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Interferon autoantibodies as
signals of a sick thymus
Bergithe E. Oftedal1,2, Thea Sjøgren2 and Anette S. B. Wolff1,2*

1Department of Clinical Science, University of Bergen, Bergen, Norway, 2Department of Medicine,
Haukeland University Hospital, Bergen, Norway
Type I interferons (IFN-I) are key immune messenger molecules that play an

important role in viral defense. They act as a bridge between microbe sensing,

immune function magnitude, and adaptive immunity to fight infections, and they

must therefore be tightly regulated. It has become increasingly evident that

thymic irregularities and mutations in immune genes affecting thymic tolerance

can lead to the production of IFN-I autoantibodies (autoAbs). Whether these

biomarkers affect the immune system or tissue integrity of the host is still

controversial, but new data show that IFN-I autoAbs may increase

susceptibility to severe disease caused by certain viruses, including SARS-CoV-

2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on

disorders that have been identified with IFN-I autoAbs, discuss models of how

tolerance to IFN-Is is lost, and explain the consequences for the host.
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Thymic development and function

The thymus is a primary lymphoid organ located in the thoracic cavity, behind the

sternum and above the heart. It develops together with the parathyroid glands from the

most anterior region of the foregut, the pharynx, from which they bud out and detach,

before migrating to their final location. The thymus holds a highly specialized

microenvironment with a unique capacity to support efficient development of self-

tolerant T cells expressing a wide repertoire of T cell receptors (antigen receptors) (1–3).

The thymus has two equal lobes consisting of a cortex and a medulla. The cortical-

medullary junction intersects these regions and contains the blood vessels responsible for

both transporting hematopoietic progenitors from the bone marrow into the thymus, and

mature T lymphocytes out of the thymus to peripheral lymphoid organs (1, 4). The cortex is

the site of early-thymocyte development and is filled with double-positive thymocytes.

Single-positive thymocytes are found in the medulla where late-thymocyte development

occurs before they egress from the thymus (5–7). T cell differentiation and development has

been extensively reviewed elsewhere (8–10). In addition to the mesenchymal, endothelial,
Abbreviations: IFN-I, Type 1 interferons; IFN-I autoAbs, Type 1 interferon autoantibodies; TEC, thymic

epithelial cells; ISG, Interferon stimulated genes; TRA, tissue restricted antigens.
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and dendritic cells required for efficient T cell development, both

compartments contain distinct populations of thymic epithelial

cells (TECs) (1, 11, 12). TECs create a three-dimensional network

in which thymocytes migrate through their development. The

correct patterning and organization of the thymic stromal

components are essential for optimal T cell development and

thymus function. Thymic cross talk, the interactions between

thymocytes and TECs, is required in the formation of the stromal

microenvironment and likely influences both the cortex and the

medulla (8, 9). Structural or developmental thymic defects can

result in serious health consequences, including immunodeficiency

and autoimmunity (1).

The importance of correct thymic development is illustrated by

how loss of function (LOF) mutations in FOXN1 (forkhead family

transcription factor), the main transcription factor required for

correct TEC proliferation and differentiation, can cause immune

related diseases. Nude mice deficient in Foxn1 have thymic

abnormalities and they develop alopecia universalis and nail

dystrophy (13–17). In humans, FOXN1 deficiency leads to a rare

form of severe combined immunodeficiency (SCID) (18) with

absent or low T cell numbers due to abnormal thymic stroma

(18) (19). Abnormal thymic stromal phenotypes are associated with

various inherited autoimmune diseases in humans or their disease-

related mouse models, as seen in Table 1. Another important

protein for thymic immune tolerance is the Autoimmune

Regulator (AIRE), which regulates the expression of a panel of

tissue-restricted antigens (TRAs) to be presented to developing T

cells, in medullary TECs (mTECs) (95, 96). AIRE deficiency leads to

autoimmune polyendocrine syndrome type I (APS-I), a rare disease

characterized by endocrine autoimmunity and chronic

mucocutaneous candidiasis (97). Other transcription factors with

roles complementary to AIRE might exist to secure immune

tolerance to a broader range of TRAs. Although FEZ Family Zinc

Finger 2 (FEZF2) has been suggested as one candidate (98, 99), no

human disease is directly linked to mutations in this gene. Other

disorders that implicate disrupted thymic organization, and thereby

incomplete central tolerance, include hypomorphic RAG 1 and 2

mutations (Omenn syndrome) (37), resulting in failure of variable

(V), diversity (D), and joining (J) segment recombination in the

generation of the highly diverse B and T cell receptors; DiGeorge

syndrome (76) where patients have microdeletions of chromosome

22; Down syndrome with trisomy 21 (76), and the polygenic

disorder systemic lupus erythematosus (SLE) (65, 66) (Table 1).
Interferons are targeted by immune
cells in individuals with diseases
relating to the thymus

Thymic tolerance is crucial to avoid autoimmunity against

TRAs and immune mediators, including the type I interferons

(IFN-Is), which are special immune signals in viral host defense

(100, 101) (see Box 1). There is a growing consensus that mutations

in genes compromising thymic tolerance mechanisms might lead to

a dysregulation of IFN-Is (22, 25, 27, 33, 38, 103–111). In the
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following text, examples of thymic abnormalities, dysregulation of

IFN-Is, IFN-I autoAbs, and their link to immunomodulated

diseases will be discussed.

An apt example of the relationship between thymus

malfunction and IFN-I autoAbs is AIRE LOF mutations (112,

113). Patients with APS-I are found to have high titers of

neutralizing IFN-I autoAbs (against the subtypes -as and -w)
already at infancy, before clinical manifestations occur (109, 114,

115), and these autoAbs are remarkably stable throughout life. Even

a partial loss of AIRE, as seen in dominant negative mutations, can

induce development of autoAbs in affected individuals (116, 117).

Intriguingly, serological autoAbs against IFN-Is are also found in

several other diseases with decreased or complete loss of thymic

AIRE expression, which may or may not implicate proper thymic

architecture organization. Examples include patients with LOF

mutations in the non-canonical Nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-KB) pathway (103, 105, 107, 118)

(e.g. NFKB2, RELB Proto-Oncogene, NF-KB Subunit (RelB),

MAP3K14/NF-kB-inducing kinase (NIK) and IKBKG (encoding

NF-kappa-B essent ia l modulator (NEMO) (34)) and

hypomorphic RAG1/2 mutations (37–41) (Table 1). In thymoma

patients, a rare condition characterized by thymus carcinoma,

thymopoiesis continues despite the lack of AIRE. This represents

an example of acquired AIRE-deficiency and is also associated with

anti-IFN-as and -w (59–61). The clinical consequences overlap in

patients with thymoma and APS-I, with the appearance of

autoimmune endocrine manifestations and failure to clear

Candida albicans infections. Both conditions present with APS-I

like antibodies, highlighting the importance of AIRE expression to

ensure proper thymic function.

Interestingly, sporadic cases with other mutations located in

immune regulatory genes have also been found to acquire anti-IFN-

I autoAbs. This includes STAT1 gain of function (GOF) mutations

and rare (presumably LOF) variants in CTLA-4, IKZF2, FOXP3,

LCK, LAT, TNFAIP3 and JAK3 (25, 27, 38, 105)(Table 1). Their

encoded proteins are important in T cell activity and for the

generation of central T cell tolerance in the thymus (Table 1,

Figure 1). Although the physiological roles of these autoAbs is yet

unknown, they serve as excellent markers of disease, suggesting that

genomic analysis should be performed when detected in

patients (27).
IFN-I autoAbs in other disease cohorts
provide clues on their etiology and
immune consequences

There is strong evidence that overproduction of IFN-Is is

associated with pathological roles in several systemic (119, 120)

and organ-specific autoimmune disorders (121–126). Even when

administered as treatment of chronic active hepatitis, IFN-a may

cause hyperthyroidism or autoimmune hepatitis (127–129). Several

primary immune deficiencies, caused by mutations in genes directly

involved in regulation of IFN-I responses, also present with

dysregulated IFN-I profiles (130). However, these disorders rarely
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TABLE 1 Diseases/groups seen with interferon type 1 autoantibodies: genetic determinants and their consequences when mutated.

fected
IFN-
blood)

IFN-I
Abs

Affected
AIRE

Affected
Tregs References

Down
Yes

(a,w)& Down Yes (20–24)

Yes Yes (25, 26)

Yes Down* No (mice) (27–30)

Yes Down* No (mice)
(31, 32)

Up Yes Yes (33–36)

Yes Down Yes (37–41)

Up Yes No (27, 42–46)

Yes Yes (27, 47)

Yes Yes (27, 48)

Yes¤ Yes (27, 49, 50)

Yes¤ Yes (27, 51–53)

Up Yes¤ Yes (27, 54–57)

Yes Yes (27, 58)

Up
Yes

(a,w)& Down Yes (59–64,)
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Gene/
Protein

Type
of mutation Affected

Thymus
Disease name/Pheno-
type#, OMIM MI Autoimmunity

Immune
deficiency

A

I

AIRE

LOF

x
APS-I
240300

AD,
AR

Endocrine,
ectodermal,
Enteropathy

C. albicans,
Severe Covid-19,
herpes zoster

FOXP3
LOF

(x)
IPEX
304790 XLR

T1D,
enteropathy, other Skin

NFKB2
LOF

X
DAVID
615577 AD

Diverse
autoimmunity

CVID,
hypogammaglubolinemia

RELB
LOF

(x) 617585 AR
Diverse
autoimmunity CVID

IKBKG
(NEMO/
IKK- g)

LOF

(x)

BSS;
epilepsy
300248

XLR,
XLD

Hemolytic anemia;
thrombocytopeni;
colitis CVID

RAG1/2
Hypo
morphic X

Omenn
603554 AR

Diverse
autoimmunity SCID, Leaky SCID

STAT1
GOF

X 600555
AD,
AR

Diverse
autoimmunity CVID, (C.albicans)

CTLA4

LOF

(x) 123890 AD

Enteropathy,
cytopenia,
thyroiditis, other

Diverse
immune deficiency

IKZF2/
HELIOS

LOF
(x) 606234

AD,
AR Endocrine¤, other CVID, IgA-deficiency¤

LCK
LOF?

(x)
HP¤, skin, gut
615758 AR

Diverse
autoimmunity CVID

LAT

LOF?

(x) 602354 AR

Diverse
autoimmunity,
endocrine¤ CVID; IgA-deficiency¤

TNFAIP3/
A20¤

LOF?

(x)
HA20
191163 AD

Autoinflammatory;
Behcet’s; endocrine
¤, ulcers CVID; IgA-deficiency¤,

JAK3
LOF?

(x)
A dysfunc.
600173 AR Enteropathy SCID, skin

HLA+? x
MG and thymoma
254200 Muscles, thymus

With
thymoma: C.albicans
f
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TABLE 1 Continued

Autoimmunity
Immune
deficiency

Affected
IFN-

I (blood)
IFN-I
Abs

Affected
AIRE

Affected
Tregs References

Autoinflammatory,
SLE Up

Sub-
cohorts Yes (number) (60, 65–73)

Autoinflammatory,
RA Up

Sub-
cohorts Contradictory

(67, 73–75)

Endocrine Down Minor Down Yes

(76–79)

Organ-specific No Yes

(76) (6, 76, 80)

rphogenic protein 4 (BMP4), Fibroblast growth factor 8 (Fgf8), Sonic hedgehog (shh), wingless-int 5n (Wnt5b, eyes absent homolog 1 (Eya1), homeobox
).

, Graft-versus-host-disease after bone marrow transplantation, chronic viral hepatitis, severe COVID-19 including pneumonia, adverse reactions to yellow

I interferon autoantibodies; AIRE Autoimmune Regulator.
a B subunit 2; RELB Proto-Oncogene, NF-KB Subunit; IKBKG inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NEMO NF-kappa-B
ng gene; STAT signal transducer and activator of transcription; GOF gain of function; CTLA4 cytotoxic T-lymphocyte-associated protein 4 (CD152); IKZF
s; TNFAIP3 Tumor necrosis factor, alpha-induced protein 3; JAK3 Tyrosine-protein kinase janus.

yendocrinopathy, Enteropathy, X-linked; DAVID; Deficient anterior pituitary with variable immune deficiency; BSS Bloch-Siemens syndrome; HP
erythematosus; RA rheumatoid arthritis; fluct fluctuating disease; T1D Type 1 diabetes; MG myasthenia gravis; SCID severe combined immune deficiency;

ecessive, XLD X-linked dominant.
oimmune and immune deficiency components; *In mice only; & IFN-I autoAbs in AIRE-deficiency and in MG/thymoma are mostly against the -w and -a
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Protein

Type
of mutation Affected

Thymus
Disease name/Pheno-
type#, OMIM MI

Polygenic x
SLE; Fluct.
152700

Polygenic
RA; Fluct.
180300

21q22.3 x

Down
Syndrome
190685 IC

22q11.2 x

DiGeorge
Syndrome
18400 IC

Other genes implicated in thymus development and as thymic transcription factors reviewed elsewhere: None mo
protein a3 (Hoxa 3a), paired box protein (pax) 1 and pax9, sine oculis homolog 1/4 (Six 1/4), T-box 1 (Tbx1) (1
Type of mutation: GOF, Gain of function; LOF: Loss of function.
Other cohorts with IFN-Abs: Psoriasis, pemphigus foliaceus, incontinentia pigmenti, myeloproliferative neoplasms
fever vaccine, healthy persons>70 years, effect of IFN-I treatment (34, 34, 81–92).
Headings: MI Mode of inheritance; IFN-I Systemic (or tissue fluid) Type I interferon signature; IFN-I Abs Type
Abbreviations genes/proteins: AIRE Autoimmune Regulator; FOXP3 forkhead box P3; NFKB2 nuclear factor kapp
essential modulator; IKK-g inhibitor of nuclear factor kappa-B kinase subunit gamma; RAG recombination-activat
IKAROS family zinc finger; LCK lymphocyte-specific protein tyrosine kinase; LAT Linker for activation of T cel
Affected thymus: x: confirmed affected. (x) Most likely affected.
Abbreviations diseases: APS-I autoimmune polyendocrine syndrome type 1, IPEX Immunodysregulation, Po
hypoparathyroidism; HA20 haploinsufficiency A20 disorder; A dysfunc. Adrenal dysfunction; SLE systemic lupus
CVID common variable immunodeficiency; CID combined immunodeficiency; C.albicans Candida albicans.
Inheritance: AD; autosomal dominant; AR autosomal recessive, IC individual cases (most often); XLR X-linked r
Other marks: ¤Only from case report (Sjøgren et al., 2022); #Name of disease and/or other manifestations than au
subtypes, but some reports have also found against IFN-b (22, 59, 93, 94). Empty: information not clear.
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come with IFN-I autoAbs as long as thymic immune tolerance is

intact (111) (Table 1). Very high levels of IFN-Is and/or chronic

inflammation might still break peripheral immunological tolerance,

and the first stories on IFN-I autoAbs were reported in various

patient cohorts treated with IFN-b (131–133). A sudden

endogenous increase of cytokine expression following e.g. septic

shock or viral (e.g. severe COVID-19, acute viral hepatitis and

chronic HIV) or bacterial infections have also been reported to

induce anti-cytokine autoimmunity (reviewed elsewhere (134)).

IFN-I autoAbs were subsequently identified in patients with

chronic graft-versus-host disease following allogeneic bone

marrow transplantation (81, 82), in pemphigus foliaceus (83) and

further in cohorts of SLE patients (67, 135). The IFN-I autoAbs are

less prevalent in other autoinflammatory disorders like Sjøgren’s

disease (SS) and rheumatoid arthritis (RA), where reported

frequencies depend on the cohorts, subtypes of disease, IFN-I

autoAbs assays and “threshold level” (67, 135). The likelihood of

developing IFN-I autoimmunity follows a spectrum from ~100% in

AIRE deficiency, to various, but lower, frequencies in other genetic

disorders that affect the development and function of the thymus,
Frontiers in Immunology 05
and as also reflected by dominant AIRE mutations Patients with

systemic autoimmune disorders probably need additional

environmental triggers, such as infections, drugs or vaccines, to

develop IFN-I autoimmunity.
Recognized physiologic roles of
autoAbs to IFN-Is

Recent studies have highlighted the role of IFN-I autoAbs in

relation to the outcome of infectious diseases, such as COVID-19.

Early in the COVID-19 pandemic, it was reported that patients with

APS-I became critically ill upon being infected with the SARS-CoV2

virus (136–138). Pre-existing IFN-I autoAbs was the common

denominator and it was established that the viral defense was

affected in these patients. Although the severity of COVID-19

disease in APS-I has later been challenged (139, 140), perhaps as

a consequence of evolving virus variants and/or vaccination, the fact

that individuals with anti-IFN-I autoAbs are at risk of severe lung

manifestations still stands. This is supported by the presence of high
FIGURE 1

Patients with mutations in genes encoding proteins involved in regulation of type I interferon (IFN-I) expression, including TNFAIP3, NFKB2, RelB, NIK
and IKBKG, have been found with autoantibodies against IFN-I (IFN-I autoAbs). The same applies to individuals with mutations in other genes
implicated directly in thymic tolerance like AIRE, RAG and FOXP3. More recently, rare variants in genes encoding proteins with key functions in T cell
regulation/activity, including JAK3, STAT1, HELIOS, CTLA4, LCK and LAT have been identified with IFN-I autoAbs. Genes (and proteins) that are found
mutated in patients with IFN-I autoAbs are marked in yellow. APC, Antigen presenting cell; mTEC, medullary thymic epithelial cells; TCR, T cell
receptor; MHC, major histocompatibility complex. Figure created with BioRender.com.
BOX 1 Interferons

In humans, there are three classes of interferons (IFNs); I (13 as, one -w, one -b, one -ϵ, one - к), II (IFN-g) and III (four IFN-ls). Each class has its own preferred receptor;
IFN-Is bind to the IFN-a receptor (IFNAR1/IFNAR2) while IFN-g recognizes the interferon-gamma receptor (IFNGR1/IFNGR2) and the IFNLR1/IL10RB is the receptor
for IFN-ls. The different IFN/receptor-complexes are activated via phosphorylation cascades involving diverse Janus kinases (JAKs)/Signal Transducer and Activator of
Transcription 1 (STAT)/Tyrosine kinase 2 (TYK)-reactions, ultimately leading to translocation of the STATs into the nucleus and expression of interferon stimulated
genes (ISGs) (see (102) for review). These IGSs can then mediate direct antiviral effects through viral RNA degradation and viral translation inhibition and by boosting
adaptive responses. IFNs are therefore powerful molecules to protect tissues from invaders, but their activity must be tightly regulated to avoid excess activity and
tissue damage.

The different IFN subclasses have a variety of distinct functions, but their biological activity overlaps to different extents causing a redundancy of the system. Type I
IFNs (IFN-I) are especially important in antiviral host defense but also possess antitumor, and anti-proliferative effects. However, details regarding the specific functions
within each subtype (e.g. the different IFN-as compared to IFN-w within IFN-Is) are still not clear.
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levels of neutralizing IFN-I autoAbs in about 10% of patients across

different age groups suffering from life-threatening COVID-19

(34, 137). Later it was shown that neutralizing IFN-I autoAbs

were present in serum from about 4% of uninfected individuals

over 70 years of age, suggesting that thymic involution might play a

role in initiating IFN-I autoimmunity (84). The host protection

against other pathogens like herpes zoster and/or varicella

pneumonia has also recently been found to be impaired in

different patient cohorts with serological anti-IFN-I autoAbs like

APS-I, Omenn’ syndrome and SLE (68, 141–143). Adverse

reactions causing life-threatening disease following vaccination

with a yellow fever live attenuated vaccine were furthermore

recently noted with post-findings of IFN-I autoAbs in otherwise

healthy individuals with a large age span (13-80 years) (85). These

autoAbs were shown to inhibit the protective effect of IFN-Is against

strains of the yellow fever vaccine in subsequent experiments (85).

This indicates that IFN-I autoAbs can underlie development of

critical disease following live virus vaccines in persons with immune

deficiencies and/or known presence of IFN-I autoAbs. A systemic

effect of presence of IFN-I autoAbs resulting in a compromised host

immune efficacy is also indicated by the correlation of IFN-I

autoAbs in APS-I patients (and others with high levels of

neutralizing IFN-I autoAbs) with reduced peripheral expression

of interferon stimulated genes (ISG) (20, 21, 92). However, it has

also been suggested that these autoAbs can protect against type 1

diabetes (T1D) and thyroid disease, as reported in a few APS-I

patients without IFN-a autoAbs (144, 145). The possible protective

role of IFN-I autoAbs in distinct biological processes in

inflammatory disorders is supported by the finding of an

association of IFN-a autoAbs with decreased/normalized ISG

profiles and fluctuating disease activity in the systemic

autoimmune disorders SLE, SS and RA (67, 135, 146). These

observations have led to the application of molecules of the IFN-I

pathway as new therapeutic targets in subgroups of SLE (86–88),

e.g. anifrolumab which blocks the activity of the IFN-I receptor.

Notably, as IFN subtypes are redundant in their properties,

untargeted IFN-I subtypes (which are not attacked by the hosts

immune system in susceptible patients) may compensate and limit

the biological consequences of IFN-I autoimmunity.
Thymus is involved in regulation of
IFN-I tolerance

Thymic mechanisms are challenging to study in humans due to

the inaccessibility and shrinking of the organ with age (involution).

Therefore, most knowledge comes from mouse studies. Over the

past years, it has become clear that Ifn-Is in mice are expressed at

high levels in the thymus, and that Aire in mTECsis involved, either

directly or indirectly, in regulating their expression (100, 147–149).

Subsets of developed “post-/late-Aire+” mTECs produce relatively

high amounts of Ifn-b at homeostatic conditions, and the Ifna
receptor is expressed by both thymocytes and antigen-presenting

cells in the thymus, implicating that these cells have the potential to

respond to local Ifn-I signaling. It is still unclear whether the Ifn-b
Frontiers in Immunology 06
expression is directly linked to the transcriptional activity of Aire,

but studies have shown that knocking out Aire in mice leads to the

loss of Ifn-b signals in the thymus (100, 150). This indicates that

Ifn-Is can be direct responders of Aire’s transcription factor activity

or that Aire can affect Ifn-I biology by its function in thymic

architecture and thymopoiesis. Furthermore, as tonic Ifn-a
expression has not been detected in mice thymi (100), there must

be considerable differences in expression and mechanisms of

tolerance achievement between the Ifn-I subtypes (151–153). To

complicate the picture, Nf-kb recruitment is necessary for both Aire

induction and as a sensor of viral exposure leading to activation of

an Ifn-I immune response (100, 154, 155). Hence, Aire and Ifn-Is, at

least Ifn-b, are connected by the Nf-kb pathway. IFN-I regulation is

even more complex in humans than in mice, with additional IFN-a
subtypes and IFN-w (which is lacking in mice). In inborn or

acquired AIRE deficiency, seen in APS-I patients and myasthenia

gravis (MG) patients with thymoma (156, 157) respectively,

expression of IFN-I will be out of control, leading to

dysregulation of the feedback loop and probably high local levels

of these cytokines in the thymus (156). The lack of AIRE will

simultaneously interfere with proper immune tolerance against

AIRE-regulated TRAs, likely also affecting IFN-I expression (100),

leading to autoreactivity against them. The devastating combination

of high local levels of IFN-Is with no generated immune tolerance

might then become a self-driving loop continuing when the

autoimmune naïve T cells exit the thymus. For MG with

thymoma, further evidence for a link between AIRE and IFN-Is

has been established as the expression of the a-subunit of the

acetylcholine receptor (AChR), the main autoantigen in MG, is

regulated by both AIRE and IFN-b in the thymus (155, 158). A

plausible explanation for MG in some thymoma patients may then

be a “bystander effect” where neoplastic cells fail to drive AChR and

IFN-I generation in an AIRE free milieu, breaking tolerance against

them, causing both anti-IFN and anti-AChR autoimmunity.

Upregulation of IFN-Is is also responsible for the generation of

anti-AChR autoAbs in early onset MG without thymoma. This is

shown indirectly as upregulation of IFNs increases B cell

infiltration, ectopic GC formation and ISG stimulation. However,

patients with early onset MG without thymoma do not have anti-

IFN-Is, despite having a high-IFN-I ISG profile (60), probably

because of an intact tolerance mechanism. This starts a vicious

circle where upregulation of IFN-Is again exaggerates ectopic B cell

formation in the thymus of these patients. Regulatory T cells (Tregs)

have also been studied in MG-patients in relation to IFNs. Of

interest, IFN-I expression in Tregs may affect the development of

these natural suppressor cells (159, 160) and IFN-I signaling within

Tregs promotes their inherent suppressive role in anti-viral defense

(161). It further protects the Treg population under inflammation

(162). Several of the other conditions with IFN-autoAbs also have

Treg disturbances (Table 1), but the role of the IFN-Treg symbiosis

must be studied further before causative/functional links are

fully established.

Indirect proof for the importance of the thymus in IFN

tolerance is also the very concept of this article: the abundance of

autoAbs against IFN-Is in AIRE deficiency, in defects of the NF-KB
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axis (27, 34) and in defects of genes encoding key factors of immune

tolerance, like FOXP3, RAG and CTLA-4 (Table 1). There is,

however, yet one big question left to answer: Why are the other

type I IFNs (IFN-b, -ϵ, and –к) seldom targets of autoimmunity?

One theory is that mechanisms that promote IFN-I production in

mTECs are also likely to be induced in tolerance to IFNs and ISG,

and type, timing, and expression levels of IFN-I is vital in

thymopoiesis. When first targeted, IFN-Is can be implicated in

thymic atrophy leading to the loss of developing thymocytes with

increased survival of self-reactive cells (modulated by IFN-b) (163–
165). IFN-Is also affect thymocyte selection and maturation, and

development/maturation of mTECs are required for tolerance

against these immune modulators (147, 151).

We hypothesize two, not mutually contradictory, alternative

mechanisms for the generation of IFN-I autoAbs. (I) T cell driven

hypothesis. In the thymus, IFNs are expressed by mTECs and AIRE

is directly involved in their production and/or in the development

of mTECs (100, 166). When thymic organogenesis or AIRE

expression fails, tolerance against IFNs is disturbed, leading to

autoimmunity towards IFN-I; (II) B cell driven hypothesis. High

thymic and/or tissue levels of IFNs in affected individuals feed into

the infectious environment of the organs in early development and

could kickstart tissue cell destruction with autoimmune

mechanisms. The initial cause of IFN-I secretion may be a virus

or an unknown environmental trigger. When the IFNs reach high

levels in a “still not achieved immune tolerance” situation, this will

mediate an autoimmunization environment in both the thymus and

other organs/periphery, resulting in peripheral break of tolerance.

Then, instead of a direct break of tolerance, the immune system

reacts by feedback loops when identifying the dangerous

concentrations of cytokines in the wrong place at the wrong time,

thereby stimulating the adaptive immune cells to start producing

antibodies against IFNs to fight the uncontrolled situation. Either

way, when tolerance against anti-IFNs is broken, this establishes an

anti-IFN response that is maintained throughout life.
Conclusion

Defining the molecular mechanisms behind thymus-associated

and/or IFN-I linked disorders has revolutionized our understanding

on IFN-I regulation and messaging. New evidence of anti-IFN-I

interference with viral disease outcome should warrant analysis of

anti-IFN-Is in individuals with known autoimmune and/or

immunodeficiency disorders before giving advice on vaccine
Frontiers in Immunology 07
modalities for disease prevention and before administrating

treatment with IFN-a or -b for certain disorders. Furthermore, as

it has become clear that anti-IFN-Is are often connected with inborn

or acquired immunodeficiency and thymic disease, sequencing of

positive IFN-I autoAbs cases should be considered to identify their

underlying molecular cause.
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