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The skin, covering our entire body as its largest organ, manifests enormous

complexities and a profound interplay of systemic and local responses. In this

heterogeneous domain, B cells were considered strangers. Yet, recent studies

have highlighted their existence in the skin and their distinct role in modulating

cutaneous immunity across various immune contexts. Accumulating evidence is

progressively shedding light on the significance of B cells in maintaining skin

health and in skin disorders. Herein, we integrate current insights on the systemic

and local contributions of B cells in three prevalent inflammatory skin conditions:

Pemphigus Vulgaris (PV), Systemic Lupus Erythematosus (SLE), and Atopic

Dermatitis (AD), underscoring the previously underappreciated importance of B

cells within skin immunity. Moreover, we address the potential adverse effects of

current treatments used for skin diseases, emphasizing their unintentional

consequences on B cells. These comprehensive approaches may pave the way

for innovative therapeutic strategies that effectively address the intricate nature

of skin disorders.
KEYWORDS
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1 Introduction

The skin is a crucial immune component, serving as the first line of defense against

numerous threats, encompassing physical and chemical damage as well as infections arising

from a variety of pathogens, including bacteria, viruses, fungi, and helminths. To fulfill this

protective role, the skin consists of various types of immune cells, each with distinct

functions and responsibilities (1). Over the last few decades, significant advances have been

made in unraveling the existence and roles of a diverse array of specialized leucocytes that

constitute cutaneous immunity, thereby further highlighting crosstalk among these cellular

components (2).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1328785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1328785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1328785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1328785/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1328785&domain=pdf&date_stamp=2024-02-15
mailto:jieun.oh@kaist.ac.kr
https://doi.org/10.3389/fimmu.2024.1328785
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1328785
https://www.frontiersin.org/journals/immunology


Lee and Oh 10.3389/fimmu.2024.1328785
In the context of innate immunity, Langerhans cells (LCs) and

dermal dendritic cells (dDCs) are the central players with well-

characterized roles as antigen-presenting cells (APCs) (3).

Concurrently, multiple literatures underscore the significance of T

cells in cutaneous immunity. Notably, the skin harbors nearly 5% of

all human T cells, a proportion roughly double that found in the

peripheral circulation (4, 5). Furthermore, in alignment with the

emerging concept of tissue-resident memory T cells (TRMs), the

crucial role of skin TRMs has been elucidated that they can generate

rapid and localized responses to external stimuli (6). However, the

significance of B cells, which constitute the other arm of adaptive

immunity, within the cutaneous immune system has not been

well-defined.

Recent findings have conferred the presence of B cells in the

skin of both humans and animals, compelling a reevaluation of their

significance in cutaneous immunity (7–14). These B cells localized

within the skin may maintain cutaneous immunity through various

mechanisms, including antibody production, cytokine secretion,

and antigen presentation. In addition, different and distinct B cell

subsets have been characterized in the context of inflammatory

dermatoses, present either in the lesional skin or within the systemic

circulation. With the evolving insights into skin-associated B cells, it

is imperative to distinguish their roles in both homeostasis and

disease. Specifically, it is crucial to determine whether these B cells

exhibit i) pro- or anti-inflammatory behaviors, ii) protective or

pathogenic attributes, and iii) systemic effects or specialized

local effects.

In this article, we review recent findings on systemic and skin-

localized B cells in inflammatory skin diseases to uncover their

underestimated roles in the cutaneous immune system. Additionally,

we propose the potential side effects of current therapeutic agents

prescribed to patients with cutaneous inflammatory disorders, with a

focus on their inadvertent impact on B cells.
2 Presence of B cells in the skin

2.1 B cells in healthy skin and homeostasis

It was believed that B cells were not present in normal human

skin, substantiated by evidence from previously reported

histological studies (11, 15). However, these studies inherently

had limitations to detect and quantify very few amounts of cells.

The advent of advanced methodologies, afferent lymphatic

cannulation and flow cytometry, has unveiled the presence of B

cells localized within the skin, demonstrated in both humans (11,

16) and animals (12–14). These skin-localized B cells were detected

in the dermis, but not detected in the epidermis. They are typically

dispersed as isolated cells during homeostasis whereas they tend to

form clusters or more structured lymphoid formations during

inflammation (14).

Skin B cells exhibit a heterogeneous phenotype, consisting of

innate-like B cells that resemble B-1 B cells expressing high levels of

IgM and CD11b, as well as conventional B-2 B cells (12–14).

Remarkably, the skin of mice exhibits a significant enrichment of

innate-like B cells with a substantial proportion of interleukin-10
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(IL-10)-producing cells, indicating their potential significance in

modulating inflammation within the cutaneous immune system. In

accordance with this notion, peritoneal B-1 B cells in mice

selectively migrate into the inflamed skin (14). Considering the

importance of pattern recognition receptors (PRRs), particularly

Toll-like receptors (TLRs), in the development and function of B-1

B cells (17–19), exploring the expression and activity of TLRs on

innate-like B cells in the skin presents an exciting research avenue.

However, current understanding of PRR expression on skin-

localized B cells remains limited, requiring future explorations to

unravel the specifics of innate signaling in these cells. For

conventional B-2 cells, human IgG+ B-2 B cells that infiltrate the

skin have fewer IgG1 subclass and tend to use specific Vh genes

compared to their counterparts in the blood, indicating the presence

of distinct B cell subsets specialized for the skin (20).

Beyond their role in regulating cutaneous inflammation, skin B

cells also contribute to the reinforcement of barrier function to

prevent infection. Innate-like (B-1) B cells typically recognize

conserved structures of pathogens and produce polyreactive

natural antibodies even without prior exposure to antigens. In

humans, skin-localized plasma cells secret IgA in eccrine sweat

glands. These secreted antibodies in sweat bind to pathogenic

microbes and skin commensals, regulating their population and

activity (21–23). Recently, Wilson et al. (24) demonstrated that

healthy human and mouse skin naturally harbors antibody-

secreting plasma cells and plasmablasts, predominantly IgM-

secreting cells. These cells arose mainly from the B-1 lineage and

developed independently of microbiota and T cells, producing

natural IgM. Notably, chronic skin inflammation significantly

increased the number of these IgM-secreting cells. Collectively,

this study suggests a role of skin plasma cells in supporting

homeostatic skin functions and offering defense against pathogens.

Skin-localized B cells also enhance other immune functions.

Activated B cells in the skin display elevated levels of MHC class II

and costimulatory molecules (CD80/86), equipping them aptly for

T cell activation (12). Furthermore, a recent study indicates that

tissue-resident B cells spatially co-localize with macrophages,

influencing their polarization and function, thereby playing a key

role in maintaining tissue homeostasis (25). Although skin was not

included in the analyzed tissues in this particular study, it implies a

pivotal role for tissue-resident B cells in overall immune regulation.

Skin microbiota play a crucial role in managing cutaneous

physiological and pathological processes like wound healing and

inflammation (26). Similar to the role of antibodies in shaping the

gut microbiome, they might also influence the cutaneous microbial

communities. Electron microscopy of human skin indicated that

skin microbes are enveloped by IgA, IgG, and IgM, suggesting the

involvement antibodies in managing microbial colonization in skin

(23). This implies that secretory antibodies may affect microbial

populations in the skin similarly to their impact in the gut. Further

investigations are needed to determine how antibodies can regulate

the microbial colonization in different skin areas.

Given its constant exposure to diverse external insults, the skin

remains susceptible to a diverse array of threats. Therefore, tissue

repair and wound healing are vital properties of the skin. The role of

skin-localized B cells in wound healing was demonstrated through
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studies using B-cell-deficient mice, which exhibited delayed wound

healing compared with B-cell-sufficient mice. This indicates a

potential role for B cells in facilitating tissue repair (27). Possibly,

the innate-like B cells mentioned earlier appear to serve as key players

in the wound healing process, as they localize within inflamed skin

and regulate inflammation via IL-10 secretion. Taken together, skin-

associated B cells emerge as pivotal components not only responsible

for enhancing barrier functions but also in maintaining the

homeostasis of the cutaneous microenvironment.
2.2 Skin-localized B cells: recirculating
or resident?

Previous studies have demonstrated that B cells are present in

the skin during homeostasis or in disease state. However, only

limited aspects of skin-localized B cells started to be unveiled, still

leaving a multitude of inquiries unanswered. One of the primary

questions is whether they are distinct resident immune cell

populations or they transiently migrate into the skin and then

recirculate after a certain period.

The concept of tissue-resident memory B cells (BRMs) has

emerged with the discovery of memory B cells in the lung for

prolonged periods of time after infection (28). Subsequent

investigations have confirmed that these B cells are a

transcriptionally and functionally distinct population, marked by

their residence within tissues (29–32). However, the current

understanding of BRMs has been restricted to the lung, leaving their

characterization in other barrier tissues uncharted (33). Notably, no

BRM formation was shown in the lower female reproductive tract

after HSV-2 immunization and subsequent infection (34), implying

that the establishment of BRM is highly dependent on tissue

microenvironments where localized B cells receive signals for

maintenance (33, 34). Hence, whether skin-localized B cells possess

the capabilities to evolve into bona fide skin BRMs is one of the

intriguing questions to extend the frontiers of BRMs.

As skin TRMs have been well-characterized with distinct surface

markers and skin-homing factors (35, 36), it is tempting to infer

whether skin-localized B cells can also exhibit analogous phenotypes.

Cutaneous lymphocyte antigen (CLA) is a well-defined skin-homing

receptor for T cells known to engage in ligand-receptor binding with E-

selectin on cutaneous vascular endothelium (37, 38). Interestingly,

several studies have demonstrated that human activated B cells can also

express CLA (39, 40), suggesting a potential role for CLA in mediating

B cell migration into the skin as it does in T cells. Furthermore,

chemokine receptors like CCR4 and CCR10, found on skin TRMs, are

also present on subsets of B cells (41–43). However, these phenotypic

similarities are insufficient to conclude that skin-localized B cells are

resident population. These markers are homing factors and additional

signals that determine the retention of B cells in the skin are still elusive.

Thus, further research is needed to ascertain the actual persistence of

skin-localized B cells and to elucidate their maintenance mechanisms

within the cutaneous microenvironments.

The skin is destined to defend the whole body against a wide

range of external threats, thus composed of heterogeneous cellular

components. Given this distinctive microenvironment of the skin, it
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is plausible that B cells could potentially establish residency within

the skin following specific exposures, playing a role in mounting a

faster and more effective immune response upon subsequent

encounters with the same antigen. However, it is also crucial to

figure out the potential dual role of these B cells that they could also

be involved in the pathophysiology of inflammatory skin diseases by

responding to allergens or autoantigens. Indeed, clinical studies in

the field of dermatology have reported that recurrent lesions in the

same location are strongly related to the tissue-resident populations

specific to the disease-associated factors (44–46). Notably, only

subsets of T cells have been implicated in driving this recurrent

flare, such as autoreactive Th17 cells within fixed psoriatic plaques

(6). Although less is known, it is possible that skin-resident B cells

might also contribute to the recurring pathophysiology within the

skin. Accordingly, a comprehensive investigation into skin-resident

B cells should be conducted to distinguish populations that play

protective roles from those that harbor pathogenic functions.
3 Role of B cells in various
inflammatory skin diseases

3.1 Integrative profiling of B cells in various
inflammatory dermatoses

Although the current understanding of B cells in healthy skin

remains limited, their potential involvement and significance in

various inflammatory skin diseases are increasingly being

elucidated. Conventionally, the role of B cells in cutaneous

pathologies has been predominantly recognized as systemic

effectors, producing circulating antibodies that enter the skin and

trigger inflammation. However, recent emerging evidence has

altered this perspective, suggesting that B cells can contribute to

the pathogenesis of skin disease not only through systemic

mechanisms, but also through local interactions. This is

supported by the increased B-cell infiltrates within lesional skin,

with a positive correlation observed between the number of skin-

infiltrating B cells and disease severity (47–49). These B cells are

now considered to exert localized actions, encompassing local

antibody production and the formation of tertiary lymphoid

organs (TLOs). Therefore, a comprehensive understanding of the

systemic and local impact of pathogenic B cells becomes pivotal in

developing more precise and efficacious therapeutic strategies for

various skin pathologies. In this section, we will delve into an

integrative exploration of B-cell profiles in three representative

inflammatory dermatoses including pemphigus vulgaris, systemic

lupus erythematosus, and atopic dermatitis.
3.1.1 Pemphigus vulgaris
Pemphigus vulgaris (PV) is an autoimmune skin disorder

characterized by severe blistering of the skin and mucosa. It is

caused by aberrant autoantibodies that target two specific

desmosomal proteins, desmoglein-1 (DSG1) and desmoglein-3

(DSG3), which are essential for maintaining epidermal keratinocyte

adhesion (50). Remarkably, the disease severity of PV has been
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correlated with the abundance of serum DSG1/3-specific

autoantibody. The well-characterized antigenic specificity for

DSG1/3 has allowed researchers to isolate these pathogenic B cells

from the peripheral blood of PV patients, thus elucidating their

distinctive transcriptomic and phenotypic profiles (51–53). Detection

of DSG1/3-specific B cells in PV patients demonstrated that DSG1/3-

specific memory B cells also correlate with disease severity (51, 52).

Also, transcriptome analysis of autoreactive B cells performed at a

single-cell level identified differentially expressed genes,

encompassing those associated with T-cell costimulation (CD137L),

B-cell differentiation (CD9, BATF, TIMP-1), and proinflammatory

cytokines (S100A8, S100A9, CCL3) (51).

While circulating anti-DSG1/3 autoantibodies have been

considered the primary etiology of PV (54), recent discoveries

have underscores the importance of skin-localized B cells in this

disorder (Figure 1A). These B cells have been characterized by

localized antibody production and the formation of cutaneous TLO

(47, 55). Comparative analysis demonstrated that DSG1/3-specific

B cells and plasma cells were localized to the lesional skin of PV

patient, distinct from healthy skin, and these B cells aggregated with

IL-21+ CD4+ T helper cells forming TLOs (47). Further dissection

through isolation and in vitro culture of cutaneous B cells revealed

that they produce larger amounts of anti-DSG1/3 antibodies and

enriched B cell receptors (BCRs), compared to their circulating
Frontiers in Immunology 04
counterparts from the same patients (55). Moreover, B cells present

within TLOs expressed high levels of transcription factors

associated with B-cell differentiation, including BLIMP-1, IRF4,

and BCL-6 (55), indicating that they are a distinctive population

with a high propensity to becoming antibody-secreting cells (ASCs).

Taken together, skin-localized B cells coupled with TLO formation

in PV appear to be primary effectors propelling disease progression,

suggesting the potential benefit of in situ targeting for

therapeutic intervention.

3.1.2 Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is a multisystem

autoimmune disorder that often presents with skin manifestations.

It is caused by the disruption in central tolerance, allowing

autoreactive lymphocytes to survive and elicit a cascade of

abnormalities including the production of various autoantibodies

like antinuclear antibodies and anti-dsDNA antibodies (56). Unlike

PV, SLE involves heterogeneous populations of autoreactive

lymphocytes with distinct antigen specificities. Whereas pathogenic

autoantibody is sufficient to drive cutaneous pathology in PV (54),

self-reactive autoantibodies alone appear insufficient to induce skin

manifestations in SLE (57). Furthermore, not all SLE-associated

autoantibodies correlate with disease activities (58), underscoring

its complex and heterogeneous immunopathogenesis.
A B C

FIGURE 1

Integrative B-cell profiling in the pathophysiology of inflammatory skin diseases. (A) In pemphigus vulgaris (PV), disease severity correlates with both
the level of circulating anti-DSG1/3 autoantibodies and the portion of DSG1/3-specific B cells in peripheral blood. Also, skin-localized B cells play
crucial roles in disease progression by forming cutaneous tertiary lymphoid organs (TLOs) with IL-21+CD4+ T helper cells and locally producing anti-
DSG1/3 antibodies. (B) In systemic lupus erythematosus (SLE), recently identified B cell subpopulations, namely atypical memory B cells (atMBCs) and
CD27-IgD- double-negative B cells (DN2 B cells), appear poised to differentiate into antibody-secreting cells (ASCs), which may amplify the disease
severity (dashed arrows indicate potential differentiation pathways). Similar to PV, local contribution of skin-localized B cells in the pathogenesis of
SLE has been elucidated through enhanced B cell infiltration, TLO formation in lesional skin, and presence of distinct germinal centers with
peripheral node addressin(+) high endothelial venules (PNA+ HEVs). (C) Unlike the two previous disorders, the establishment of TLOs has not been
demonstrated yet in atopic dermatitis (AD). However, recent AD research suggests the concept of “autoallergy”, where autoimmunity and atopic
conditions overlap, marked by autoreactive IgE antibodies. Also, systemic B-cell abnormalities have been observed in the patients with AD.
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In SLE patients, 25–50% of the mature naïve B cells generate

autoantibodies, suggesting defective and abnormal self-tolerance at the

early stages of B-cell development (59). This has led researchers to

investigate B-cell abnormalities in SLE. Recent exploration has

extended to newly defined B-cell subpopulations, such as atypical

memory B cells (atMBCs) (60). In peripheral blood from SLE patients,

the B-cell compartment exhibited significant dysregulation, featuring

elevated proportions of transitional B cells, atMBCs, and ASCs, while

unswitched memory B cells showed a reduced proportion (Figure 1B).

Remarkably, transitional B cells were intensively activated through type

I interferon (IFN) signaling pathway with increased survival and

promoted proinflammatory properties (61). These autoreactive

transitional B cells may differentiate into atMBCs and subsequently

give rise to ASCs, particularly through an extrafollicular pathway. This

process constructs a potential pathogenesis axis that spans from

transitional B cells to ASCs (60). Recently, CD27 and IgD double-

negative-2 B cells (DN2 B cells), akin to atMBCs, have been also

implicated as the major precursor of ASCs and associated with the

pathogenesis in patients with rheumatoid arthritis (RA) (62).

Collectively, these parallels between the two prevalent autoimmune

diseases potentially converge upon the pathogenic role of atMBCs or

DN2 B cells differentiating into autoreactive ASCs. However, it remains

to be delineated whether such alteration in the B-cell compartment

occurs in other affected organs within SLE patients, encompassing

kidneys, joints, and skin.

Beyond the systemic contribution of B cells in driving SLE

pathogenesis, local humoral responses in each affected tissue are of

particular importance. Notably, some circulating autoantibodies

display weak correlation with disease activity in SLE patients (59),

postulating that tissue-resident immune cells and locally generated

antibodies play a crucial role in disease progression within specific

tissues. Like the aforementioned research in PV, the manifestation of

cutaneous lupus involves enhanced B cell infiltration and TLO

formation in affected skin (63–66). These skin-localized B cells

organize into aggregates coordinated with CD3+ T cells (64, 65),

suggesting their additional roles such as cytokine secretion and

antigen presentation to pathogenic T cells beyond their autoantibody

production. Dissecting the TLOs revealed that it contains distinct

germinal center (GC) structures complemented by auxiliary

components like peripheral node addressin(+) high endothelial

venules (PNA+ HEVs) and CXCL13+ cells (66). Autoreactive B cells

in cutaneous lesions are transcriptionally distinct compared to those in

healthy controls. These B cells exhibit gene signatures enriched in B cell

activation and leucocyte chemotaxis pathways (67). Also, B lymphocyte

stimulator (BLyS), a pivotal factor for B cell activation and survival, was

significantly upregulated in lesional skin (68), supporting enhanced B

cell activation in the context of cutaneous lupus pathologies. Taken

together, recent findings in cutaneous lupus have demonstrated the

considerable contribution of skin-localized autoreactive B cells to the

pathophysiology of SLE at the tissue level. Consequently, they highlight

the need to integrate altered B-cell phenotypes in the peripheral

circulation and the actual effector mechanisms at the site of lesions.

3.1.3 Atopic dermatitis
Atopic dermatitis (AD) is one of the most common allergic diseases

characterized by elevated type 2 immune response and high levels of
Frontiers in Immunology 05
serum IgE. While the definitive etiology of AD remains incompletely

elucidated, a diverse array of heterogeneous factors, spanning from skin

barrier disruption, genetic susceptibility, and environmental triggers,

converge to shape the pathogenesis of AD (69). Accompanied by

intense pruritus, AD prompts scratching on affected skin regions,

perpetuating a vicious cycle that exacerbate disease progression.

Intriguingly, recent advances in AD research have reshaped the

conventional understanding of AD pathophysiology (70–74). Among

these, a notable insight is the emerging concept of “autoallergy”,

whereby autoimmunity coexists with atopic conditions, with antigen-

specific IgE serving as a prominent hallmark (70, 71). The main

driver of autoallergy is IgE-reactive autoallergens that share cross-

reactivity and molecular mimicry with exogenous allergens. When

keratinocytes are damaged by external stimuli like scratching and

environmental factors, they release intracellular autoantigens. These

autoantigens might sensitize autoreactive immune cells that exhibit

cross-reactivity with exogenous allergens (71). Subsequently, these

immune cells experience reactivation upon encountering the cross-

reactive exogenous allergen. Although the role of autoreactive T cells

in AD has been discussed elsewhere (72), the significance and

involvement of B cells in promoting autoallergy in AD patients

remains poorly investigated.

Also, dramatic advances in multi-omics analyses have made it

possible to classify AD subtypes and endotypes (73, 74). This

classification considers age (pediatric and adult), specific IgE to

allergens (extrinsic and intrinsic), and presiding immune response

(acute and chronic) (73). While extrinsic AD exhibits conventional

AD traits with high serum IgE, intrinsic AD shows normal serum

IgE levels, implying different contributions of pathogenic B cells to

the pathology of each AD endotype. Hence, the characterization of

B cells in AD patients is of particular importance for further refining

AD categorization and subsequently developing precision therapy

for individual AD endotypes.

B cells have been implicated in perpetuating chronic

inflammation in AD pathophysiology. Experimental induction of

AD in animal models using CD19-deficient mice demonstrated a

significant reduction in disease severity and attenuated activities of

CD4+ T cells compared to wild-type mice (75). Intriguingly, when

wild-type B cells were adoptively transferred into CD19-deficient

mice, the disease severity was restored to levels observed in wild-type

mice. Therefore, it is likely that subsets of CD19+ B cells play a

pathogenic role in AD pathophysiology, although their precise

involvement has not been fully elucidated.

A recent study demonstrated local and systemic B-cell

abnormalities in patients with AD (49) (Figure 1C). The authors

examined B cell subsets in the peripheral blood and skin of patients

with AD or psoriasis, comparing them to healthy controls. Strikingly,

overall B-cell frequencies were higher in both skin and blood of AD

patients, and these increased B cells also exhibited elevated CD23

expression compared to the other two groups. CD23 expression on B

cells was also correlated with the severity of AD, suggesting a

potential role of CD23 in AD pathology. Previous studies have

proposed CD23 as a predictive marker for B cell fate decision;

CD23+ B cells tend to remain in the GCs whereas CD23- B cells

preferentially differentiate into ASCs (76–78). Moreover, CD23

expression is induced by IL-4 signaling, which closely correlates
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with hyperactivated type 2 immunity characterized in allergic diseases

(79). Therefore, this IL-4/CD23 interplay might be attributed to the

dysregulation and dysfunction of B-cell subpopulations, ultimately

triggering the pathophysiology of AD. The authors also presented

alterations in other B-cell subsets; aforementioned CD27-IgD- DN2

B-cell counts were lower whereas transitional B-cell counts were

higher in the blood of AD patients. However, B-cell profiling in AD

remains less explored compared to the two aforementioned

autoimmune diseases, PV and SLE. Consequently, further

investigations are needed to characterize the distinct subsets of B

cells and their function in the pathogenesis of AD.

In summary, B cells can exert both systemic and localized effects

on inflammatory skin conditions such as PV, SLE, and AD

(Figure 1). In PV and SLE, skin-localized B cells contribute to

disease progression by forming TLOs and engaging in local

autoantibody secretion and antigen presentation to autoreactive T

cells. While TLO formation has not been demonstrated yet in AD

contrary to the two dermatoses, systemic aberrancies in B-cell

populations have been observed across all three diseases.

Therefore, a comprehensive understanding of the role of B cells

in each cutaneous pathology is essential to identify and selectively

target the pathogenic subpopulations. In addition to conventional

phenotyping approaches, spatial transcriptomics and proteomics

analyses would be more insightful to elucidate the properties of

cutaneous B cells that function within the lesion microenvironment.
3.2 Emerging concept of regulatory B cells
in cutaneous immunity

It should not be overlooked that not all B cells promote

cutaneous inflammation. Some B cells have also been featured

with their immunoregulatory functions in skin disease conditions

or skin surveillance, later termed “regulatory B cells (Bregs) (80, 81).

Although definitive markers for Bregs have not been established,

they are mainly characterized by their immunosuppressive role

mediated by IL-10 secretion (82). In humans, IL-10+ B cells are

notably enriched in the transitional B cell subsets characterized by

CD24hiCD38hi, thus suggesting that transitional B cells encompass

a broader concept of regulatory B cells (83, 84).

The significance of Bregs in cutaneous inflammatory disorders

has been proposed by differential responses observed in patients with

different skin diseases receiving B cell depleting therapy such as

rituximab (an anti-CD20monoclonal antibody) (85–87).While B cell

depletion contributes to the amelioration of cutaneous inflammation

in cases of AD (85), and PV (86), it might conversely induce

inflammation in psoriasis (87). It has been postulated that B cell

depletion appears to exhibit beneficial effects in antibody-mediated

pathologies, yet it could worsen certain diseases where the pathogenic

role of B cells remains unclear. In addition, individuals with systemic

autoimmune disorders like SLE and RA were reported to develop

psoriasis-like inflammation following rituximab infusion (88, 89).

Therefore, these contrasting outcomes underscore the presence of

distinct B cells with suppressive roles.

During the last two decades, significant progress has been made

in understanding the role of Bregs within the context of skin
Frontiers in Immunology 06
diseases (90). Remarkably, in peripheral blood of patients with

SLE, the frequencies of IL-10-producing B cells were significantly

higher compared to healthy individuals (84, 91). Not only were

these B cells increased in number, some of them localized to the

inflamed skin (91). However, several investigations have proposed

that Bregs in individuals with SLE display reduced functionality and

suppressive capacity compared to those from healthy controls,

attributed to their low responsiveness to CD40 stimulation and

thus diminished IL-10 production (83).

In contrast to the increased frequencies of IL-10+ B cells in SLE,

PV is associated with reduced frequencies of circulating IL-10+ B

cells (92, 93). Interestingly, during the course of disease remission,

there was a notable increase in both transitional B cells and IL-10-

producing B cells between the patients achieving complete

remission and those with incomplete remission, particularly

noticeable in the 6 to 9 months after rituximab treatment (94).

Like the case in SLE, Bregs in PV also exhibited impaired

functionality with a lower capacity to produce IL-10 (95).

The significance of Bregs in AD has been investigated in both

human and mouse models (96–98). In AD-like mouse model,

CD5+CD19+CD1dhi regulatory B cell subset (B10 cells) from the

AD mice demonstrated impaired functionality in suppressing IgE

secretion when compared to the control group (96). The number of

IL-10-producing B cells in AD patients also decreased, displaying a

negative correlation with disease severity; individuals with severe

AD had lower Breg counts than those with mild symptoms (97). A

recent study has further supported this inverse correlation between

IL-10+ Bregs and disease activity (98). The authors reported that the

children with extrinsic AD had significantly fewer Bregs than age-

matched healthy controls. Importantly, the frequencies of Bregs not

only correlated with disease activity but also with circulating

follicular T helper (Tfh) cells, which could contribute to the

progression of AD. These Bregs also showed impaired suppressive

abilities to inhibit differentiation of Tfh cells. Taken together,

uncontrollable allergic inflammation in AD pathology is

attributed to the impaired function of IL-10-producing Bregs,

resulting in promoting disease severity.

In addition to the three disorders previously mentioned,

Matsushita et al. highlighted the significance of Bregs in systemic

sclerosis (SSc), an autoimmune disease characterized by fibrosis in

the skin and other internal organs (99, 100). A clinical study

revealed that patients with SSc had fewer IL-10+ B cells and

CD24hiCD27+ regulatory B cells in their blood compared to

healthy individuals, with a notable inverse correlation between

the frequency of Bregs and autoantibody levels (99). Additionally,

in a mouse scleroderma model, IL-6+ effector B cells exacerbate the

disease, while IL-10+ regulatory B cells provide protection (100).

Moreover, IL-10+ Bregs found in the skin play a crucial role in

mitigating inflammation and fibrosis in scleroderma, both in skin

and lymphoid tissues. Notably, this study suggests that therapeutic

strategies targeting B cell activating factor (BAFF) to adjust the

balance between effector B cells and regulatory B cells could offer a

new direction for treating SSc.

In summary, the collective evidence underscores the suppressive

role of IL-10-producing regulatory B cells in mitigating cutaneous

inflammation, corroborated by the dysfunctional behavior of Bregs in
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skin disorders. However, comprehensive understanding of the role of

Bregs in skin diseases encounters certain limitations. Most studies on

Bregs associated with skin diseases have been primarily performed in

vitro and different groups adopted different combination of stimuli

including CD40L, LPS, CpG, and PMA with ionomycin to induce IL-

10 secretion by Bregs (90). These discrepancies in approaches may

result in conflicting characterizations of Breg subsets across different

research groups, even when focusing on the same disease (83, 91).

Furthermore, the majority of studies have concentrated on the IL-10-

dependent regulatory function, leaving questions unanswered

regarding the IL-10-independent role of Bregs in skin diseases.

Accordingly, the populations of representative Breg subsets—IL-10-

producing B cells and CD24hiCD38hi transitional B cells—do not

always exhibit a consistent correlation with each other in various skin

disorders (83, 95). Therefore, further systematic investigations are

needed to address these limitations and dissect the significance of

regulatory B cells in skin diseases.
4 Current therapeutics for
inflammatory skin diseases and
potential side effects on B cells

4.1 Current B-cell-directed therapies for
cutaneous inflammatory disorders

Although the definitive role of B cells in inflammatory skin

diseases remains unclear, B-cell-directed therapeutic approaches

have demonstrated efficacy in addressing cutaneous pathologies,

particularly those involving autoreactive B cells like SLE and PV

(101, 102). Current therapeutic strategies aimed at modulating
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B-cell function can be broadly categorized into three groups; (i)

direct depletion of B cells targeting well-defined B cell markers such

as CD19, CD20, and CD22, (ii) inhibition of survival and signaling

factors, and (iii) chimeric antigen receptor (CAR) T cell

therapy (Figure 2A).
4.1.1 Direct depletion of B cells targeting B
cell markers

Monoclonal antibodies (mAbs) directed against B cell markers

like CD19 and CD20 are conventional strategies for targeting B

cells, some of which were approved by the FDA (102). An example

is rituximab, a chimeric anti-CD20 antibody that has found

widespread clinical application across various inflammatory and

autoimmune diseases (85–89, 94). It mediates B cell depletion

through antibody-dependent cellular cytotoxicity (ADCC) as well

as through other B-cell lysis mechanisms including complement-

mediated and Fc receptor mediated responses (101, 103).

Rituximab exhibits remarkable efficacy, leading to a significant

reduction in pathogenic anti-DSG antibody titers in treated PV

patients (104). The pathogenic role of skin-localized B cells in PV

has sparked interest in local therapeutic approaches. For example,

recent studies showed that direct intralesional injection of reduced-

dose rituximab exhibited notable clinical improvement (105, 106).

The application of rituximab extends to systemic autoimmune

diseases like RA and SLE. While it mediates clinical remission in

RA (107, 108), its effects vary for SLE (109, 110). Although

rituximab could effectively remove peripheral B cells, autoreactive

B cells in the tissues appear to be less affected by systemic B cell

depletion (111). Also, rituximab has improved AD symptoms,

negatively correlating with total and lesional skin B cell counts

(85, 112).
A B

FIGURE 2

Current therapeutics for inflammatory skin diseases and their potential side effects on B cells. (A) B-cell-directed therapies include 1) direct B-cell
depletion using monoclonal antibodies that target B cell surface markers, 2) inhibition of survival and signaling factors such as B cell activating factor
(BAFF) and Bruton tyrosine kinase (BTK), and 3) chimeric antigen receptor (CAR) T cell therapy. These strategies are not capable of distinguishing
between pathogenic and non-pathogenic B cells, resulting in an overall B-cell depletion. This widespread B-cell deficiency may compromise
humoral immune responses, leading to increased vulnerability to infections and diminished vaccine efficacy. (B) While IL-4R blockade was not
initially intended to specifically target B cells, it has emerged as a potential regulator of B cell responses. Naïve B cells rely on IL-4 signaling pathways
for their survival and development. Additionally, recent studies have demonstrated the pivotal roles of IL-4 in modulating the germinal center
microenvironment. Consequently, IL-4R blockade could potentially suppress overall humoral immunity.
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4.1.2 Inhibition of survival and signaling factors
Blocking survival signals and growth factors essential for B cells

is another therapeutic intervention for cutaneous inflammatory

diseases (101, 102). The major targets of B cell signaling include

B cell activating factor/a proliferation-inducing ligand (BAFF/

APRIL) and Bruton tyrosine kinase (BTK).

BAFF, a member of the tumor necrosis factor (TNF)

superfamily (also known as TNFSF13B), functions as an essential

survival cytokine for both B cells and ASCs (113). Its homologous

factor, APRIL (also known as TNFSF13) shares similar functions,

and therapies targeting BAFF typically inhibit the activity of APRIL

(102). Among BAFF inhibitors, belimumab, a fully humanized anti-

BAFF mAb stands out and has been approved for SLE treatment

(102, 114). Despite elevated BAFF expression in some SLE cases

(115, 116), BAFF inhibition with belimumab has shown somewhat

variable outcomes among individuals. While it proves efficacious

for recalcitrant cutaneous lupus (117), a recent study proposed that

substantial proportion of SLE patients do not respond to

belimumab (118). Ianalumab (VAY736), a novel BAFF inhibitor

targeting BAFF receptor, has attracted great attention as a

promising therapeutic agent for SLE and Sjögren syndrome (119).

Notably, phase 2 clinical trials are in progress to evaluate its clinical

impacts on patients with PV (120).

BTK, belonging to the Tec family of kinases, is a tyrosine kinase

expressed across B cell development stages from pre-B to mature B

cells, and in myeloid cells as well (121). BTK plays a crucial role in B

cell receptor (BCR) activation and both BCR and Fc receptor

engagement induce its kinase activity (102). Although usage of

BTK inhibitor has predominantly focused on multiple sclerosis

(102), its potential for cutaneous inflammatory diseases has been

also investigated (120). Remarkably, BTK inhibitors like ibrutinib

and rillzabrutinib have shown significant improvement in disease

activity in PV patients (10, 122, 123). Rillzabrutinib (PRN1008) is a

potent BTK inhibitor known for its distinctive reversible covalent

binding, potentially enhancing safety compared to irreversible

counterparts like ibrutinib (10). Rillzabrutinib impedes B cell

activation by inhibiting BCR, however does not induce B-cell

lysis, notably distinct from therapies like rituximab that directly

deplete B cells (123).

In addition to the two primary targets, the blockade of CD40

pathway presents a potential target for autoimmune disease

intervention due to its critical role in B-cell activation (124, 125). B-

cell and T-cell interactions within the GC hinge on the essential

costimulatory CD40/CD40L signaling (126). Disruption of this

pathway impedes B-cell activation. Interestingly, rituximab has been

reported to reduce CD40 expression on B cells (127) and CD40L

expression on CD4+ T cells (128), thereby mitigating the impact of B-

cell-mediated disorders. Consequently, agents that directly target the

CD40/CD40L interaction have been developed for more effective

inhibition of autoimmune response. Although initial therapies faced

significant challenges, with the first anti-CD40L antibody, rupilzumab,

being associated with thromboembolic events (129), recent advances

have shown promise in reducing these adverse effects (130, 131).

Ongoing research is dedicated to creating safer therapeutic variants

for autoimmune conditions (125).
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4.1.3 Chimeric antigen receptor T cell therapy
CAR T cell therapy is an advanced therapeutic strategy that

provides targeted elimination of pathogenic B cells, distinct from

the earlier therapeutic methods (102). CD19-targeting CAR T cells

have been credited to effectively clearing pathogenic B cells in

autoimmune diseases and hematologic malignancies (132, 133).

Initially, CAR T cells primarily focused on CD19, lacking selectivity

for pathogenic B cell depletion. However, innovative chimeric

antigen receptor modifications have enabled precise treatment for

autoimmune conditions, exemplified in a PV mouse model (134).

The authors engineered CAR T cells expressing the autoantigen

Dsg3, forming chimeric autoantibody receptor (CAAR) T cells.

These CAAR T cells effectively eliminated pathogenic B cells

carrying anti-Dsg3 BCRs without off-target toxicity, thus

preserving protective immunity. This approach has extended to

human PV, demonstrating its promising preclinical results (135). T

cells from PV patients were genetically engineered to incorporate

Dsg3 as a decoy receptor on their surface, allowing selective

targeting and elimination of B cells producing anti-Dsg3

antibodies. These engineered CAAR T cells effectively cleared

patient-derived anti-Dsg3 B cells in experimental cell culture,

while sparing non-pathogenic ones.

Promising preclinical results have led to clinical trials for CAR T

cell therapies for various diseases (102, 120). One of the remarkable

examples is CAR T cells targeting membrane IgE for severe allergic

diseases (136). Leveraging their memory properties, these CAR T cells

provide prolonged IgE suppression, surpassing the constraints of

monoclonal antibodies. Taken together, CAR T cell therapies are

broadening its boundaries into autoimmune and allergic disorders,

offering targeted depletion and sustained control of pathogenic B cells.
4.2 Potential side effects of current
therapeutics on B cells

4.2.1 Potential side effects of B-cell-
directed therapies

B cell depletion therapies can have diverse effects on B cells and

the immune system. While the B-cell-directed therapies effectively

target and reduce pathogenic B cells, they can also lead to various

side effects (Figure 2A).

The primary role of humoral immunity is to protect the body

against a wide range of pathogens. The depletion of B cells results in

reduced antibody production and impaired defense against

pathogens, making individuals more susceptible to infections

(137, 138). Compromised humoral immunity may lead to

diminished responsiveness to vaccinations, characterized by lower

antibody production and impaired memory response upon re-

challenge (139–142). Of note, it becomes worth noting that

ensuring an effective humoral immune response following

vaccination is crucial, as highlighted during the COVID-19

pandemic. Individuals with systemic autoimmune conditions such

as multiple sclerosis receiving rituximab treatment exhibited a

heightened risk of severe COVID-19 due to impaired humoral

immunity. Multiple studies have underscored decreased vaccine
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response in patients with B cell depletion therapies following SARS-

CoV-2 vaccination (139, 141, 142).

Notably, the depletion of B cells can disrupt their maturation and

activation process, as evidenced by prolonged rituximab treatment in

MS patients, where reappearing B cells exhibited immature yet highly

activated characteristics (143). This phenomenon could result in

distinct reconstitution patterns of B cell subsets, potentially leading

to dysregulation within the B cell compartments. Moreover, B cell

depletion therapies seem to have limited impact on plasma cells, as

these cells tend to be refractory to such depleting treatments (144). Of

particular, long-lived plasma cells residing in the bone marrow

demonstrate a significant resistance to B-cell targeting strategies,

exhibiting limited susceptibility to depletion (145). The adverse

events observed in RA and SLE patients developing psoriatic

inflammation post-rituximab treatment could result from these

differential reconstitution dynamics within B cell compartments

(88, 89). Therefore, a comprehensive understanding of the short-

term and long-term effects of B cell depletion on the immune system

is needed for optimizing therapeutic strategies and minimizing

potential adverse events.

4.2.2 Potential side effects of IL-4Ra blockade on
B cells

While B-cell-directed therapies inherently impact B cells, it is

intriguing that the interleukin-4 receptor (IL-4R) blockade, initially

not designed to specifically target B cells, has emerged as a potential

regulator of B cell responses and humoral immunity (76, 146–

149) (Figure 2B).

Initially identified as B cell growth factor, IL-4 plays a role in

promoting the survival and development of IL-4R+CD23+ naïve B cells

(150). It stimulates B cells while protecting them from apoptosis, and

enhance their activation, leading to increased expression of activating

markers like CD80, CD83, and MHC II, while downregulating

inhibitory markers such as CD22 and PD-L1 (146, 151, 152).

Furthermore, IL-4 negatively regulates differentiation into ASC,

favoring memory B cell (MBC) differentiation pathway (153, 154).

Accordingly, the downregulation of IL-4R and CD23 in human naïve B

cells primes them for development into activated B cells and plasma

cells (77, 78). Notably, CD23- B cells exhibited an ASC-associated gene

signature with lower responsiveness to IL-4 signaling, whereas CD23+

B cells were associated with an activated gene signature (77).

Recently, the emerging role of IL-4 in modulating the GC

microenvironment has gained attention. New insights highlight that

not only T helper 2 cells but also T follicular helper cells can produce

IL-4, thereby promoting humoral responses and facilitating the GC

reaction (155, 156). Unexpectedly, NKT cells also generate an early

wave of IL-4 shortly after influenza infection, reaching its peak on the

third day post-infection and accounting for a substantial 70% of IL-4-

producing cells in the lymph node (147). Furthermore, in the context of

antiviral response, IL-4 has been shown to enhance the breadth of the

IgG antibody response by expanding rare GC B cells recognizing the

shared epitopes (148). Taken together, IL-4 contributes to a rapid

humoral response and robust GC reaction, deriving from spatially and

temporally distinct sources within the GC.

However, debates have arisen regarding the comprehension of the

role of IL-4 in governing humoral responses within the GC
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microenvironment. Classically, IL-4 has been considered to promote

MBC differentiation pathway. Nonetheless, Duan et al. (76) proposed

an alternative perspective, suggesting that excess IL-4 availability in the

GC might actually suppress MBC differentiation. This assumption

allows activated B cells to remain within the GC, preventing them from

exiting GC and becoming MBC. To bridge the gap between these

conflicting conclusions on whether IL-4 promotes or inhibit MBC

differentiation, a recent study has proposed a plausible explanation

(149). They demonstrated that IL-4 can prompt GC B cell selection and

exit through differential regulation of BCL6 expression, depending on

the preexisting levels of BCL6 in a given cell. IL-4 is capable of inducing

the negative autoregulation of BCL6, thereby promoting the exit of GC

B cells via BCL6 downregulation. Consequently, an excess availability

in IL-4 enhanced the exit of GC B cells. However, in the absence of

concomitant survival signals, this process can lead to in cell death and a

subsequent reduction in the MBC population consistent with the

findings of Duan et al. (76). Collectively, IL-4 exhibits an intricate

management of the GC microenvironment, manifesting its differential

effects and temporal regulation within the GC.

In line with the emerging role of IL-4 in GC regulation, IL-4R

blockade might affect humoral immune responses (Figure 2B).

Dupilumab, an anti-IL-4Ra monoclonal antibody, blocks signaling of

major type 2 cytokines, IL-4 and IL-13, both mediated through IL-4Ra
chain (157, 158). This biologic agent was FDA-approved in 2017 for

use in atopic dermatitis and has shown efficacy in managing AD-

related comorbidities such as asthma and allergic rhinitis.

While a 16 to 52-week phase 3 clinical trial of dupilumab did not

indicate elevated infectious disease occurrence (159–161), the potential

prolonged suppressive influence of IL-4R on maintaining naive B cell

homeostasis and proper vaccination response remains uncertain.

Indeed, the most common adverse effects of dupilumab, as reported

by the U.S. FDA and other institutions, encompass conjunctivitis,

upper respiratory tract infections, and skin infections (162). This

underscores the potential susceptibility and complications resulting

from disruptions in humoral immunity due to impaired IL-4 signaling,

eventually making individuals more susceptible to various

external threats.

Although less is known about the long-term impact of IL-4R

blockade on the immune system, a recent investigation suggested that

IL-4R blockade may suppress the development of both naïve and

memory B cells (163). They examined the B-cell transcriptome and

closely monitored the response to the COVID-19 vaccine in a patient

with AD undergoing dupilumab treatment. Transcriptomic analysis

revealed reduced frequencies of IL4R+IGHD+ naïve B cells and

downregulation of IL4R, FCER2 (CD23), and IGHD in the patient

treated with dupilumab. The dupilumab therapy resulted in an

increased expression of genes linked to apoptosis and suppression of

BCR signaling, coupled with the decreased expression of genes

associated with class-switching and memory B cell development.

Remarkably, after receiving dupilumab, the patient showed a rapid

decline in antibodies targeting the SARS-CoV-2 spike protein and

receptor binding domain within 4 to 11 months following vaccination

(163). Taken together, these findings highlight the critical role of intact

and persistent IL-4 signaling in sustaining robust survival and

development of naïve B cells, as well as in supporting a prolonged

vaccine response.
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5 Concluding remarks

Traditionally, B cells were not regarded as central actors in the

skin immune system. Recent discoveries, however, have prompted a

reevaluation on their significance in cutaneous immunity. In this

review, we explored the comprehensive involvement of B cells across

diverse cutaneous immune contexts, encompassing skin homeostasis,

inflammatory conditions, and therapeutic interventions.

Although the focus has primarily been on their systemic roles,

such as circulating antibody production, their local actions within

the cutaneous microenvironment warrant deeper investigation,

particularly their migration and residency mechanisms. Moreover,

mapping the presence and functions of skin-resident B cells across

various cutaneous immune landscapes remains a priority.

Understanding how B cells interact with other cutaneous immune

components will illuminate their roles in the larger immune

network, potentially revealing novel intervention points for

inflammatory skin diseases. An in-depth characterization of the

different B cell subsets is crucial for discerning their protective or

pathogenic roles within specific diseases. Additionally, the broader

impact of B cell alterations on humoral immunity in each skin

disorder needs further investigation, including the prolonged

implications of cutaneous disease treatment on B cell function

and population dynamics.

In conclusion, B cells emerge as multifaceted contributors to

cutaneous immunity. A comprehensive investigation of their roles is

expected to reveal new dimensions in skin pathophysiology. Through

these endeavors, we anticipate to develop innovative treatment

modalities, addressing the complexity and heterogeneity inherent in

skin diseases.
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