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The role of TIM-3 in sepsis:
a promising target
for immunotherapy?
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Sepsis remains a significant cause of mortality and morbidity worldwide, with

limited effective treatment options. The T-cell immunoglobulin and mucin

domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic

target in various immune-related disorders. This narrative review aims to explore

the role of TIM-3 in sepsis and evaluate its potential as a promising target for

immunotherapy. We discuss the dynamic expression patterns of TIM-3 during

sepsis and its involvement in regulating immune responses. Furthermore, we

examine the preclinical studies investigating the regulation of TIM-3 signaling

pathways in septic models, highlighting the potential therapeutic benefits and

challenges associated with targeting TIM-3. Overall, this review emphasizes the

importance of TIM-3 in sepsis pathogenesis and underscores the promising

prospects of TIM-3-based immunotherapy as a potential strategy to combat this

life-threatening condition.
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1 Introduction

Sepsis, a potentially fatal medical condition resulting from an uncontrolled immune

response to infection, remains a significant public health challenge (1). Its clinical urgency is

highlighted by its staggering morbidity and mortality rates, thus making it one of the primary

causes of death globally with millions of cases reported each year (2). During sepsis,

overactivation of the immune system leads to systemic tissue damage and organ failure,

amplifying its devastating impact (3). To address this complex immunopathology,

identification of effective therapeutic targets is essential (4). T-cell Immunoglobulin and

Mucin-domain containing-3 (TIM-3), due to its critical role in steering immune responses

across several disease contexts, has emerged as a potential target (5–7). Initially identified on

T cells, TIM-3 is now known to be expressed onmultiple immune cell types, including natural

killer cells, dendritic cells, and macrophages (8–10). Altered expression and dysregulation of
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TIM-3 have been observed in sepsis patients, hinting at its

involvement in the pathogenesis of this condition (11–13).

Immunotherapy, which aims to modulate the immune response

and restore immune homeostasis, carries potential promise for

sepsis treatment (14). Among various immunotherapeutic

strategies being investigated, inhibiting or modulating TIM-3

holds significant potential (15). Preliminary preclinical studies

focusing on TIM-3 blockade or targeting have shown promising

results, further motivating investigations into its mechanisms of

action in sepsis (12, 16–18).

This review aims to provide a comprehensive exploration of the

role of TIM-3 in sepsis and its potential as a therapeutic target. We

will delve into the expression patterns, regulatory mechanisms, and

interactions of TIM-3 during sepsis to shed light on its contribution

to the pathogenesis of this condition. Additionally, by dissecting the

mechanisms through which TIM-3 acts and understanding the

challenges it presents, we aim to guide the field towards innovative

strategies that harness TIM-3’s therapeutic potential in sepsis.
2 TIM-3: an overview

TIM-3 is a transmembrane protein and an integral part of the

TIM family that comprises eight members, including TIM-1, TIM-3,

and TIM-4 in humans (19). The human TIM-3 gene is located on

chromosome 5q33.2, consisting of 1116 nucleotides and encoding

302 amino acids (20). The mouse TIM-3 gene is located on

chromosome 11B1.1, encoding 281 amino acids. Human TIM-3

has 63% homology with mouse TIM-3. This protein includes three

domains: the extracellular domain, the transmembrane domain, and

the intracellular domain. The extracellular domain has an N-

terminal immunoglobulin variable (IgV) domain with FG-CC’

loops and N-linked glycosylation sites, a mucin-like domain with

O-linked glycosylation sites, and a stalk domain with N-linked

glycosylation (19) (Figure 1). The transmembrane domain spans

across the cell membrane, whereas the intracellular domain holds a

cytoplasmic tail with five tyrosine residues. The IgV domain contains

the binding site for its ligands such as Phosphatidylserine (PtdSer),

carcinoembryonic antigen-related cell adhesion molecule 1

(CEACAM1), and high-mobility group box 1 (HMGB1), all of

which bind to the FG-CC’ loops. Galectin-9 (Gal-9), on the other

hand, binds to the N-linked glycosylation (21).

The function of TIM-3 is determined by its context, and it can

act both as an activating and inhibitory receptor (10). It interacts

with four primary ligands: Gal-9 (22), CEACAM1 (23), HMGB1

(24), and PtdSer (25) (Figure 1). All four ligands engage with the

IgV domain of TIM-3, GAL-9 being the predominant one. When

Gal-9 binds to TIM-3, it prompts apoptosis in T cells and minimizes

T cell responses (22). In CD8+ T cells, co-expression of TIM-3 with

other inhibitory immune checkpoint molecules such as

programmed cell death protein 1 (PD-1) and CD160, along with

stimulatory molecules like 2B4 and lymphocyte activation gene-3

(LAG-3), is linked to T cell differentiation, activation, and increase

in IFN-g and TNF-a levels (26, 27), upon T cell receptor (TCR)

stimulation, suggesting a potential role in T cell activation and

effector function. Furthermore, blocking the TIM-3 pathway could
Frontiers in Immunology 02
potentially inhibit Treg activation. These intricate interactions and

regulatory mechanisms underscore the multifaceted role of TIM-3

in controlling immune responses (28). On the other hand, TIM-3

has also been implicated in T cell exhaustion. Persistent antigen

exposure leads to sustained TIM-3 expression on T cells,

contributing to T cell dysfunction and exhaustion characterized

by impaired proliferation and cytokine production. It is now

established that the amino acid residues Tyr256 and Tyr263 play

a crucial role in facilitating interactions between Human Leukocyte

Antigen-B-associated transcript 3 (BAT3) and the tyrosine kinase

FYN (29). Phosphorylation of these residues leads to the

dissociation of BAT3 from TIM-3, enabling TIM-3 to carry out

its inhibitory function (30). Additionally, FYN has the potential to

modulate TIM-3-mediated inhibitory signaling by competitively

binding to the same region on TIM-3 as BAT3, suggesting a possible

competition between FYN and BAT3 for TIM-3 binding.

TIM-3 plays an instrumental role in regulating immune

responses by striking a balance between immune activation and

tolerance. Through its negative regulatory function, TIM-3 helps

avert excessive or prolonged immune activation, which could lead

to tissue damage and autoimmunity (31). In T cells, engagement of

TIM-3 inhibits signaling pathways mediated by the TCR, resulting

in reduced T cell proliferation, cytokine production, and effector

functions (32). This regulatory role of TIM-3 is further supported

by its ability to induce T cell exhaustion (29). Treg cells, which are

crucial for maintaining immune homeostasis and preventing

autoimmunity, have been shown to upregulate TIM-3 expression

in certain inflammatory environments. TIM-3-expressing Treg cells

may exhibit enhanced suppressive function and contribute to the

regulation of immune responses by dampening excessive

inflammation and promoting tolerance.

TIM-3’s regulatory effects are not confined solely to T cells; they

extend beyond, impacting other immune cells (29). For instance,

TIM-3 signaling hinders the cytotoxicity of natural killer cells

agains viral infections (33). Myeloid cells, such as dendritic cells

and macrophages, can also express TIM-3 and play a role in

modulating immune responses. Within dendritic cells, TIM-3

engagement results in diminished antigen presentation and

impaired T cell priming (8). TIM-3 expression on myeloid cells

has been associated with the suppression of T cell activation and the

promotion of immune tolerance (34). Moreover, interactions

between TIM-3-expressing myeloid cells and TIM-3-expressing T

cells may further regulate immune responses in a complex manner.

NK cells, as innate immune effectors, can also express TIM-3. TIM-

3 expression on NK cells has been associated with functional

impairment and diminished cytotoxic activity. The engagement of

TIM-3 on NK cells by its ligands may contribute to the regulation of

NK cell function and impact overall immune responses (13). These

observations suggest that TIM-3 serves as a vital modulator of

immune responses across various cell types, contributing

significantly to immune homeostasis and preventing excessive

immunopathology (29). Recent studies have provided compelling

evidence suggesting that TIM-3 operates as a co-stimulatory

receptor, rather than solely as an inhibitory one, in the activation

of T cells in specific contexts (35, 36). This dual role of TIM-3 is

crucial for the optimal functioning of T cell immunity, as it
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facilitates the generation of short-lived effector T cells while

simultaneously suppressing the development of memory

precursors (37). Consequently, TIM-3 exhibits pleiotropic effects

in the maintenance of immune homeostasis, exerting its regulatory

functions by modulating various immune cell populations in a cell-

type- and context-specific manner.

It is now established that TIM-3 exhibits two distinct

functionalities. On one hand, it serves as a crucial physiological

inhibitor of inflammatory T cell responses, particularly in the context

of autoimmune conditions. Conversely, it also plays a detrimental

role as a promoter of T cell dysfunction and exhaustion in cancer and

chronic viral infections (35). Despite these well-documented roles,

there remains a critical inquiry into the underlying mechanisms that

dictate the divergent cell fates of TIM-3+ cells. Specifically, the

question persists as to whether these distinct functionalities are

dictated by external factors influencing T cells, or if they are a

result of differential signaling pathways downstream of TIM-3.

BAT3 is an essential adaptor protein known for its interaction

with the cytoplasmic domain of TIM-3. Recent investigations have

shed light on the pivotal role of BAT3 as a molecular checkpoint in

regulating T cell exhaustion. Specifically, studies have demonstrated

that the absence of BAT3 leads to a pronounced exhaustion

phenotype in T cells, dampening their ability to mediate

neuroinflammation driven by autoreactive T cells (38). In

preclinical models of autoimmunity, such as experimental

autoimmune encephalomyelitis, and cancer, the deficiency of

BAT3 in dendritic cells has been shown to significantly alter the T
Frontiers in Immunology 03
cell landscape. This alteration manifests as a decrease in Th1, Th17,

and cytotoxic effector cells, alongside an increase in regulatory T cells

and exhausted CD8+ tumor-infiltrating lymphocytes. Consequently,

this immune remodeling results in the amelioration of autoimmune

responses and the facilitation of tumor progression (39).

In conclusion, TIM-3 emerges as a versatile immune regulatory

molecule with a significant role in orchestrating immune responses

across different cell types. Through its expression patterns and

interactions with ligands, TIM-3 wields both activating and

inhibitory influences on immune cells, thus playing an

instrumental role in maintaining immune homeostasis. However,

a comprehensive understanding of the intricate mechanisms and

potential therapeutic applications of targeting TIM-3 in diverse

disease settings necessitates further, more exhaustive studies.

Moreover, according to the current research on TIM-3, there are

still many controversial aspects, such as the identification of

relevant ligands, specific downstream signaling pathways, which

still need to be further studied.
3 The role of TIM-3 in sepsis

Sepsis is known to induce upregulation of TIM-3 expression on

various immune cells, including T cells, natural killer (NK) cells,

dendritic cells (DCs), and macrophages (8, 9, 40). Sepsis is a

dysregulated systemic host response to infection that can lead to

organ dysfunction and is associated with high morbidity and
FIGURE 1

TIM-3 is a protein that consists of several distinct structural elements, namely, an extracellular immunoglobulin variable (IgV) domain, a mucin stalk
featuring N- and O-linked glycosylation sites, and an intracellular tail containing conserved tyrosine residues. It is found to be expressed on various
immune cells including T cells, natural killer (NK) cells, and antigen-presenting cells (APCs). TIM-3 interacts with different receptors such as
Phosphatidylserine (PtdSer), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and high-mobility group box 1 (HMGB1). These
receptors bind to specific regions known as the FG-CC’ loops on TIM-3. Additionally, Galectin-9 (Gal-9), a distinct protein, binds specifically to the
N-linked glycosylation sites on TIM-3. TIM-3 plays a significant role in modulating the NF-kB pathway in the context of infections, thereby exerting
control over the production and release of cytokines. Human Leukocyte Antigen-B-associated transcript 3 (BAT3) is an essential adaptor protein
known for its interactions with the cytoplasmic domain of TIM-3. BAT3 plays a critical role in the regulation of T cell exhaustion, a state
characterized by impaired effector function and increased expression of inhibitory receptors.
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mortality. In sepsis, TIM-3 expression on immune cells, particularly

T cells and myeloid cells, has been linked to the development of

immune paralysis and dysfunction, contributing to the

immunosuppressive state observed in septic patients (41). TIM-3

expression can be induced rapidly in response to the overwhelming

inflammatory and infectious stimuli. This upregulation of TIM-3

expression has been the subject of several studies investigating its

role in sepsis, which have shed light on its potential as a target for

immunotherapy. In a prospective study conducted by Boomer et al.,

a cohort of 24 patients diagnosed with severe sepsis within 24 hours

of its onset was examined to investigate the expression of inhibitory

receptors on lymphocytes, specifically those associated with cell

exhaustion. The study revealed a significant upregulation of

cytotoxic T lymphocyte antigen-4 (CTLA-4), TIM-3, and LAG-3

receptors on T lymphocytes in individuals with acute sepsis. This

notable upregulation of exhaustion-associated receptors potentially

contributes to the immune-suppressed state frequently observed in

severe sepsis cases. Consequently, the study suggests that

therapeutic interventions aimed at reversing T cell exhaustion

could hold promising potential in restoring immune functionality

and enhancing survival rates among sepsis patients (17). However,

Spec et al. found no significant difference in TIM-3 expression on

CD4+ and CD8+ T cells during Candida sepsis among critically ill

patients compared to controls (42). In patients with sepsis-induced

immunosuppression, Huang et al. observed a significant elevation

in TIM-3 expression on CD4+ T cells, and the percentage of TIM-3+

CD4+ T cells correlated with sepsis-induced immunosuppression

mortality (18). Furthermore, blocking the TIM-3 signaling pathway

was shown to promote the release of IL-10 and TNF-a by T

lymphocytes in septic patients (12). Moreover, in sepsis, the

interactions of TIM-3 with its ligands, such as Galectin-9,

HMGB1, or CEACAM1, may play a crucial role in modulating

immune responses and influencing the outcome of sepsis (18). The

engagement of TIM-3 in sepsis may lead to the functional

impairment of T cells and myeloid cells, exacerbating the

dysregu la ted immune response and contr ibut ing to

immunosuppression. Understanding the dynamics of TIM-3

signaling pathways in sepsis could provide novel insights into

potential therapeutic strategies for modulating immune function

and improving outcomes in septic patients.

In addition to its significant effect on CD4+T cells in sepsis,

many studies have found that TIM-3 also plays an important role in

the immune response of other types of T cells. In a study by Yan

et al., they investigated sepsis-induced acute respiratory distress

syndrome (ARDS) and found a positive correlation between the

proportion of TIM-3+ CD8+ T cells and the duration of shock. They

also observed that non-survivors had significantly higher expression

of both PD-1 and TIM-3 on CD8+ T cells compared to survivors

(43). Another study explored the relationship between CD8+ T cell

exhaustion and ARDS in sepsis patients (44). The study revealed

that decreased CD8+ T cell counts and proliferation rates were

associated with non-survival in ARDS patients. Additionally,

increased expression of inhibitory receptors PD-1 and TIM-3 was

related to worse organ function and longer shock duration,

respectively. These findings suggest that CD8+ T cells and

coinhibitory receptors can serve as independent prognostic
Frontiers in Immunology 04
markers for sepsis-induced ARDS. Therefore, targeting TIM-3

could hold potential for immunotherapy in sepsis. Furthermore,

in a mouse cecal ligation and puncture (CLP) model and human

septic patients, TIM-3 was highly upregulated in liver CD8+ T cells.

The expression of TIM-3 in liver CD8+ T cells displayed a biphasic

pattern, and its deletion resulted in reduced CD8+ T cell apoptosis.

Administration of a-lactose, a molecule similar in structure to Gal-

9, reduced TIM-3 expression and liver injury in sepsis. These

findings suggest that targeting TIM-3 to enhance CD8+ T cell

immune response may improve outcomes in septic patients (45).

Yuan et al. reported a significant reduction in the proportion of

Vd1T cells in septic patients compared to healthy controls, which

was correlated with disease severity (46). Additionally, septic

patients exhibited elevated expression of immunosuppressive

molecules such as glucocorticoid-induced tumor necrosis factor

receptor (GITR) (47), CTLA-4 (48), and TIM-3 on Vd1T cells. This

increase in immunosuppressive markers on Vd1T cells correlated

with T cell proliferation inhibition and impaired interferon

secretion, indicating a higher degree of immunosuppression in

sepsis. Wu et al. discovered a close correlation between the

expression of TIM-3 and the functional status of NKT cells in

septic patients (13). They found that upregulated TIM-3 expression

promoted NKT cell activation and apoptosis during early sepsis,

leading to worse disease severity and prognosis. To investigate the

potential of targeting TIM-3 as an immunomodulatory strategy for

sepsis management, they blocked the TIM-3/Galectin-9 signal axis

using a-lactose in a mouse model of CLP. This inhibition of NKT

cell apoptosis protected against septic challenge, indicating the

potential of targeting TIM-3 in sepsis (13). Similarly, Yao et al.

demonstrated the upregulation of TIM-3 in NKT cells, which

mediated NKT cell apoptosis in both mouse septic models and

human septic patients (49).

TIM-3 is expressed in a variety of immune cells which is

involved in pathogen killing or antigen presentation of these

immune cells in sepsis. A previous study also found that an

increased number of suppressive monocytes (PDL1+ve and

TIM-3+ve) at baseline could identify patients with acute-on-

chronic liver failure (ACLF) who are at high risk of developing

sepsis within 48-72 hours of hospitalization. Additionally, ex vivo

LPS-stimulated monocytes from patients with ACLF and sepsis

showed a significant increase in the expression of PD-L1 and TIM-3

(50). Ren et al. reported elevated TIM-3 expression on monocytes in

sepsis patients compared to severe sepsis, septic shock, and control

patients. Soluble TIM-3 (sTIM-3) levels in the plasma of the septic

shock group were higher than those of the sepsis or severe sepsis

groups, and sTIM-3 levels correlated with eventual non-survivors

(51). These findings suggest that TIM-3 expression on monocytes

and sTIM-3 exhibit distinct profiles among patients with varying

severity of sepsis, highlighting the need for mechanistic studies to

elucidate the exact role of TIM-3 during sepsis. However, in a study

by Yang et al., TIM-3 mRNA expression in peripheral blood

mononuclear cells was significantly lower in severe sepsis patients

compared to sepsis patients. This downregulation of TIM-3

correlated with increased levels of C-reactive protein, a clinical

marker of inflammatory status (52). Hou et al. observed a dynamic

inverse correlation between TIM-3 expression and IFN-g
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production in NK cells from LPS-induced septic mice (53). The

expression of TIM-3 on NK cells significantly increased at 24 hours

after LPS injection, with a moderate increase at 4 hours but

declining to undetectable levels by 12 hours. In vitro experiments

showed that blocking the TIM-3 pathway increased IFN-g
production and decreased apoptosis of NK cells. These findings

suggest that the TIM-3 pathway plays an inhibitory role in NK cell

function and may be a potential target for modulating the excessive

inflammatory response in LPS-induced endotoxic shock (53).

A recent prospective study in Germany involving 712 sepsis

patients from three ICUs investigated the functional single-

nucleotide polymorphisms (SNPs) of TIM-3 (54). The results

demonstrated a lower 28-day mortality in patients with the TIM-

3 rs1036199 AA homozygous genotype and TIM-3 rs10515746 CC

homozygous genotype, compared to carriers of the C-allele and A-

allele, respectively. Additionally, patients with the rs1036199 AA

genotype had more Gram-positive and Staphylococcus epidermidis

infections, while rs10515746 CC homozygotes had more

Staphylococcus epidermidis infections. These identified TIM-3

genetic variants may serve as prognostic markers and aid in

identifying high-risk septic patients. Clinical studies registered on

clinicaltrials.gov were also retrieved. Three studies on the

relationship between TIM-3 and sepsis were found all from

China. One observational study (NCT02180009) specifically

examined the expression of TIM-3 on monocytes and its soluble

expression in septic patients. Another observational study

(NCT01801839) aimed to investigate the imbalance of anti- and

pro-inflammation in septic patients by analyzing antigen

presentation, cytokine secretion, and TIM-3 expression on

monocytes/macrophages. The third observational study

(NCT02319876) focused on the expression of TIM-3 on

lymphocytes in sepsis, considering that immunosuppression is a

major cause of death in septic patients. Unfortunately, there have

been no further updates on these projects on the website, such as

completion status or publication of related literature, to provide

corresponding results. Despite the lack of published results,

researchers are actively pursuing the clinical study of TIM-3 in

sepsis due to its potential clinical significance.

The involvement of TIM-3 in sepsis pathogenesis is complex

and multifaceted. On one hand, TIM-3 has been identified as an

inhibitory receptor with immunosuppressive effects, promoting

immune tolerance and dampening excessive inflammation. Such

immunosuppressive function may contribute to immune paralysis

in sepsis, resulting in impaired host defense against invading

pathogens. Therefore, understanding the delicate balance between

these dual roles of TIM-3 necessitates further investigation

supported by the latest research findings. In addition to its direct

influence on immune cells, TIM-3 reciprocally interacts with other

immune checkpoints in sepsis, forming complex regulatory

networks. Accumulating evidence suggests that the interaction

between TIM-3 and PD-1 synergistically suppresses T cell

responses, promoting T cell exhaustion in sepsis (55).

Furthermore, the co-expression of TIM-3 and CTLA-4 has been

associated with suboptimal T cell function and worse clinical

outcomes in sepsis patients (56). These interactions underscore

the importance of comprehensive studies on multiple immune
Frontiers in Immunology 05
inhibitory pathways in sepsis, paving the way for novel

combination immunotherapy strategies.
4 TIM-3 as a therapeutic target
in sepsis

Current therapeutic strategies for sepsis primarily focus on

support-based approaches, such as antibiotics, fluid resuscitation,

and organ support (57–59). However, there is an urgent need for

specific immunotherapies that can target and modulate the

excessive immune response associated with sepsis to prevent

organ damage. This highlights the importance of exploring new

treatment options that can restore immune homeostasis in septic

patients. Immunomodulatory targets, particularly immune

checkpoints, have been extensively studied in sepsis (60). Immune

checkpoints are molecules involved in regulating immune function,

and their inhibitors have shown success in enhancing anti-tumor

immune responses in cancer treatment (61). This raises the

question of whether targeting immune checkpoints could also

provide benefits for sepsis patients (Figure 2).

In septic episodes, the presence of inflammatory cytokines and

danger signals triggers an upregulation of TIM-3 expression in

various immune cells, including T cells, macrophages, and dendritic

cells. This upregulation of TIM-3 signaling has been highlighted as

significant in promoting immune dysfunction and exhaustion,

suggesting its potential role in sepsis progression (62, 63).

Hypothetically, therapeutic targeting of TIM-3 might rejuvenate

immune cell function, thereby improving clinical outcomes in

sepsis patients. Preclinical studies using animal models of sepsis

have provided support for this hypothesis, demonstrating

encouraging results when interventions blocking or modulating

TIM-3 signaling were employed. These interventions resulted in

improved survival rates, reduced inflammation, and decreased

organ dysfunction among septic animals (60).

For instance, in our previous study, we found that TIM-3

expression is increased in spleen CD8+ T cells of mice during

CLP-induced sepsis. Blocking TIM-3 with anti-TIM-3 antibodies at

the early stage of sepsis reduced its severity, alleviated lung and liver

injuries, decreased inflammatory responses, and prevented

lymphocyte apopsosis (64). These findings indicate that anti-

TIM-3 antibodies may serve as a promising immunotherapy

target for sepsis. Furthermore, Xia et al. discovered that blockade

of the TIM-3 signaling pathway with TIM-3 antibody contributed

to a significant elevation of IL-10 and TNF-a in the supernatant of

T lymphocytes in septic patients. Blocking both TIM-3 and PD-1

induced the positivity of IL-10- and TNF-a-expressing cells in

peripheral monocytes. Significant changes were noticed in the

expression of TIM-3 and PD-1 in both T lymphocytes and

monocytes. Blocking TIM-3 and PD-1 improved the function of

lymphocytes and monocytes, suggesting their crucial roles in the

immune response during sepsis (12).

Moreover, Wang et al. observed an increase in the expression of

TIM-3 on CD4+ T cells, CD8+ T cells, and NK cells in the peritoneal

lavage 24 hours after a single LPS injection (65). The expression of
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TIM-3 on splenic NK cells was also significantly elevated. This

upregulation of TIM-3 served as a marker of immune exhaustion,

with TIM-3+ T cells and NK cells exhibiting reduced IFN-g
production. In septic mice, blockade of the TIM-3 pathway

hastened mortality, while its activation prolonged survival.

Furthermore, the administration of a TIM-3 blocking antibody in

vitro restored IFN-g release from splenocytes, reduced splenocyte

apoptosis, and increased levels of IFN-g and TNF-a in septic mice.

Conversely, activation of the TIM-3 pathway inhibited cell

proliferation. These findings indicate that the TIM-3 signaling

pathway plays a crucial role as a negative mediator in LPS-

induced endotoxic shock and could serve as a promising

therapeutic target for sepsis (65). However, some studies have

found that a single LPS injection did not increase PD-1 and TIM-

3 expression in CD4+ T and CD8+ T cells in mice, whereas recurrent

sepsis induced by multiple LPS stimulations resulted in a significant

increase in PD-1 and TIM-3 expression (66).

Liu et al. conducted a study using a murine model of CLP sepsis

to investigate the impact of long-term exposure to glucocorticoids on

CD4+ T cells and the cytokine storm in sepsis (67). Their findings

revealed that chronic exposure to glucocorticoids exacerbated

apoptosis of CD4+ T cells and the cytokine storm. This

exacerbation was mechanistically linked to the increase in CD3+

TIM-3+ T cells. These CD3+ TIM-3+ T cells were found to express

high levels of multiple cytokine genes during infections, indicating a

significant role of TIM-3 in regulating T cell biology. Furthermore, in

vitro studies demonstrated that anti-TIM-3 treatment enhanced the

inflammatory activity of CD3+ T cells. Thus, this study established a

causal relationship between chronic exposure to glucocorticoids and

an excessive inflammatory response mediated by T cells during

infections, partly driven by dysregulation of CD3+ TIM-3+ T cells.
Frontiers in Immunology 06
Kadowaki et al. investigated the protective effects of Gal-9 in a

murine model of sepsis induced by CLP (68). To demonstrate these

effects, they utilized Gal-9 transgenic mice and administered

therapeutic Gal-9. The results showed that Gal-9 reduced levels of

TNF-a, IL-6, IL-10, and HMGB1, while increasing levels of IL-15

and IL-17 in both plasma and spleen. Moreover, Gal-9 increased the

frequencies of NKT cells and PDCA-1+ CD11c+ macrophages

(pDC-like macrophages), while decreasing the frequency of TIM-

3+ CD4+ T cells, particularly Th1 and Th17 cells. Based on these

findings, it can be inferred that Gal-9 exerts therapeutic effects on

polymicrobial sepsis by expanding NKT cells and pDC-like

macrophages, as well as modulating the production of early and

late proinflammatory cytokines.

In a study by Luo et al., the combination of mesenchymal stem

cells (MSCs) with Gal-9 was found to improve survival rates and

kidney function in mice with sepsis-associated acute kidney injury

(SA-AKI) (69). This treatment not only reduced inflammation but

also restored balance to the Th17/Treg cell ratio and enhanced

the expression of anti-inflammatory factors. Interestingly, when the

Gal-9/TIM-3 pathway was blocked using soluble TIM-3, the

therapeutic effects of MSCs were reversed, resulting in kidney

injury and increased mortality. These findings suggest that

target ing TIM-3 could be a promising approach for

immunotherapy in sepsis. Additionally, the knockdown of Gal-9

in MSCs using small interfering RNA hindered the therapeutic

effect of MSCs. Similarly, the blockade of the Gal-9/TIM-3 pathway

using a-lactose or anti-TIM-3 inhibited the induction of Tregs and

suppressed the differentiation of Th17 cells when MSCs were

cocultured with CD4+ T cells (70). These results indicate that the

beneficial effect of MSCs against SA-AKI may be partially mediated

by the induction of Tregs and inhibition of Th17 cells through the
FIGURE 2

Antigen-presenting cells (APCs), including dendritic cells (DCs), play a crucial role in modulating T cell responses specific to infection, stress, or
cellular injury. The regulation and activation of T lymphocytes are contingent upon signaling mediated by the T cell receptor (TCR) as well as
cosignaling receptors, which transmit negative (–) or positive (+) signals.
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Gal-9/TIM-3 pathway. However, another studyverified that Gal-9 is

not a ligand for TIM-3 on CD4+ T cells during sepsis (18). Instead,

their results indicated that TIM-3 exhibits a relatively strong

binding affinity for HMGB1, suggesting its potential as a receptor

for HMGB1 in TIM-3+ CD4+ T cells during sepsis. Therefore,

further research is needed to investigate the role of Gal-9 in sepsis

and whether it exerts its effects by regulating TIM-3.

Zhao et al. conducted a study to investigate the role of TIM-3

signaling in sepsis using a CLP model. Their findings demonstrated

that b locking TIM-3 signal ing with soluble TIM-3-

Immunoglobulin (sTIM-3-IgG) during the acute phase of sepsis

exacerbated macrophage pro-inflammatory responses and

lymphocyte apoptosis (71). However, during the late phase of

sepsis, it enhanced the anti-inflammatory phenotype of

macrophages and CD4+ T cells. These results indicate a dual role

for TIM-3 in the regulation of sepsis. Moreover, mice over-

expressing TIM-3 exhibited attenuated sepsis-induced

immunosuppression and improved survival. Similar results were

observed when administering the TIM-3 ligand Gal-9. In contrast,

Yang et al. showed that blocking TIM-3 signaling using an anti-

TIM-3 antibody or sTIM-3-IgG increased sepsis severity and

decreased survival in a CLP model. This study also revealed the

negative regulatory role of TIM-3 on TLR4-mediated responses of

macrophages, leading to the inhibition of macrophage activation.

These findings suggest that the TLR4 signaling pathway plays a

crucial role in TIM-3-related immune homeostatic mechanisms

during sepsis (52).

Furthermore, Huang et al. demonstrated that the conditional

deletion of TIM-3 in CD4+ T cells, as well as systemic TIM-3

deletion, reduced mortality in mice with sepsis by preserving organ

function. They found that TIM-3+ CD4+ T cells had reduced

proliferative ability and elevated expression of inhibitory markers

compared to Tim-3- CD4+ T cells. Additionally, their results

indicated that blocking TIM-3 in CD4+ T cells led to the

activation of the NF-kB/TNF-a signaling pathway, which

counteracted sepsis-induced immunosuppression (18). Similarly,

Yang et al. revealed that TIM-3 plays a role in maintaining sepsis by

negatively regulating LPS-TLR4-mediated NF-kB activation. In

their study, blockade and/or downregulation of TIM-3 was

associated with increased severity of sepsis (52).

In summary, pre-clinical studies investigating the role of TIM-3

in sepsis have produced inconsistent results. Blocking TIM-3

signaling during the acute phase of sepsis aggravated the pro-

inflammatory response and lymphocyte apoptosis, but it

enhanced the anti-inflammatory phenotype during the late phase.

Mice over-expressing TIM-3 displayed improved survival and

attenuated immunosuppression, while blocking TIM-3 signaling

increased sepsis severity and decreased survival. These findings

provide additional insights into the biological mechanisms of TIM-

3, suggesting that the TIM-3 signaling pathways may play distinct

regulatory roles on T cell and macrophage function in a manner

that is dependent on the disease stage and microbial activity. Given

the dynamic and potentially life-threatening nature of sepsis as a

rapidly progressing condition, there is a clear need for further

research to fully comprehend the mechanisms underlying TIM-3’s

dual role in sepsis. Moreover, investigating the interplay between
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TIM-3 and other immune checkpoint molecules, such as PD-1 and

CTLA-4, may yield valuable insights into potential combination

therapies for sepsis. Additionally, exploring the impact of TIM-3 on

various immune cell populations, including T cells, macrophages,

and DCs, could provide a better understanding of its diverse effects

on the immune response during sepsis. Ultimately, a

comprehensive understanding of the role of TIM-3 and other

immune checkpoint molecules in the pathophysiology of sepsis is

essential for the development of innovative therapeutic strategies

aimed at enhancing outcomes for sepsis patients.
5 Challenges and future perspectives

Targeting TIM-3 in sepsis holds potential, but the path forward

is filled with complex challenges. A major limitation is the dynamic

nature of the immune response during sepsis (60). Immune

responses are not uniform and vary based on the stage of sepsis

and the specific cell types involved (72). The expression and

regulation of TIM-3 may differ across the stages of sepsis and

between different cell types like monocytes and T cells, contributing

to heterogeneity that complicates therapy development. This

complexity presents a challenge to both clinicians and

researchers, underscoring the need for a more nuanced

understanding of TIM-3’s roles within these varied contexts.

Another hurdle is the possible off-target effects when

manipulating TIM-3. As TIM-3 is expressed on non-immune cells

such as endothelial cells, therapeutic intervention may unintentionally

impact the functions of these cells, potentially causing unwanted

effects like vascular permeability changes or even microvascular

thrombosis (73). Therefore, carefully delineating potential off-target

effects is vital when developing TIM-3-based therapies.

Furthermore, it is essential to determine the optimal timing and

duration for TIM-3 modulation. Sepsis is time-sensitive, and

interventions at varying disease stages could yield divergent

outcomes. Premature or delayed intervention might worsen the

disease, miss the therapeutic window, or lead to unexpected side

effects (74). Hence, identifying critical intervention points where

TIM-3 targeting would be most beneficial is essential. Moreover,

strategies for timed delivery of these therapies should be a priority.

Given these limitations and challenges, several strategies can be

explored. First, further research is required to elucidate the precise

mechanisms of TIM-3 activation and its interactions with other

immune checkpoints during sepsis. Understanding these molecular

pathways will offer insights into how to effectively manipulate TIM-

3 without causing undesired side effects. Second, the development

of selective TIM-3 inhibitors or agonists could help minimize off-

target effects. By specifically targeting immune cells expressing

TIM-3 while sparing non-immune cells, we could achieve a more

precise modulation of the immune response in sepsis, reducing

potential adverse effects. A third approach involves combination

therapies targeting multiple immune checkpoints concurrently.

Given that sepsis involves dysregulated immune responses,

targeting a single molecule may not fully restore immune

homeostasis (75). Combining TIM-3 blockade or modulation

with other immunotherapies, such as PD-1/PD-L1 inhibitors or
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TLR agonists, may amplify therapeutic outcomes, assuming no

unforeseen antagonistic interactions occur (76).

By addressing these challenges, exploring potential strategies,

and focusing on future research directions, TIM-3-targeted

immunotherapy in sepsis shows considerable promise.

Considering the high stakes associated with sepsis treatment,

advancement in this area is an urgent need. Continued efforts in

this domain will unquestionably contribute to creating effective

treatments for this life-threatening condition, thereby improving

patient outcomes in the future.
6 Conclusion

In conclusion, the growing comprehension of TIM-3’s role in

sepsis offers insightful perspectives on the complex immune

dysregulation characterizing this life-threatening condition. The

distinct expression patterns and regulatory mechanisms of TIM-3

during sepsis not only indicate its crucial function in disease

pathogenesis but also highlight its potential as a promising target

for therapeutic intervention. By modulating the signaling pathways

associated with TIM-3 activation, we may be better equipped to

impact various responses including immune cell functions,

inflammation levels, tissue damage, and organ dysfunction in

sepsis. As our understanding of TIM-3 continues to expand, it

appears as a hopeful prospect for effective immunotherapy in

sepsis management.
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