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The graft versus leukemia
effect: donor lymphocyte
infusions and cellular therapy
Katie Maurer and Joseph H. Antin*

Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA, United States
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially

curative therapy for many hematologic malignancies as well as non-malignant

conditions. Part of the curative basis underlying HSCT for hematologic

malignancies relies upon induction of the graft versus leukemia (GVL) effect in

which donor immune cells recognize and eliminate residual malignant cells

within the recipient, thereby maintaining remission. GVL is a clinically evident

phenomenon; however, specific cell types responsible for inducing this effect

and molecular mechanisms involved remain largely undefined. One of the best

examples of GVL is observed after donor lymphocyte infusions (DLI), an

established therapy for relapsed disease or incipient/anticipated relapse. DLI

involves infusion of peripheral blood lymphocytes from the original HSCT donor

into the recipient. Sustained remission can be observed in 20-80% of patients

treated with DLI depending upon the underlying disease and the intrinsic burden

of targeted cells. In this review, we will discuss current knowledge about

mechanisms of GVL after DLI, experimental strategies for augmenting GVL by

manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/

depletion) and research outlook for improving DLI and cellular immunotherapies

for hematologic malignancies through better molecular definition of the

GVL effect.
KEYWORDS

GVL, graft versus leukemia, DLI, donor lymphocyte infusion, cellular therapy
1 Introduction

The graft versus leukemia (GVL) effect of allogeneic hematopoietic stem cell

transplantation (HSCT) is a clinically well-established phenomenon reliant upon the

donor immune system recognizing and eliminating cancerous cells. Effective GVL is a

key component of the curative potential of HSCT for hematologic malignancies, yet the

biological basis for GVL remains poorly understood, thus limiting the ability to leverage

this phenomenon for therapeutic benefit. Anti-cancer immune reactions were clearly

observed in animal models of leukemia as early as the 1960s (1), though early

immunotherapy trials in humans in the 1980s were underwhelming (2). GVL reactions
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in humans first gained support in 1990 when Horowitz et al.

demonstrated that recipients of allogeneic stem cell grafts

depleted of T cells had a higher incidence of relapse (3). This

study also found that recipients of syngeneic grafts (i.e. stem cells

from an identical twin) had a higher relapse rate compared to

recipients of allografts (3). Both lines of evidence support the notion

that the allogeneic donor immune system helps to provide

immunologic control of disease.

In the modern era, GVL activity is clearly observed in two clinical

scenarios of incipient relapse (e.g. recurrence of disease-associated

mutations, decreasing cell counts, loss of donor chimerism) or overt

relapse. These can be addressed by tapering of immune suppression

(IST) and/or donor lymphocyte infusions (DLI). For patients with

relapsing disease, immunosuppressive medications for prevention of

graft versus host disease (GVHD) can be rapidly tapered, thereby

engendering enhanced donor immune activation, primarily T cell

alloreactivity. In approximately 20% of patients, IST alone is sufficient

to reinduce sustained remission (4). DLI on the other hand involves

reinfusion of peripheral blood lymphocytes from the original donor

into the HSCT recipient. DLI was first shown to be successful for

reinducing remission in patients with relapsed hematologic

malignancy in 1990 (5) and since that time has become an

established mode of adoptive cellular immunotherapy.

In this review, we will discuss the establishment of DLI as the

archetype of effective GVL, its role and efficacy in different

hematologic malignancies, clinical applications and combination

therapies for enhancing the GVL effect of DLI, and recent biological

insights into the mechanisms underlying the success of this therapy.
2 Section 1 – historical context of GVL
and role of DLI

One year before E. Donnall Thomas’s seminal work describing

the first successful bone marrow transplantation in humans (6),

Barnes and Loutit observed the first evidence of GVL activity in

rodents (7). Mice treated with radiation doses insufficient to

eradicate leukemia cells had disease recurrence if reconstituted

with bone marrow stem cells from the same strain but

maintained remission if given stem cells from a different strain,

thus implicating the donor immune system in elimination of

residual leukemia and maintenance of remission. As bone

marrow transplantation gained traction for its potential as a

curative therapy, the presence of GVL activity was inferred by the

observation, beginning in the 1970s, that patients who developed

graft versus host disease (GVHD), particularly chronic GVHD,

were relatively protected from disease relapse and had improved

survival compared to patients without chronic GVHD (8, 9).

GVHD is a common and sometimes fatal complication of

HSCT wherein donor immune cell alloreactivity against host

tissues causes inflammation, leading to tissue injury (10). In its

acute form, typically observed in the first 100 days after HSCT, the

most common manifestations include diarrhea, rash, and liver

function abnormalities (11). The chronic form of GVHD, usually

developing or persisting after 100 days post-HSCT, has many

protean manifestations but most commonly affects the skin, eyes,
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mouth, liver, fascia, and lungs (12). The pathogenesis of GVHD is

incompletely understood (12, 13), and, although beyond the scope

of the current review, has been well-reviewed elsewhere (14–21). As

a major cause of treatment related morbidity and mortality,

adequate prevention of GVHD is a key component of HSCT, and

numerous strategies have been developed for GVHD prophylaxis

(22). Since acute GVHD is thought to be driven largely by donor T

cell alloreactivity (23–25), one early and highly effective strategy for

GVHD prevention is T cell depletion (TCD) of allografts (26–31).

While efficacious for preventing GVHD, many studies have found

that TCD is associated with higher relapse rates, consistent with the

role of T cells in driving both GVHD and GVL (3, 32–37). Thus

donor immune cell activity (predominantly T cell alloreactivity)

driving both GVHD and GVL are closely linked phenomena.

Recognition of the relationship of GVHD with GVL prompted

early trials of adoptive cellular therapy for relapse prevention. In

1989, Sullivan et al. hypothesized that post-HSCT infusion of donor

buffy coat (lymphocytes) to induce GVHD would likewise offer

protection from relapse (38). Patients were randomized to receive

standard GVHD prophylaxis alone or in combination with buffy

coat lymphocytes from the stem cell donor, with the hypothesis that

patients receiving the buffy coat lymphocytes may have reduced

relapse risk through induction of GVHD. The incidence and

severity of acute GVHD was much higher in the patients

receiving buffy coat, as was non-relapse mortality (driven largely

by infections complicating GVHD); however, 5-year relapse rates

did not differ between the two cohorts. Curiously, this study did not

find an increased incidence of chronic GVHD among recipients of

buffy coat lymphocytes, perhaps explaining the absence of

protection from relapse since other studies have consistently

found a greater effect of chronic rather than acute GVHD

associated with reduced relapse risk (39–42).

The first successful demonstration of DLI for treatment of

relapsed disease was reported in 1990 by Kolb et al. (5) In this

study, three patients with relapsed chronic myelogenous leukemia

(CML) after HSCT were treated with DLI, resulting in complete

hematologic and molecular remissions for all patients. Two of the

patients developed GVHD. This report marked a turning point in

the ability to leverage adoptive cellular immunotherapy for

treatment of post-HSCT relapsed hematologic malignancies. A

subsequent case report of one patient treated with DLI for post-

HSCT relapsed CML demonstrated achievement of molecular

remission (e.g. elimination of detectable Philadelphia

chromosome BCR-ABL by polymerase chain reaction [PCR]) and

return of full donor chimerism in the bone marrow; however, this

was only achieved after onset of GVHD, underscoring the

relationship between these phenomena and successful DLI (43).
3 Section 2 – clinical applications
of DLI

3.1 DLI in CML and other diseases

Prior to 2000 and the subsequent approval of imatinib for

treatment of CML, this disease was a common indication for HSCT;
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thus, many of the early studies of successful DLI were established in

CML (5, 44). After 2000, CML became a less common indication for

HSCT while the frequency of HSCT for AML increased (45).

Several studies have established that post-HSCT relapsed CML is

highly sensitive to the GVL effects of DLI, with complete response

rates between 60-80% (46–49). DLI has less efficacy in other

hematologic diseases, with response rates of approximately 20-

30% for other diseases including acute myeloid leukemia (AML),

acute lymphocytic leukemia (ALL), multiple myeloma (MM), and

non-Hodgkin lymphomas (NHL) (46, 50, 51). Furthermore, CML

patients who achieve complete molecular remission after DLI have

highly durable responses, sometimes lasting several years and thus

resulting in effective cures (52, 53).

Why CML harbors such exquisite sensitivity to the GVL effect of

DLI is unclear. Yet this sensitivity to anti-leukemic alloreactivity

receives support from several other lines of evidence. First, CML

patients are most sensitive to the increased risk of relapse associated

with T cell depleted HSCT; whereas T cell depleted HSCT for other

diseases does not appear to impact relapse rate to the same degree (3,

34–36, 54, 55). Second, the relationship of development of chronic

GVHD with reduced relapse risk appears to be stronger for CML

compared to other diseases including AML (56, 57). Curiously, DLI

appears to be even more effective for post-HSCT relapsed CML than

imatinib (58), The relative homogeneity of stable phase CML

compared to other hematologic malignancies could underlie

differences in biologic responsivity to GVL effects of donor T cells.

Interestingly, more blast phase CML, a more advanced phase

biologically more similar to acute leukemia, is relatively insensitive

to the GVL effect of DLI, further underscoring the so far undefined

contribution of disease biology to success or failure of GVL (46, 59,

60). Yet the basis for these observations require further study which

may illuminate opportunities to optimize DLI for other diseases

through better understanding of the molecular mechanisms

responsible for response to DLI in CML.
3.2 Dosing and interval of DLI

The initial paper reporting success of DLI administered total

nucleated cells at a dose of approximately 4x108 cells per kilogram

(kg) of body weight, and while this strategy was successful in

achieving remission, some patients developed GVHD (5).

Subsequent studies sought to determine the optimal dosing for

preservation of GVL while minimizing GVHD. One such study

published in 1995 evaluated 22 patients with relapsed CML after

HSCT who received DLI at 8 dose levels between 1 x 105 and 5 x 108

CD3+ T cells/kg in 4 to 33 week intervals (61). Eight patients

achieved remission at doses as low as 1 x 107 CD3+ cells/kg, while

11 additional patients required escalating doses between 5 x 107

CD3+ cells/kg to 5 x 108 CD3+ cells/kg. This group concluded that

doses of 1 x 107 cells/kg were a reasonable starting point, with the

option of escalating doses with subsequent infusions to achieve

remission. A later case report demonstrated achievement of

remission in a patient with extensive GVHD with DLI doses of 1

x 106 and 5 x 106 CD3+ cells/kg (62). A larger study of 40 patients
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with relapsed CML treated with one of three different doses of CD4

+ (i.e. CD8+ depleted) DLI: 0.3, 1.0, or 1.5 x 108 cells/kg (63).

Patients who failed to achieve remission at the first dose level could

receive escalating doses in an attempt to achieve response. All four

patients at the highest dose level achieved response, compared to 10

of 14 patients at the lowest dose level; however, the higher dose level

had double the incidence of GVHD compared to the lower dose.

Subsequent studies have confirmed these findings and suggested

that DLI doses of 1 x 107 cells/kg are sufficient to induce response

with an acceptable rate of GVHD, while higher doses do not

meaningfully increase response rates but do drastically increase

the risk of toxicity (64).In the current era, DLI is most commonly

given at a starting dose of 1 x 107 cells/kg with an interval of

approximately four weeks between infusions to allow for

development of GVHD, per EMBT guidelines (65). Up to three

or four total infusions may be administered. For prophylactic or

pre-emptive indications, lower starting doses, such as 1 x 105 or 1 x

106 cells/kg may be considered.
3.3 Timing of DLI: prophylactic vs.
preemptive vs. therapeutic

While DLI was initially developed as a therapy for relapsed disease

(46), multiple studies have demonstrated across different diseases that

DLI is most successful in reinstating remission in patients with lower

disease burden (51, 66, 67). To improve likelihood of response,

differences in timing of DLI have been explored.

3.3.1 - Prophylactic DLI
Since relapse remains the leading cause of mortality (68),

strategies for reducing relapse are paramount for improving overall

outcomes for patients undergoing HSCT. Thus, administering DLI

prophylactically, particularly for patients at higher than average risk

of relapse and thereby capitalizing upon the additional GVL effects of

adoptive cellular therapy presents an attractive option. Patients for

whom prophylactic DLI is administered are typically without any

signs of impending or molecular relapse (e.g. full donor chimerism,

no decreasing blood cell counts or return of disease-defining

mutations) and are typically treated within the first six months

following HSCT. A registry study comparing matched pairs of

patients who either did or did not receive prophylactic DLI

showed that there was no difference in relapse rate across the entire

cohort, patients with high-risk AML (i.e. unfavorable cytogenetic risk

category or transplant in second complete remission or beyond) had

improved overall survival if they received prophylactic DLI (Table 1)

(69). Another retrospective analysis demonstrated a similar

improvement in relapse rate for recipients of prophylactic DLI

(22%) compared to the control group (53%) (70). Unsurprisingly,

the major potential adverse event after DLI is development of GVHD

(71, 74), which has been reported as being higher in prophylactic DLI

compared to preemptive or therapeutic DLI (71). Several studies have

also leveraged G-CSF priming of prophylactic DLI products, which

may enhance GVL activity while mitigating GVHD through

induction of immunomodulatory effects by G-CSF (72, 73, 75).
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3.3.2 - Pre-emptive DLI
Hematologic or morphologic relapse of leukemia, defined as

reappearance of greater than or equal to 5% bone marrow or

peripheral blood blasts, can often be preceded by molecular relapse

(i.e. recurrence of cytogenetic or molecular abnormalities associated

with underlying disease) or other indications of impending relapse,

including decreasing donor chimerism (76). Furthermore, presence of

both mixed chimerism and measurable residual disease (MRD) after

HSCT are both well-established predictors of later relapse, particularly

for recipients of reduced intensity conditioning (RIC) HSCT (77–81).

Therefore, administration of DLI at the first sign of impending or

molecular relapse, termed preemptive DLI, has been evaluated as a

therapy for leveraging GVL and re-establishing remission. Overall,

preemptive DLI has a higher success rate compared to DLI for overt

disease relapse, particularly for AML, with some studies reporting as

high as 70% and five-year overall survival approaching 70% for AML

(Table 2) (82–85). Advances in quantification of MRD before and after

HSCT provide an opportunity to leverage GVL effects of preemptive

DLI in this subset of patients at higher risk of relapse (91, 92). One early

example of this was a study that utilized measurement of the Wilms

tumor 1 gene (WT1), a commonly expressed AML-associated antigen,

as a readout of MRD positivity post-HSCT (86). Patients who were

MRD-positive forWT1 received either preemptive DLI or low dose IL-

2, with those receiving preemptive DLI having improved overall

survival and lower incidence of relapse compared to the IL-2 group

(86). Amore recent study found a similar benefit of preemptive DLI on

longer term clinical outcomes but also noted positive outcomes among

patients receiving low dose IL-2 rather than DLI, suggesting this as a

viable alternative for patients in whom DLI may be contraindicated

(e.g. presence of GVHD) or infeasible (e.g. donor availability) (93).
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Aside from MRD positivity, the main indication for preemptive DLI is

low or decreasing donor chimerism post-HSCT, which is a well-

established predictive marker of later relapse, particularly for

recipients of RIC regimens (77). Multiple studies have established

that preemptive DLI is an effective strategy for improving donor

chimerism post-HSCT, and that attaining full donor chimerism is

linked to improved longer term overall survival and reduced relapse

(87–90, 94).

3.3.3 - Therapeutic DLI
Therapeutic DLI, given for morphologic/hematologic relapse, is

the most studied and commonly employed strategy. However, in

sharp contrast to preemptive DLI, the success rates of therapeutic

DLI for most diseases is quite poor, with the exception of CML (46).

A nationwide Japanese study found that while patients given

preemptive DLI for cytogenetic/molecular relapse (mostly AML)

had a response rate of 57%, patients treated with therapeutic DLI

after hematologic/morphologic relapse only had a 20% response

rate, likely related to higher tumor burden and/or higher risk

cytogenetic/mutational profiles, which is in line with response

rates reported by other groups for DLI given in the setting of

hematologic relapse (Table 3) (95, 98). Further, development of

GVHD after DLI is linked to response, but in at least one study did

not impact overall survival (63, 99). Some small studies, particularly

in the CML setting have shown efficacy of a lower CD3+ starting

dose for initial DLI infusion, which in some patients is sufficient to

induce remission, later followed by escalating DLI doses, in an

attempt to mitigate development of GVHD (96, 97, 100–102). The

majority of this review will focus on applications of therapeutic DLI

for relapsed disease.
TABLE 1 Prophylactic DLI.

Leukemia
Type(s)

Sample
Size

Intervention Comparison
Groups

Response Rate GVHD Rate Reference

•AML
•ALL

89
matched
pairs

Prophylactic DLI
from MRD
or MUD

DLI vs no DLI •No difference in OS overall
•Improved OS for DLI recipients
with high-risk AML

Incidence of:
•aGVHD: 16%
•cGVHD: 28%

•Schmid
et al. (69)

•AML 46 cases,
34 controls

Adjuvant DLI in
escalating doses

DLI vs no DLI 7-year OS:
•67% for DLI
•31 for no DLI

Incidence of: GVHD
•aGVHD: 12%
•cGVHD: 24%

•Jedlickova
et al. (70)

•MDS/AML
•ALL
•HL
•NHL
•CLL
•CML
•MM

172 DLI from
haploidentical

donor

Prophylactic
vs pre-emptive vs
therapeutic DLI

OS after 1st DLI:
•61% for prophylactic
•20% for pre-emptive
•21% for therapeutic

High incidence of cGVHD in
prophylactic (53%)

•Santoro
et al. (71)

•AML
•ALL

123 G-CSF
primed DLI

DLI vs no DLI in
high-risk

acute leukemia

3-year OS:
•36% for DLI
•11% for no DLI

Incidence of:
•aGVHD: 14%
•cGVHD: 12%

•Wang
et al. (72)

•MDS/AML
•ALL
•MM
•MPN
•NHL

44 G-CSF
primed DLI

Steady state vs G-
CSF primed DLI

Higher conversion to full
chimerism and lower relapse for
G-CSF primed DLI

Higher rates of cGVHD with G-
CSF primed DLI

•Schneidawind
et al. (73)
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm, MM, multiple myeloma; HL, Hodgkin lymphoma;
NHL, non-Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; cGVHD, chronic graft versus host disease; G-CSF, granulocyte colony stimulating factor;
MRD, matched related donor; MUD, matched unrelated donor; OS, overall survival.
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3.3.4 - DLI versus second HSCT
For patients with overt relapse of disease after first HSCT, there is

no established therapy with superior response rates, though options

include additional therapy (chemotherapy, hypomethylating agents),

DLI, second HSCT, or therapy followed by DLI or second HSCT.

There is clinical equipoise surrounding the question of whether DLI

or second HSCT is the superior strategy. A large EBMT registry study

of 418 adults with relapsed AML assessed outcomes after DLI

compared to second HSCT. No difference in overall survival was

observed between the two treatment groups; rather, outcomes were

better, irrespective of cellular therapy approach, for patients who

relapsed >6 months after first HSCT compared to those who relapsed

early (<6 months) after HSCT (103). Another smaller retrospective

study analyzed outcomes for 89 patients with relapse or graft failure

who received either DLI or second HSCT and found a trend toward

improved overall survival for recipients of second HSCT. Only

selected patients may be candidates for either strategy. In general,

patients must have no or minimal GVHD present for consideration

of DLI or second HSCT. Additionally, older and less fit patients may

be recommended for DLI rather thanHSCT if they are not deemed to

be sufficiently fit to tolerate conditioning therapy ahead of a second

HSCT. Thus, rigorous comparison of these two interventions is

difficult, and the decision of which strategy to employ remains a
Frontiers in Immunology 05
highly individualized process, dependent upon the specific patient,

disease, and toxicity characteristics in each case (104).
3.4 Manipulations to DLI

3.4.1 - CD8 depletion
Various strategies have been employed to optimize GVL response

of DLI and/or minimize toxicities of associated GVHD through

manipulation of the DLI product (Table 4). One early strategy

hypothesized that, since some evidence implicated CD8+ T cells in

the pathogenesis of GVHD (131), perhaps infusion of CD4+ T cells

alone would result in effective GVL without GVHD (63). Patients

with relapsed CML, MM, or other diseases were treated with defined

doses of CD8-depleted CD4+ T cells with clinical responses in ~80%

of patients and GVHD developing in about one-third of patients

[compared to a ~75% GVHD incidence with conventional DLI (46)].

With this encouraging result, several additional studies evaluated

CD8-depletion as a strategy for preserving GVL while reducing

GVHD for not only DLI for disease relapse (30, 46, 105), but also

as a prophylactic strategy for patients receiving RIC HSCT (132) or

those with mixed chimerism (MC) or persistent disease immediately

following HSCT (106). However, this latter study did still find a high
TABLE 2 Preemptive DLI.

Leukemia
Type(s)

Sample
Size

Intervention Comparison
Groups

Response Rate GVHD Rate Reference

•MDS/AML 113 DLI after T-cell
depleted HSCT

Pre-emptive vs
therapeutic DLI

Pre-emptive DLI:
•5-year OS 80%
•5-year EFS 65%
Therapeutic DLI:
•5-year OS 40%
•5-year relapse rate 69%

Pre-emptive DLI:
•5-year cGVHD 31%
Therapeutic DLI:
•5-year cGVHD 45%

•Krishnamurthy
et al. (82)

•AML
•ALL

318 DLI for mixed
chimerism
or MRD

Descriptive 5-year outcomes:
•CRI: 29%
•NRM: 13%
•LFS: 58%
•OS: 64%

5-year outcomes:
•cGVHD: 31%

•Schmid
et al. (83)

•AML
•ALL
•CML

70 DLI for MRD in
anticipation
of relapse

Pre-emptive vs
therapeutic DLI vs

no DLI

1-year OS:
•Pre-emptive: 94%
•Therapeutic: 27%
•No DLI: 65%

Incidence of aGVHD:
•Pre-emptive: 63%
•Therapeutic: 27%

•Tan et al. (84)

•MM 23 DLI for MM Pre-emptive vs
therapeutic DLI

Higher response rate for pre-
emptive DLI

Incidence of Grade II-IV
aGVHD: 22%

•Beitinjaneh
et al. (85)

•MDS/AML
•ALL

814 Risk-stratification
DLI based
on MRD

•709 MRD- (no
tx)
•49 IL-2 for MRD
+
•56 IL-2 + DLI for
MRD+

3-year CRI:
•MRD-: 18%
•MRD+, IL-2: 64%
•MRD+, IL-2+DLI: 28%

Incidence of aGVHD:
•MRD+, IL-2: 10%
•MRD+, IL-2+DLI: 31%
Incidence of cGVHD:
•MRD+, IL-2: 37%
•MRD+, IL-2+DLI: 43%

•Yan et al. (86)

•MDS/AML
•MPN
•CML
•CLL
•NHL
•HL
•MM
•T-PLL

32-119 DLI for
mixed chimerism

Descriptive Pre-emptive DLI results in full
donor chimerism and improved
survival compared to
historical controls

Incidence of GVHD:
•Ref 87: 42% acute, 59% chronic
•Ref 88: 67%
•Ref 89: 73%
•Ref 90: 35% overall, 17% acute,
22% chronic

•Solomon et al.
(87)
•Stadler et al.
(88)
•Caldemeyer
et al. (89)
•Feliu et al. (90)
MRD, measurable residual disease; OS, overall survival; EFS, event-free survival; CRI, cumulative incidence of relapse, NRM, nonrelapse mortality; LFS, leukemia free survival.
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incidence of grade II-IV acute GVHD (5 of 22 patients, 23%),

suggesting that CD8 T cells are not the sole drivers of GVHD.

Indeed, subsequent work has drawn a clear link between CD4+ T cell

activity and GVHD development. These studies all demonstrated

encouraging data for GVHD incidence with preserved GVL activity,

including sustained remission for the majority of patients (133).

Studies in mice have demonstrated that naive CD4+ T cells alone are

capable of inducing GVHD, while mice receiving memory CD4+ T

cells are protected from GVHD (134–137). Several murine studies

have established the ability of CD4+ T cells to promote GVHD, for

example through major histocompatibiltiy complex (MHC) II

presentation of intestinal microbiome antigens or other non-

hematopoietic recipient antigens to promote GVHD (138–142).

3.4.2 - Naive T cell depletion
Several groups have posited that GVHD pathogenesis is driven

largely by alloreactive naive T cells and hypothesized that selective

depletion of CD45RA+ naive T cells may reduce GVHD while

retaining GVL, a strategy that has been applied to HSCT with

encouraging results (107, 143–145). To this end, several groups

have piloted methods for efficiently depleting CD45RA+ cells from

HSCT followed by prophylactic DLI with T cells depleted of the

naive compartment for reduction in GVHD with the aim to

preserve GVL (108–111). These relatively small studies have

indicated safety and efficacy of this approach. One study of 15

patients has applied this approach for therapeutic DLI for treatment

of relapsed disease with donor-derived CD8+ memory T cells,

showing safety and low incidence of GVHD (112).

3.4.3 - Treg depletion
There is considerable evidence in both mice and humans that

prevalence of CD4+CD25+ regulatory T cells (Tregs) is associated with

protection from GVHD, and these cells may play an important role in

mitigating GVHD pathogenesis through control of effector T cell

alloreactivity (146–151). It has been hypothesized that Tregs may

also dampen GVL through a similar mechanism (152). This idea
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received some support from the finding that patients who achieved

durable remission after DLI for treatment of relapsed disease had lower

proportion of Tregs in the DLI product compared to patients who did

not respond (153). Two independent groups subsequently sought to

explore this concept further in clinical trials testing the safety and

efficacy of DLI depleted of Tregs (113, 114) Maury et al. studied 17

patients with relapsed disease who had failed to respond conventional

DLI. Two patients experienced disease response to a single infusion of

Treg-depleted DLI, while an additional four patients responded after a

second infusion of DLI. All responders experienced GVHD (114).

Longer term follow up demonstrated that three of the six responders

remained in remission at 5 years following Treg-depleted DLI, while

three patients who initially had a response ultimately relapsed with the

original malignancy and succumbed to disease within three years of

treatment (154). The Dana-Farber group conducted a phase I trial of 21

patients treated with CD25+ Treg-depleted DLI at two different dose

levels, of whom four were in complete remission at the time of DLI

after treatment with cytoreductive therapy for relapse (113). At the

lower dose (1x107 CD3+ cells/kg), one of six patients responded, while

at the higher dose (3x107 CD3+ cells/kg), 60% experienced complete or

partial response, with a one year overall survival rate in that cohort of

53%. Seven patients developed GVHD, one of whom died as a result of

this complication. Comparison to a contemporaneous cohort of

conventional DLI therapy suggested improved response rates with

Treg depletion (113).
3.4.4 - Alloanergization
Alloanergization is an approach to prevent GVHD by tolerizing

alloreactive donor T cells to the recipient through chronic antigen

stimulation with concurrent co-stimulatory blockade, thus leading

to T cell anergy and hyporesponsiveness to alloantigens (155).

Initially developed as a strategy to expand the pool of potential

donors beyond full HLA-match, alloanergization has been shown to

be an effective method of administering CD34+-selected

haploidentical HSCT, followed by DLI, with in vitro studies

suggesting intact GVL (115, 156, 157).
TABLE 3 Therapeutic DLI.

Leukemia
Type(s)

Sample
Size

Intervention Comparison
Groups

Response Rate GVHD Rate Reference

•MDS/AML
•ALL
•CML
•MM
•NHL

140 Therapeutic DLI Descriptive •Best outcomes for patients with
CML (60% CR, 2-year EFS 90%)
•CR rate for AML 15%

Incidence of:
•aGVHD: 60%
•cGVHD: 61%

•Collins
et al. (46)

•MDS/AML
•ALL
•CML
•NHL
•ATLL

414 Therapeutic DLI DLI for cytogenetic
or molecular vs

hematologic relapse

100-day response rate:
•57% for molecular relapse
20% for hematologic relapse

Incidence of GVHD:
•Grade I: 7%
•Grade II: 10%
•Grade III: 6%
•Grade IV: 6%

•Miyamoto
et al. (95)

•CML 48 Escalating
dose DLI

Bulk dose vs
escalating dose

Similar remission rates
across groups

Lower GVHD with
escalating dose

•Dazzi
et al. (96)

•MM
•HL
•NHL

49 Therapeutic DLI Descriptive Response rate of 63% for MM
and 70% for HL, not predicted
by change in chimerism

24% incidence of Grade II-IV
GVHD (more common after
unrelated donor DLI)

•Peggs
et al. (97)
CR, complete response; ATLL, adult T leukemia/lymphoma.
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3.4.5 - Activation of donor cells
Early experiments in mouse models of leukemia and HSCT

suggested that activation of alloreactive donor T cells could prevent

or treat relapse through enhanced GVL (158). These observations

prompted the hypothesis that promoting T cell activation with

cytokines such as IL-2 ex vivo or in vivo prior to DLI could improve

outcomes (159, 160). A case report of a patient with relapsed CML

after HSCT lended support for this approach, when the patient
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achieved remission after three sequential DLI treatments, along

with subcutaneous injections of recombinant IL-2 (161). A

subsequent larger phase I study in patients with relapsed acute or

chronic leukemia (ALL, MDS/AML, or CML) further supported

this notion, wherein more than half of the patients demonstrated

response to combination therapy (116). Interestingly, in this study,

six of the 10 responding patients developed GVHD, while in four

patients GVL was independent of GVHD. Only one of the seven
TABLE 4 Strategies for GvL manipulation or augmentation.

T4Effector
Cell
Type/

Manipulation

Disease/stage Treatment Setting Response Rate GvHD Rate Reference(s)

Unmanipulated
DLI

•MDS/AML
•ALL
•CML
•MM
•NHL

•Therapeutic DLI •Best outcomes for
patients with CML (60%
CR, 2-year EFS 90%)
CR rate for AML 15%

Incidence of:
•aGVHD: 60%
cGVHD: 61%

•Collins et al. (46)

CD8 Depletion •CML in remission (30)
•Relapsed CML, MM,
CLL, NHL or MDS (63,
105)
•Persistent disease or
mixed chimerism (FL,
CLL, HL, MCL, MM,
MF, AML (106)

•Prophylactic (30)
•Therapeutic (63, 105)
•Pre-emptive (106)

50-89% 0-30% •Soiffer et al. (30)
•Alyea et al. (63, 105)
•Orti et al. (106)

Naïve T
cell Depletion

•AML, ALL, other
malignancy, BM failure
or immunodeficiency
(107)
•AML, NHL, MM, HL,
CLL, MDS/MPN
(108–110)

•Prophylactic DLI (108–111)
•Therapeutic DLI (112)

50-80% 2-19% •Maschan et al. (108)
•Maung et al. (109)
•Dunaikina et al. (110)
•Castagna et al. (111)
•Muffly et al. (112)

Treg Depletion •AML, ALL, NHL, HL
(113)
•AML, NHL, MM, HL,
NHL, CLL, MDS (114)

•Therapeutic DLI 40-50% 33-40% •Nikiforow et al. (113)
•Maury et al. (114)

Alloanergization •MDS/AML •Prophylactic DLI – 29% •Davies et al. (115)

Donor Cell
Preactivation –

IL-2

•AML, ALL, CML •Therapeutic DLI 59% 30% •Slavin et al. (116)

Donor Cell
Preactivation –

Cytokine-Induced
Killer Cells

•MDS/AML, ALL, CLL,
MM, HL, NHL (117,
118)
•Myeloid neoplasm (119)

•Therapeutic (120, 121)
•Pre-emptive (121, 122)

30-53% 17-25% •Laport et al. (117)
•Narayan et al. (119)
•Merker et al. (118)

Leukemia
Antigen
Vaccination

•HL, CLL, MF, NHL,
AML, MDS, MM (123)
•AML (124)

•Therapeutic DLI 29-71% 12% •Ho et al. (123)
•Rosenblatt et al. (124)

DLI+Azacitidine •MDS/AML •Therapeutic (125–128)
•Prophylactic (128)
•Pre-emptive (129, 130)

33-70% 0-45% •Tessoulin et al. (125)
•Schroeder et al. (126)
•Ghobadi et al. (127)
•Guillaume et al. (129)
•Rautenberg et al. (130)
•Liberatore et al. (128)

Cytokine-Induced
Memory-Like
NK cells

•Myeloid neoplasm •Therapeutic DLI 56% 0% •Romee et al.
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MM, multiple myeloma; HL, Hodgkin lymphoma;
NHL, non-Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; FL, follicular lymphoma; MF, myelofibrosis; MPAL, mixed phenotype acute leukemia;
BPDCN, blastic plasmacytoid dendritic cell neoplasm cGVHD, chronic graft versus host disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1328858
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Maurer and Antin 10.3389/fimmu.2024.1328858
nonresponder patients developed GVHD, underscoring the close

relationship between these immunologic phenomena. Another

strategy for is using ex vivo cytokine treatment to activate donor

T cells, thereby priming their killing efficacy (cytokine-induced

killer [CIK] cells) (117). Two groups have recently tested the

efficacy of CIK cells to carry out GVL activity. The first group

administered a single infusion of CIK to patients who did not

achieve full donor chimerism after HSCT, since these patients are at

higher risk of relapse (119). CIK infusion did not appear to

substantially impact donor chimerism at day +90 after HSCT

(~55-70 days after CIK), and outcomes including survival and

relapse rates were similar to historical cohorts. The second group

tested conventional DLI compared to CIK infusion in patients with

molecular or hematologic relapse after HSCT (118). In this study,

all patients with hematologic relapse progressed after DLI or CIK;

however, among patients with molecular relapse only, complete

remissions were induced in 53% of patients treated with CIK versus

29% with conventional DLI. This promising result suggests that

CIK improves the GVL activity of donor cells over conventional

DLI and may be an effective therapy for molecular relapse

of disease.

3.4.6 – Leukemia antigen vaccination
Other studies have questioned whether the GVL effect of DLI can

be promoted by activation of alloreactive T cells in an antigen specific

way through individualized vaccination strategies. While vaccination

has been employed for solid tumors including melanoma and renal

cell carcinoma with some degree of success (162–164), hematologic

malignancies generally are characterized by lower tumor neoantigen

burden, thus decreasing the likelihood of antigen-specific T cell

responses (165). Nevertheless, other potential antigens including

leukemia-associated antigens or minor histocompatibility antigens

(mhAgs) in the post-HSCT setting may be targets (166, 167). To this

end, a phase I clinical trial tested whether infusion of donor-derived

dendritic cells (DCs) cultured in the presence of GM-CSF and IL-4

could enhance the GVL effect of DLI (123). The study found that this

was a safe and feasible approach for modifying DLI, and that four of

the patients achieved a durable remission lasting greater than 5 years.

A similar vaccination strategy was tested at the time of HSCT (rather

than for post-HSCT relapsed disease) wherein personalized vaccines

were created for patients with AML undergoing HSCT (124). In this

study, donor-derived DCs generated from PBMCs were cultured with

GM-CSF and IL-4 along with AML cells derived from the patient’s

original diagnosis. Patients were vaccinated serially after HSCT,

which was generally well tolerated and resulted in 70% overall

survival at nearly 5 years post-HSCT. Correlative analysis

demonstrated rise and persistence of circulating T cells reactive to

whole AML cells and leukemia-associated antigens. Despite these

encouraging results, a subsequent phase II randomized study of

inoculation with similarly generated leukemia-reactive DC vaccines

compared to placebo showed no difference in overall survival,

progression-free survival, or relapse (168). Altogether, antigen-

specific activation of alloreactive donor T cells is an attractive

possibility for enhancing GVL, though the optimal strategy requires

further study.
Frontiers in Immunology 08
3.4.7 Interferon to stimulate GVL
Treatment with interferon alpha (IFNɑ) has been investigated,

either alone or in combination with DLI, as a potential method for

promoting GVL activity. The basis for this hypothesis lies in the

potential ability of IFNɑ to stimulate expression of cell surface

molecules on leukemia cells, thereby sensitizing leukemia cells to

alloimmune activity, while IFNɣ contributes to regulation of T cell

differentiation and function (120, 122). IFNɑ may also aid in

preventing GVHD by inhibiting CD4 proliferation (121). One early

study treated 18 patients with IFNɑ prior to DLI and found that four

of 14 assessable patients successfully engrafted with donor cells (169).

A subsequent small comparative study assessed response to DLI

alone in 3 patients versus DLI with IFNɑ in 10 patients, where 9 of 10
patients treated with DLI and IFNɑ achieved complete molecular

remission whereas all of the patients treated with DLI alone

experienced disease progression (170). DLI with interferon appears

to be effective in CML (66), though small studies in MDS/AML have

shown promise, though this strategy has not been evaluated in larger

randomized clinical trials (171, 172). Interferon gamma (IFNɣ) has
also been studied as a strategy to promote GVL, since T cell secretion

of IFNɣ can have anti-tumor effects (173). Murine studies of IFNɣ
wild-type or knockout mice have shown that IFNɣ deletion leads to

augmentation of GVHD in an allogeneic transplant model, with GVL

effects inversely correlated with GVHD (174). A subsequent study

demonstrated the ability of IFNɣ to promote GVL in the context of

interferon gamma receptor knockout leukemia cells, indicating that

the anti-leukemic properties of IFNɣ did not require direct

interaction with the leukemia cells themselves. Though a direct

anti-leukemic function of IFN may not be required for effective

GVL, IFNɣ has been shown to upregulate expression of MHC class II

genes in AML and blast crisis CML cells, whereas chronic phase CML

cells were sensitive to GVL effects independent of IFNɣ (175). A

recent phase I clinical trial in humans have leveraged this effect by

combining IFNɣ treatment with DLI, with promising safety data as

well as evidence of increased MHC class II expression and

improvement in T cell chimerism in four patients with relapsed

MDS/AML (176, 177). Subsequent larger studies are needed to

determine the clinical efficacy of this approach.
3.5 Clinical trials of DLI and
combination therapy

Since patients have the greatest likelihood of responding to DLI

when disease burden is lowest (51), several studies have attempted

combination or sequential cytoreductive or targeted therapies with DLI

to improve response rates. One prospective study evaluated 65 patients

with relapsed myeloid malignancy who were treated with cytarabine-

based chemotherapy followed by DLI (178). Approximately half of the

57 evaluable patients experienced response to therapy; however,

treatment related mortality was high (23%), and 2-year overall

survival was 19%. Among patients who experienced complete

response after combination therapy, 2 year overall survival was 41%,

indicating that achieving a response with chemoimmunotherapy is

capable of leading to durable remissions.
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More recently, several groups have evaluated the efficacy of

hypomethylating agents, often azacitidine (Aza), in combination

with DLI for treatment of relapse after HSCT (Table 5). A 2014

study examined outcomes of 31 patients with relapsed myeloid

malignancy after HSCT treated with Aza salvage therapy, of whom

11 received at least one DLI in addition (125). Response rate was 35%

(14% complete response, 21% stable disease), but addition of DLI did

not appear to influence likelihood of response. This study supported

the idea of Aza as effective salvage therapy for relapsed myeloid

malignancy, leading for subsequent larger studies, though the additive

benefit of DLI remained unclear. A 2015 retrospective study from the

German Cooperative Transplant Study Group evaluated outcomes of

154 patients with post-HSCT relapsed myeloid disease (AML,

myelodysplastic syndrome [MDS], or myeloproliferative neoplasm

[MPN]) of whom 105 received Aza followed by DLI while 49 received

Aza alone. Thirty-three percent of patients had a response (27% with

complete response, 6% with partial response), and patients with

molecular-only relapse or MDS were more likely to be responders

(126). Based on data from mouse studies demonstrating that

azacitidine administration preserved GVL activity while preventing

GVHD through immunomodulation of T cells (179, 180), a small

phase I dose escalation study tested the safety and efficacy of DLI

followed by Aza in the first 10 days, based on studies in mice that this

strategy increased Treg numbers to provide protection from GVHD

without loss of GVL (127). Six of the eight patients responded to

treatment with no development of grade III-IV acute GVHD. Amore

recent study retrospectively analyzed 77 patients with high risk for

relapse (54 with AML, 23 with MDS; high risk defined by genetic

mutations or disease status at HSCT [>2nd complete remission or
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refractory disease]) who were treated with prophylactic low-dose Aza

(up to 12 cycles if tolerated) followed by up to 3 doses of DLI after

HSCT (129). Seventy-nine percent of patients ultimately received

combination therapy, and overall survival at 2 years was 70%.

Historial outcomes for patients with similarly high-risk disease

demonstrate a ~20-53% 2-year overall survival rate (181–183).

Another 2021 study measured expression of the MDS/AML-

associated antigen WT1 as an indicator of MRD and therefore

molecular relapse in 35 patients and then treated these patients

with Aza and DLI (130). More than half of patients responded

(37%MRD negative complete response, 20%MRD positive complete

response, and overall survival at 2 years was 35%, supporting Aza and

DLI combination therapy for treatment of early relapse. More

recently, Aza and DLI, particularly for pre-emptive treatment of

relapse, have received further experimental support. A multi-center

retrospective analysis of 71 patients with myeloid neoplasms were

treated with Aza alone or Aza and DLI (128). The overall response

rate was 49%, with 38% of patients achieving complete response. This

study reported that addition of DLI to Aza enhanced overall survival

and event free survival; however, the main reason that patients may

not proceed to DLI after Aza was disease progression (17 of 31

patients receiving Aza alone), possibly confounding the

interpretation of the additive benefit of DLI to Aza. Nevertheless,

combination of Aza and DLI appears to be a feasible strategy for

leveraging enhanced GVL for pre-emptive treatment of MDS/AML

relapse and may be a reasonable salvage treatment option for patients

with hematologic relapse.

There is considerable interest in utilizing other strategies to

enhance the immunologic effects of GVL for hematologic diseases,
TABLE 5 DLI with HMA.

DLI
Indication

Leukemia
Type(s)

Sample
Size

Intervention Comparison
Groups

Response Rate GVHD Rate Reference

Relapse
(therapeutic)

•MDS/AML 31 Aza +/- DLI Descriptive •CR rate: 13%
•Overall response: 35%

One reported case of
aGVHD after DLI (out of
12 patients)

•Tessoulin
et al. (125)

Relapse
(therapeutic)

•MDS/AML 154 Aza +/- DLI Molecular vs
hematologic
relapse; MDS

vs AML

Improved outcomes for
molecular only relapse
or MDS vs hematologic
relapse or AML

Incidence of:
•aGVHD: 31% in patients
receiving DLI
•cGVHD: 31%

•Schroeder
et al. (126)

Relapse
(therapeutic)

•AML 8 Dose finding
study for Aza

+ DLI

Descriptive 6/8 patients
with response

5/8 patients with aGVHD
(Two Grade 1, three
Grade 2)

•Ghobadi
et al. (127)

Prophylactic
or
Pre-emptive

•MDS/AML 77 Low dose Aza +/-
dose

escalated DLI

Descriptive 2-year outcomes:
•CIR: 22%
•OS: 71%
•PFS: 68%

2-year incidence of:
•aGVHD: 27%
•cGVHD: 45%

•Guillaume
et al. (129)

Pre-emptive •MDS/AML 35 HMA + DLI for
MRD detected

by WT1

HMA + DLI vs
no treatment

•37% major response
•20% minor response
•35% 2-year OS

Incidence of:
•aGVHD: 18%
•cGVHD: 41%

•Rautenberg
et al. (130)

Relapse
(therapeutic)

•MDS/AML 71 Aza +/- DLI for
relapse after
alternative

donor HSCT

Aza alone vs Aza
+/- DLI;

molecular relapse
vs

hematologic
relapse

Improved response rates
for Aza + DLI vs Aza
alone and for molecular
relapse vs
hematologic relapse

•1-year late aGVHD rate:
27%
•1-year cGVHD rate: 18%

•Liberatoire
et al. (128)
Aza, Azaciditine; PFS, progression-free survival; WT1, Wilms’ tumor 1; HMA, hypomethylating agent.
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particularly MDS/AML, for example with immune checkpoint

blockade (ICB), yet success of these approaches has been modest

thus far (184). A recent phase I study demonstrated marked

response of relapsed myeloid malignancies to ICB with the

CTLA-4 inhibitor ipilimumab (185). Response was associated

with enhanced cytotoxic CD8 T cell infiltration into leukemic

tissues, with decreased Treg activation, and expansion of effector

T cells in the blood of these patients, suggesting enhanced GVL

activity. Subsequent molecular analysis of responding patient

samples demonstrated increased expression of T cell activation

and proinflammatory cytokines (186). This raises the interesting

hypothesis that ipilimumab functions to restore T cell GVL activity

and perhaps combination of ipilimumab with DLI could further

amplify the GVL effect of DLI. A phase I trial is currently underway

to test this hypothesis (NCT03912064).
3.6 Other cell types with putative
GVL activity

Several nonclassical T cell subsets have also been implicated in

GVL activity of DLI. Mouse studies have demonstrated that HSCT

performed with donors lacking ɣd T cells have impaired GVL

activity and worsened GVHD (187). Studies of human primary cells

in vitro have demonstrated a direct cytotoxic effect of ɣd T cells on

AML cells (188). One case report has implicated persistence of a

donor-derived ɣd T cell clone with prolonged survival after DLI for

T-ALL (189). Invariant NKT cells (iNKT) are a rare CD1d-

restricted T cell subset with phenotypic and functional

characteristics shared between NK and T cells (190). In vitro

studies using both leukemia cell lines and primary human AML

blasts has demonstrated direct killing of leukemia cells in a CD1d-

dependent manner by iNKT cells, an intriguing finding that

warrants further mechanistic investigation (191).

Though the GVL effect of DLI is thought to be predominantly

driven by alloreactive donor T cells, other immune cell types may

play important roles in recognizing and eradicating malignant cells.

NK cells are a population of innate lymphoid cells that normally

function to eliminate viruses but may also have anticancer functions

(192). NK cells treated with a cocktail of cytokines have been shown

to acquire a memory-like state, endowing them with the ability to

proliferative and carry out cytotoxic functions (193). These

cytokine-induced memory (CIML) NK cells have been shown to

have reactivity and cytotoxicity against myeloid leukemia cells in

both mice and humans (194). An ongoing phase I trial aims to test

infusion of CIML NK cells for treatment of relapsed myeloid disease

after HSCT (NCT04024761). Preliminary correlative analysis of

patient samples from this trial indicate that CIML NK cells rapidly

expand and persist for months after infusion (195). Further study is

needed to confirm the safety and efficacy of CIML NK adoptive

cellular immunotherapy.

B cells have also been linked to GVL responses after DLI. One

study identified the presence of antibodies that recognized CML-

associated epitopes in the sera of patients who responded to DLI,

and antibody titers were temporally associated with response (196,

197). A subsequent study of patients with CLL who received DLI for
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relapsed disease post-HSCT identified high titers of antibodies

directed against CLL-associated antigens (198). Antibodies

directed to Y chromosome antigens (H-Y antigens) in the setting

of sex-mismatched HSCT have previously been implicated in both

GVHD and GVL (199, 200). One study identified a coordinated B-

and T-cell response directed toward the DBY antigen on the Y

chromosome in a male HSCT recipient from a female donor (201).

While the exact role of B cells in promoting the GVL effect remains

unknown, these findings support the potential for B cell mediated

cellular therapies or antibody therapy to enhance GVL.
4 Section 4 - mechanisms of response
and relapse

4.1 - Immune escape leading to relapse

Relapse remains the leading cause of morbidity and mortality

for patients post-HSCT, particularly for AML. In recent years,

mechanisms of relapse, and in particular, mechanisms of immune

escape from donor immune cell-mediated GvL are increasingly

being recognized. A 2009 study of relapse after haploidentical

HSCT identified loss of the mismatched HLA locus in leukemic

cells in 5 patients after relapse because of uniparental disomy of

chromosome 6p (202). This group demonstrated that donor-

derived T cells were unable to recognize the relapsed mutant

leukemia cells lacking the mismatched HLA haplotype, though

donor T cells maintained the ability to recognize and mediate

cytotoxicity toward leukemia cells from the original diagnosis that

retained the mismatched HLA. This and other studies established

HLA loss and uniparental disomy as an important mechanism of

immune escape leading to leukemia relapse and resistance to

maintenance of GvL (202, 203). In the HLA-matched setting,

recurrent HLA loss and downregulation of MHC class II genes

have also been identified as a mechanism of leukemic escape and

relapse, likely due to loss of leukemia-associated antigens and/or

mHAgs (204, 205). Subsequent studies have identified immunologic

signatures associated with leukemia escape and relapse, including

deregulation of co-stimulatory ligands (e.g. CD80, PD-L1), loss of

response to GVL (IFNɣ) and tumor necrosis factor-ɑ (TNF-ɑ), and
IL-2/STAT5 signaling (202, 206, 207). Strategies for employing DLI

or other immune mediated GvL strategies will need to account for

HLA-loss and the likelihood of effective GvL for each treatment

strategy in light of these immune escape mechanisms sometimes

employed by leukemic cells.
4.2 - GVL mechanisms of DLI

Relapse of hematologic malignancy after HSCT may be at least

in part attributable to development of T cell dysfunction due to

exhaustion and therefore loss of the protective GVL effect endowed

by HSCT. T cell exhaustion is well documented in viral infections

and various cancer settings and is hypothesized to arise at least in

part due to chronic antigen stimulation, though the pathways

leading to exhaustion, particularly in the cancer setting, remain
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incompletely defined (208). ICB is thought to be effective as cancer

therapy due to the ability to reverse T cell exhaustion, perhaps in

specific “progenitor-exhausted” subsets, defined by expression of

TCF1 (209, 210). More recently, single cell analysis of patients with

post-HSCT relapsed CML treated with DLI demonstrate expansion

of progenitor exhausted T cells among responding patients after

DLI (211). Correlative studies of bone marrow samples from

patients who received DLI for relapsed CML have identified

enhanced infiltration of CD8 T cells and reversal of exhaustion in

patients with effective GVL after DLI, in a mechanism similar to

that seen in other tumor settings with ICB (212). Prior studies of

patients with relapsed myeloid malignancy treated on a clinical trial

with ipilimumab demonstrated similar CD8 T cell infiltration and

exhaustion reversal in disease biopsies (185, 186). It has been

hypothesized that CTLA-4 inhibition with ipilimumab may act

on CD4 T cells, dendritic cells, or even perhaps AML leukemia cells

themselves to contribute to reversal of exhaustion in CD8 effector T

cells (185, 186, 213). T cell exhaustion reversal has also been

implicated in AML responders to DLI (214). These data support

a central role for reversal of exhaustion in the leukemic

microenvironment as necessary for effective GVL after DLI.

Further work is needed to clarify the mechanisms of T cell

exhaustion reversal associated with effective GVL to better

leverage this for improved future therapies (Figure 1).

As discussed above, many studies implicate immune responses to

mHAgs in the GVL immune response (166, 215, 216). Several specific

alloantigens have been identified that are capable of eliciting either

CD4 or CD8 GVL immune responses (217–220). One correlative

study of effector T cells derived from CML patients experiencing

effective GVL after DLI demonstrated enhanced interferon gamma

production from CD8 effector T cells, including cytotoxic T cells

specific to patient-derived mhAgs (221). Though the precise antigens
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and mechanisms of GVL activity remain incompletely defined, some

potential activation ligands have been identified. For example,

stimulation of toll-like receptors (TLR) has been shown to be

associated with GVL response after DLI (222, 223). In another

murine model of HSCT, production of interleukin 12 (IL-12) by

plasmacytoid dendritic cells (pDCs) was found to be associated with

more effective GVL compared to mice receiving unmanipulated

marrow enriched for conventional myeloid dendritic cells (224).

The precise cellular and molecular mechanisms underlying effective

GVL are likely complex and multifactorial. While major advances in

molecular understanding have been made with the advent of more

sensitive analytic modalities, additional research is needed to better

define the key players and strategies for optimizing the GVL activity

of DLI.
5 Section 5: concluding remarks

The GVL effect associated with DLI for relapsed hematologic

disease after HSCT is a clinically well-established phenomenon; yet,

response rates for most diseases remain low. Future studies are

critically necessary for determining optimal timing of DLI as well as

strategies for enhancing GVL activity. While newer combination

therapies with hypomethylating agents such as Aza or immune

checkpoint inhibitors like ipilimumab have shown promise, further

experimental evidence is needed to improve response rates and

prevent or treat relapsed disease. Further, an improved molecular

understanding of the precise cellular subsets and mechanisms

underlying effective GVL as well as mechanisms of resistance to

therapy will support development of rationally designed and more

targeted therapies to sharpen the GVL effect of DLI while

mitigating toxicities.
FIGURE 1

Schematic of hypothesized mechanisms of GVL activity attributed to DLI. DC, Dendritic cell; Tex, T exhausted cells; Teff, T effector cells; CIML NK,
Cytokine induced memory-like NK cells. Figure generated using BioRender software.
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