning score

of pCR, the doctor could administrate further molecular tests to

confirm the suitability for neoadjuvant immunotherapy. For

another thing, if a patient achieved a low deep learning score of

pCR, invasive biopsy procedures and expensive molecular testing

could be waived.

However, despite the potential of our proposed signature in

recognizing patients sensitive to neoadjuvant chemoimmunotherapy,

there are some specific considerations that need to be addressed for
B C

A

FIGURE 4

(A) Distributions of the deep learning scores in training set, validation set, and external cohort; (B) ROC curves and performance metrics of the deep
learning model and clinical model in the validation set; (C) ROC curves and performance metrics of the deep learning model and clinical model in
the external cohort. pCR, pathologic complete response; ROC, receiver operating characteristic curve; PPV, positive predictive value; NPV, negative
predictive value.
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applying this signature into the real clinical scenario. The main

challenge is that the efficiency was not adequate to serve as a direct

determinant of pCR considering our proposed model only achieved

AUCs of 0.743-0.775. Nevertheless, neoadjuvant immunotherapy is a

newly proposed therapeutic strategy in recent years, artificial

intelligence studies on this topic were limited by now. Currently,

several studies demonstrated the utility of deep learning algorithm

based on sequencing data in prognosis prediction, disease

identification, and treatment decision (29–32), which implies the

potential of multi-omics data in predicting neoadjuvant

chemoimmunotherapy efficiency. We believe that future studies

including more data modalities and more advanced algorithms could

improve the accuracy of the artificial intelligence model for predicting

pCR to neoadjuvant chemoimmunotherapy.

The current study has several limitations which should be noticed.

Firstly, given its retrospective nature and the study’s focus on the
Frontiers in Immunology 08
Chinese population, it is inevitable that the selection bias and

discrepancy of pCR proportion might exist. Further larger research

with a diverse, multiethnic patient population and a prospective setting

are warranted to address these limitations. Secondly, since all patients

included in the study were treated after 2019, the correlations between

the deep learning score and survival outcomes remains unclear.

Therefore, further studies with survival as the endpoint are needed to

assess the comprehensive performance of the deep learning signature.

Thirdly, the model construction solely relied on CT modality, leaving

room for improvement in algorithm precision. Subsequent studies will

aim to enhance accuracy by incorporating additional imaging

modalities into the deep learning network to predict neoadjuvant

immunotherapeutic efficacy more effectively. Finally, high-resolution

CT findings is necessary to analyse the subtle images therefore it is

difficult to obtain such precise findings using the conventional

CT images.
B

C D
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FIGURE 5

(A) The calibration curves of two establish models in the validation set; (B) The calibration curves of two establish models in the external cohort;
(C) The decision curves of two establish models l in the validation set; (D) The decision curves of two establish models and clinical model in the
external cohort.
TABLE 3 Net reclassification improvements and integrated discrimination improvements of deep learning model compared to clinical models.

Cohort NRI (95% CI) p value IDI (95% CI) p value

Validation set 0.222 (0.039-0.299) 0.028 0.143 (0.059-0.227) <0.001

External cohort 0.186 (0.018-0.391) 0.023 0.128 (0.033-0.224) 0.008
fro
NRI, Net reclassification improvement; IDI, integrated discrimination improvement; CI, confidence interval.
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In conclusion, the deep learning model utilizing CT imaging,

exhibits a notable capacity for predicting pCR in NSCLC patients

undergoing neoadjuvant chemoimmunotherapy. Furthermore, the

inherent biological foundation of deep learning prediction appears

to have associations with pathways governing cell metabolism

and the facilitation of antitumor immune infiltration within

the microenvironment.
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