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Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology,
Shanghai, China
Objectives: The most frequent cause of kidney damage in systemic lupus

erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor

for morbidity and mortality. Lactate metabolism and protein lactylation might be

related to the development of LN. However, there is still a lack of relative research

to prove the hypothesis. Hence, this study was conducted to screen the lactate-

related biomarkers for LN and analyze the underlying mechanism.

Methods: To identify differentially expressed genes (DEGs) in the training set

(GSE32591, GSE127797), we conducted a differential expression analysis (LN

samples versus normal samples). Then, module genes were mined using

WGCNA concerning LN. The overlapping of DEGs, critical module genes, and

lactate-related genes (LRGs) was used to create the lactate-related differentially

expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and

expression levels, biomarkers were discovered. We also carried out an immune

infiltration study based on biomarkers and GSEA.

Results: A sum of 1259 DEGs was obtained between LN and normal groups.

Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were

screened out by the intersection of DEGs, key module genes, and LRGs.

Moreover, 8 pivotal genes were acquired via two machine-learning algorithms.

Subsequently, 3 biomarkers related to lactate metabolism were obtained,

including COQ2, COQ4, and NDUFV1. And these three biomarkers were

enriched in pathways ‘antigen processing and presentation’ and ‘NOD-like

receptor signaling pathway’. We found that Macrophages M0 and T cells

regulatory (Tregs) were associated with these three biomarkers as well.

Conclusion:Overall, the results indicated that lactate-related biomarkers COQ2,

COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation

for the diagnosis and treatment of LN.
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1 Introduction

Systemic lupus erythematosus (SLE) is a chronic multifactorial

autoimmune disease characterized by multisystemic involvement.

Lupus nephritis (LN) is a common type of glomerulonephritis that

comprises one of the most major and presenting organ

manifestations of SLE, which generally develops early in the

course, within the initial 6 to 36 months (1). Predisposing factors

contributing to LN include young age, male gender, and non-

European lineage (2, 3). The etiological underpinnings of LN

encompass abnormalities in B-cell tolerance, production of

autoantibodies targeting nuclear and cellular antigens, deposition

of immune complexes (ICs) in glomeruli, formation of neutrophil

extracellular traps (NETs), and activation of both innate and

adaptive immune responses (4). Despite the enhanced

understanding of LN pathogenesis, the diagnosis still relies largely

on renal biopsy, lacking credible non-invasive biomarkers.

Clinically, LN patients commonly present with proteinuria,

hematuria, edema, hypertension, and renal insufficiency (5, 6).

Although notable strides have been achieved in the management

of LN, the remission rate remains unsatisfactory, thereby inevitably

leading to end-stage renal disease (ESRD). It is virtually inevitable

for lupus individuals to resort to immunosuppressants and

glucocorticoids for disease management, which could lead to a

spectrum of adverse effects, including infections and cardiovascular

involvement (7). Therefore, LN remains a leading cause of

morbidity and death among SLE patients. To conclude, timely

diagnosis along with prompt and novel therapies are of pivotal

importance to LN improvement, which appeals to the identification

of new biomarkers.

A continuous emergence of research concerning metabolomics

and its correlation with lupus has shed light on novel biomarkers

involved in pathogenesis. Notably, the metabolomics studies of

lupus patients’ serum or plasma have reported a transparent

sluggishness of energy metabolism pathways such as glycolysis

and Krebs cycle, as indicated by accumulated glucose but reduced

lactate and pyruvate (8, 9). Lactate has long been simply viewed as

the by-product of glycolysis, while it is now considered to be a

fundamental carbon substrate in cellular metabolism, serving as a

signaling molecule in physiological, chronically inflamed, and

neoplastic tissue environments as well (10, 11). A novel role

attributed to lactate is the protein lactylation, which has recently

emerged as a post-translational modification (PTM) of proteins for

modulating gene expression (12). Lactate can promote macrophage

polarization toward the M2 phenotype via histone lactylation,

thereby restraining immune reactions within the tumor

microenvironment (TME) (13). Protein lactylation not only

reveals a novel realm to the study of protein PTMs but offers a

brand-new direction for lactate’s involvement in tumors or

autoimmune diseases as well (14). As can be seen, the

identification of lactate-related genes (LRGs) in LN patients

would provide a new direction for LN diagnosis and treatment.

For this reason, we employed bioinformatics approaches to

identify differential LRGs of LN patients from the GEO database

and screened important ones through machine-learning methods.

We conducted immune infiltration analysis and constructed a
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transcription network as well, trying to elucidate the principal

mechanisms and the relationship between lactate and LN, thus

laying clinical significance for the diagnosis and treatment of LN.
2 Methods

2.1 Data acquisition

The research flow diagram is presented in Figure 1. Three

datasets of LN (GSE32591, GSE127797, and GSE112943), which

included clinical characteristics and gene expression profiles, were

obtained from the Gene Expression Omnibus database (GEO,

http://www.ncbi.nlm.nih.gov/geo/). GSE32591 dataset consisted of

14 normal and 32 LN samples of glomeruli (15). GSE127797 dataset

included 41 LN samples of glomeruli (16). These two datasets were

combined after batch correction using the ‘sva’ to generate a

training set (17). GSE112943 dataset, which included 7 normal

kidney tissue samples and 14 LN samples, was utilized for further

validation (18). A sum of 303 lactate-related genes (LRGs) was

obtained from the Molecular Signatures Database (http://

www.gsea-msigdb.org/gsea/index.jsp) (19).
2.2 Analysis of differentially
expressed genes

Principal Component Analysis (PCA) was used to evaluate the

availability of the training set via ‘FactoMineR’ and ‘factoextra’ (20).

The ‘limma’ package was executed to obtain the differentially

expressed genes (DEGs) between normal and LN groups (21).

The threshold was set as |log2 fold change (FC)|> 0.5 and

adjusted.p.value < 0.05. Volcano plots were applied to show

DEGs via the ‘ggplot2’ package. ‘Pheatmap’ was used to create the

heatmap for the Top 50 DEGs. To explore the inhibition or

activation state of the biological pathway in which DEGs were

involved, Ingenuity Pathway Analysis (IPA) was performed (P <

0.05). Z-score > 2 was considered as the activation state and Z-score

< −2 was considered as the inhibition state.
2.3 WGCNA

The ‘LN’ was considered a clinical trait for WGCNA via the

‘WGCNA’ (version 1.70-3) package in the training set (22). Firstly,

we clustered all samples and calculated a hierarchical clustering

with the hclust function. The cut-off height was defined as 235 and

samples with a height above 235 should be removed as outliers to

ensure the accuracy of the analysis. Then, the soft threshold was

established, along with trait heatmaps and sample dendrograms.

The phylogenetic tree between genes was created after the similarity

between genes was determined based on their adjacency. The

modules were divided via a dynamic tree-cutting algorithm, and

the minModuleSize was 100. Similar modules were combined based

on a correlation coefficient of 0.3. Finally, the modules with a certain

correlation (|cor| > 0.3, p < 0.05) to LN were used as key modules.
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2.4 The acquisition of LR-DEGs

The intersection genes of DEGs, key module genes, and LRGs

were defined as lactate-related differential expression genes (LR-

DEGs) and shown in the Venn diagram. RCircos (1.2.2) was used to

plot the chromosome localization circles of LR-DEGs (23). To

explore the interaction among LR-DEGs, the Protein-protein

interaction (PPI) network was analyzed through the online

STRING database (confidence>0.7). GO and KEGG enrichment

analysis of LR-DEGs was conducted via the ‘clusterProfiler’ package

(24). The p.adjust < 0.05 was selected as significance threshold.
2.5 Machine-learning methods

SVM-RFE and random forest (RF) algorithmwere applied to screen

important genes in the training set (25, 26). The key genes were obtained

by pooling the results of these two algorithms. Moreover, using the

‘pROC’ tool, a ROC curve was created to assess the diagnostic utility of

the key genes (27). Then, genes with strong diagnostic values for LN

(AUC>0.7) and consistent expression trends with the training set and

external verification set (GSE112943) were identified as key biomarkers.
Frontiers in Immunology 03
2.6 Clinical nomogram model

Nomogram has been widely used to predict the probability of

individual occurrence of clinical events in clinical research (28). The

nomogram containing biomarkers was drawn via ‘rms’ to predict

the risk of LN. Evaluation of the predictive effect was done by the

calibration and ROC curves.
2.7 GSEA and Immune Infiltration Analysis

Single GSEA was conducted to explore the potential KEGG

pathways associated with biomarkers through the ‘clusterProfiler’

package (29). The threshold was set as p.adjust < 0.05. In addition, the

CIBERSORT algorithm was applied to calculate the relative abundance

of 22 immune cells infiltrated in the LN microenvironment (30).

Subsequently, Spearman correlation analysis was performed between

biomarkers and differential immune cells. The ‘estimate’ package was

applied to collect and compare the immunological, stromal, and

ESTIMATE scores between normal and LN groups (31). Spearman

correlation analysis was performed between biomarkers and these scores

via ‘ggExtra’.
FIGURE 1

The flow diagram of the research design.
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2.8 Construction of ‘TF-miRNA-gene’
networks

The NetworkAnalyst database was applied to predict the

transcription factors (TFs) linked to biomarkers. The miRWalk

database was used to predict the miRNAs linked to biomarkers.

Moreover, Cytoscape software was applied to optimize the results of

the ‘TF-miRNA-gene’ network (32).
3 Results

3.1 Identification of differentially expressed
genes in LN

According to PCA results, the merged data set (training set) has

eliminated the batch effect (Supplementary Figure S1A, B). As shown

in Figures 2A, B, we obtained the 1259 DEGs between normal and LN

groups, including 583 down-regulated and 676 up-regulated genes. In

addition, classical pathway analysis of IPA indicated that these DEGs

were related to different pathways (Supplementary Figure S1C),

mainly enriched in ‘pathogen-induced cytokine storm signaling

pathway’, ‘phagosome formation’, and ‘LXR/RXR activation’.

Disease and function analysis suggested that these DEGs were

associated with ‘cell-to-cell signaling and interaction’ and ‘immune

cell trafficking’ (Figure 2C).
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3.2 Identification of key module genes
associated with LN

To seek out pivotal modules related to LN, WGCNA was

conducted. No outlier samples were found, according to the

sample clustering results (Supplementary Figure S2). The optimal

soft threshold was 10. The ordinate scale-free fit index increased

when mean connectivity tended to 0, and signed R2 began to

approach the critical value of 0.85 (red line) (Figure 3A). A total

of 10 modules were obtained by the dynamic tree-cut algorithm and

similar merging (Figure 3B). The MEturquoise, MEsalmon, MEtan,

MEgreenyellow, MEmagenta, and MEblack modules (|cor|>0.3,

P<0.05) were markedly correlated with LN (Figure 3C). Thus,

3800 key module genes related to LN were obtained for

subsequent analysis (Figure 3D).
3.3 Identification of lactate-related DEGs
and functional enrichment analysis

Then, 19 LR-DEGs in LN that overlapped DEGs, key module

genes, and LRGs were obtained (Figure 4A). All chromosomes,

apart from 5, 6, 7, 8, and 16, contained these genes (Figure 4B). The

PPI network of these LR-DEGs was performed, in which CYC1 and

SLC25A10 contained many interdependent proteins. (Figure 4C).

Functional enrichment analysis was conducted to further probe the
A B

C

FIGURE 2

Identification of Lactate-related DEGs in LN. (A) Volcano plot showing the DEGs between LN and normal groups, including 583 down-regulated and
676 up-regulated genes. (B) Heatmap showing the TOP50 DEGs. (C) Disease and function analysis of IPA suggested that these DEGs were
associated with ‘cell-to-cell signaling and interaction’ and ‘immune cell trafficking’.
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function of the LR-DEGs in LN patients. TOP10 GO results

indicated that these LR-DEGs were principally involved in the

‘glucose metabolic process’ and ‘small molecule catabolic process’

(Figure 4D–F). Additionally, the KEGG analysis implied that these

LR-DEGs were mainly enriched in the ‘Propanoate metabolism’

and ‘Fructose and mannose metabolism’ (Figure 4G).
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3.4 Construction and evaluation of the
LR-DEGs signature for LN

To further dig out the key genes, SVM-RFE analysis was

performed on 19 LR-DEGs to unearth the optima. Ultimately, 13

feature genes were obtained, including TYMP, NDUFV1, AIFM1,
A B

D

C

FIGURE 3

Identification of key module genes associated with LN. (A) Analysis of the scale-free fit index and mean connectivity for various soft-thresholding
powers (b). (B) Gene dendrogram obtained by hierarchical clustering. A total of 10 modules were obtained by the Dynamic Tree Cut algorithm and
similar merging. (C) Heatmap suggested that the MEturquoise, MEsalmon, MEtan, MEgreenyellow, MEmagenta, and MEblack modules (|cor|>0.3,
P<0.05) were markedly correlated with LN. (D) Scatterplots of gene significance (GS) versus module membership (MM) showed that 3800 key
module genes related to LN were obtained.
A B D

E F G

C

FIGURE 4

The acquisition and function analysis of LR-DEGs. (A) Venn diagram showing 19 LR-DEGs in LN that overlapped DEGs, key module genes, and LRGs.
(B) Chromosome localization circles of LR-DEGs. (C) PPI network of LR-DEGs. (D–F) Chord diagrams obtained from the functional enrichment analysis
of LR-DEGs. TOP10 GO results indicated that these LR-DEGs were principally involved in the ‘glucose metabolic process’ and ‘small molecule catabolic
process’. (G) KEGG analysis implied that these LR-DEGs were mainly enriched in the ‘Propanoate metabolism’ and ‘Fructose and mannose metabolism’.
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CYC1, FBP1, PC, ETHE1, COQ4, YARS2, COQ2, PYGL, SLC3A1

and SLC25A10 (Figures 5A, B). Meanwhile, the Top10 feature genes

were retained by the RF algorithm, including ETHE1, BCKDHA,

CYC1, ALDH6A1, COQ2, COQ4, NDUFV1, PC, PYGL and TYMP

(Figure 5C). Correspondingly, we further identified 8 key genes by

the intersection of two algorithms, including TYMP, NDUFV1,

CYC1, PC, ETHE1, COQ4, COQ2 and PYGL (Figure 5D). COQ2,

COQ4, and NDUFV1 demonstrated strong diagnostic value for LN

in the external validation set (AUC> 0.7). The expression pattern

was entirely consistent with the training set. These three genes were

discovered to be lactate-related biomarkers (Figures 5E–H).
3.5 Clinical and functional enrichment
analysis of biomarkers with LN

To further explore the relationship between biomarkers and LN,

the nomogram containing biomarkers was generated (Figure 6A).

The calibration and ROC curves proved that the feasibility of the

nomogram was effective (Figures 6B, C). To further study the
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potential roles of COQ2, COQ4, and NDUFV1 in LN, we

performed single-gene GSEA on these 3 biomarkers. The KEGG

results showed that these three biomarkers were related to ‘antigen

processing and presentation’ and ‘NOD-like receptor signaling

pathway’ (Figures 6D–F). The classical pathway analysis of IPA

indicated that NDUFV1 was related to ‘Oxidative Phosphorylation’

and ‘mitochondrial dysfunction’, while COQ2 was related to

‘Ubiquinol-10 Biosynthesis’ (Figure 6G).
3.6 The role of COQ2, COQ4, and NDUFV1
in LN immune microenvironment

Since the pathophysiology of LN patients and the immune

microenvironment were related, the immune microenvironment in

LN was further explored. The expression abundance of 22 types of

immune cells was analyzed (Figure 7A). Notably, 13 immune cell

abundances differed significantly in LN samples, including Tregs,

Macrophages M0 and M2, Monocytes, naïve B cells, CD8+ T cells,

CD4+ memory resting T cells, both resting and activated NK and
A B

D E F

G H

C

FIGURE 5

Screening lactated-related biomarkers of LN. (A, B) SVM-RFE analysis of 19 LR-DEGs ultimately obtained 13 feature genes. (C) RF algorithm showing the
TOP10 feature genes. (D) Venn diagram identified 8 key LR-DEGs via the intersection of two machine-learning algorithms. (E, F) ROC curves of the 8 key
genes in the training set and the external validation set. COQ2, COQ4, and NDUFV1 demonstrated strong diagnostic values for LN in the external validation
set (AUC> 0.7). (G, H) The expression pattern of COQ2, COQ4, and NDUFV1 in the external validation set was entirely consistent with the training set. ns, not
significant. *p < 0.05, **p < 0.01, ****P < 0.0001.
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Mast cells, Plasma cells and resting Dendritic cells (DCs)

(Figure 7B). Then, we analyzed the correlation between

biomarkers and differential immune cells, finding that

Macrophages M0 and T cells regulatory (Tregs) were positively

associated with COQ4 and NDUFV1; they were negatively

associated with COQ2 (Figures 7C–F).

In addition, we discovered that the LN group had higher

stromal, immunological, and estimate scores (Figure 8A). These

three scores were negatively correlated with COQ4 and NDUFV1

but positively correlated with COQ2 (Figure 8B).
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3.7 Analysis of regulatory network and
drug in LN

The ‘TF-miRNA-gene’ network was created to investigate the

regulatory mechanisms of COQ2, COQ4, and NDUFV1, which had

46 nodes and 45 edges (Figure 9A). In the network, ZKSCAN1

might simultaneously affect the expression of COQ4 and NDUFV1.

The hsa-miR-93-5p regulated the expression of COQ2. Drugs that

targeted COQ2, COQ4, and NDUFV1 were predicted in the

DrugBank database. The relationship between biomarkers and
A B

D E F G

C

FIGURE 6

Clinical and functional enrichment analysis of biomarkers with LN. (A) Nomogram containing biomarkers. (B, C) Calibration and ROC curves proved
the feasibility of the nomogram. (D–F) Single-gene GSEA of COQ2, COQ4, and NDUFV1 showed that these three biomarkers were related to
‘antigen processing and presentation’ and ‘NOD-like receptor signaling pathway’. (G) Classical pathway analysis of IPA.
A B

D E FC

FIGURE 7

Immune infiltration analysis of lactate-related biomarkers in LN. (A) Relative proportions of immune infiltration in LN. (B) Abundances of 13 immune
cells differed significantly in LN. (C–F) Correlation analysis of biomarkers and twenty-one kinds of immune cells showed that Macrophages M0 and T
cells regulatory (Tregs) were positively associated with COQ4 and NDUFV1; they were negatively associated with COQ2. ns, not significant. *p < 0.05,
**p < 0.01, ***p < 0.001, ****P < 0.0001.
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drugs was shown in Figure 9B, including 63 nodes and 75 edges.

Both the Rotavirus vaccine and Guanadrel were found to be co-

targeted drugs with three biomarkers, which might play an

important role in the treatment of LN.
4 Discussion

SLE is an autoimmune disease of unknown etiology, characterized

by multi-system damage and the formation of multiple

autoantibodies against nuclear, cytoplasmic, and membranous

antigens. With a subtle or sudden onset, nearly 70 percent of SLE

patients would develop LN and suffer from a series of symptoms of

glomerular, tubulointerstitial, and renal vascular damage (33). Any
Frontiers in Immunology 08
SLE patient with renal lesions should pay attention to whether LN is

accompanied, and renal biopsy should be performed for pathological

examination. Despite the enhanced understanding of LN, a lack of

non-invasive diagnostic biomarkers and essential treatment

alternatives remains a major obstacle to the prognosis of LN. The

metabolic disturbances that underlie autoimmune diseases have been

studied recently. Lactate-mediated signaling pathways have turned

out to conduce to both cancer progression and inflammatory diseases

(34). Lactate has long been recognized as the end product of glycolysis

and viewed as simply a waste product. However, in both TME and the

inflammatory disease microenvironment, lactate, produced by

infiltrating immune cells through glycolysis, triggers a series of

intra- and extracellular signals, contributing to both tumor

progression and constant inflammation (35, 36). Integrated
A

B

FIGURE 8

Analysis of the role of biomarkers in LN immune microenvironment. (A) The Stromal, Immunological, and ESTIMATE scores were all higher in LN
compared to the control group. (B) Correlation analysis indicated that these three scores were negatively correlated with COQ4 and NDUFV1, but
positively correlated with COQ2. ****P < 0.0001.
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profiling of the SLE metabolome has manifested heightened

inflammation, oxidative stress, and reduced energy generation

(37), as indicated by accumulated glucose but reduced lactate,

while the mechanisms remain unknown. We believe that the

identification of lactate-related molecules in LN would contribute

to both the diagnosis and treatment of LN pathogenesis. Moreover,

since LN is characterized by the failure to maintain immune

tolerance (38), immune infiltration studies of LN and lactate-

related biomarkers would further explain the role of immune cells

in LN pathogenesis.

Our study is based primarily on the transcriptome data of LN

patients from GEO database and the 303 known lactate-related

genes downloaded from the MsigDb database. Bioinformatics

analysis was carried out to explore the underlying connections

between LN and lactate metabolism. The results indicated that

lactate-related biomarkers COQ2, COQ4, and NDUFV1 were

associated with LN. COQ2 and COQ4 are components of an

enzyme complex involved in the biosynthesis of coenzyme Q10

(CoQ10) (39, 40), which is a mitochondrial electron carrier

responsible for generating adenosine triphosphate (ATP) and an

essential lipophilic antioxidant located in plasma lipoproteins and

membranes (41). Mutations in the COQ2 and COQ4 genes can lead

to CoQ deficiency disorders such as multiple system atrophy and

primary coenzyme Q10 deficiency (42, 43), which often result in

mitochondrial dysfunction and a wide range of symptoms,

including muscle weakness, neurologic abnormalities, and

cardiomyopathy (44). Mitochondrial dysfunction and metabolic

disturbances have been identified as key regulators of lupus and

other autoimmune diseases. Research has found that idebenone,

which is a synthetic quinone analog compound of CoQ10, could

modify survival in murine lupus through the regulation of

mitochondrial functions and improve immune dysregulation and

organ damage. MRL/lpr mice fed with idebenone displayed lower

serum creatinine concentration and reduced the severity of

nephritis through histologic analysis of kidneys (45, 46). Taken

together, it is not hard to notice that new agents modulating

oxidative stress and mitochondrial metabolism might have a
Frontiers in Immunology 09
potent therapeutic role in the treatment of LN; Complex I (CI,

NADH: ubiquinone oxidoreductase) refers to mitochondrial

oxidative phosphorylation (OxPhos) enzyme complex consisting

of 45 subunits, and its dysfunction would generally impair energy

production and affect various organs including kidneys (47).

NADH: Ubiquinone Oxidoreductase Core Subunit V1 (NDUFV1)

is a nuclear-encoded structural subunit of CI and its mutations are

associated with Leigh syndrome (LS), diffuse leukoencephalopathy,

and Parkinson’s disease (48, 49). According to previous research,

the reinforcement expression of NDUFV1 has turned out to reduce

serum creatinine and blood urea nitrogen, attenuate proximal

tubule damage, and repress cell apoptosis in renal ischemia/

reperfusion (I/R) mice, which may be due to the improved

mitochondrial metabolism, and reduced oxidative stress by

overexpressed NDUFV1 (50, 51). Having shown that the

expression level of NDUFV1 was decreased in LN in our study

and the classical pathway analysis of IPA indicated that NDUFV1

was related to ‘oxidative phosphorylation’ and ‘mitochondrial

dysfunction’, we thus speculate that NDUFV1 deficiency could

impair mitochondrial metabolism and homeostasis in renal tissue,

contributing to the progress of LN. Therefore, targeting NDUFV1, a

representative of mitochondrial Complex I, should be a promising

strategy for treating renal impairment in LN.

Furthermore, we developed the nomogram containing these 3

biomarkers to predict LN and the calibration and ROC curves

proved its feasibility, which indicated that lactate-related genes

might work as novel non-invasive biomarkers for LN diagnosis.

To understand the potential roles of COQ2, COQ4, and NDUFV1 in

LN, we performed single-gene GSEA and the KEGG results

indicated that these three biomarkers were related to ‘antigen

processing and presentation’ and ‘NOD-like receptor signaling

pathway’. Based on the dissection of cell-extrinsic suppressive

pathways, it has been established that lactic acid in TME inhibits

type-I interferon (IFN) downstream of Toll-like receptor 3 (TLR3)

and the cytosolic sensors STING. As a result of DC conditioning by

lactate, antigen degradation was accelerated, and cross-presentation

was impaired (52). The activation of type-I IFN is one of the most
A B

FIGURE 9

Analysis of the role of biomarkers in LN immune microenvironment. (A) ‘TF-miRNA-gene’ network presenting the regulatory mechanisms of COQ2,
COQ4, and NDUFV1, which had 46 nodes and 45 edges. (B) The relationship between biomarkers and drugs predicted from the DrugBank database.
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important factors contributing to lupus pathogenesis (53).

Therefore, we reasonably speculate that sluggishness of lactate

levels in LN may impair the inhibition of type-I IFN production

through the pathways mentioned above, which in turn leads to the

progress of the disease. At the same time, it remains unclear

whether targeting LRGs, such as COQ2, COQ4, and NDUFV1,

could simulate the conditions of TME, in the microenvironments

of inflammatory diseases and thus significantly reprogram DC-

mediated innate immune responses and antigen processing;

Consistent with our enrichment results, NOD-like receptor

signaling pathway is affected by lactate levels in previous research.

The intracellular receptor NOD-like receptor protein 3 (NLRP3)

possesses the capability to distinguish extrinsic pathogens and

endogenous danger signals. It assembles the adaptor ASC and

caspase-1 to form an oligomeric complex called the NLRP3

inflammasome (54). Lactate could mitigate the activation of

NLRP3 inflammasome, which in turn impacts the production of

pro-inflammatory cytokines via G protein-coupled receptor 81

(GPR81) signaling (55). Research has found that inhibition of

NLRP3 inflammasome via receptor-interacting protein kinase 3

(RIP3) would lead to the amelioration of LN and the decline of

auto-antibody production (56), which suggests that various

signaling pathways for the activation of NLRP3 inflammasome

are operative in the pathogenesis of lupus and targeting LRGs

might work with LN via NLRP3.

The immune infiltration studies showed differences in multiple

immune cells between LN and control groups, and Tregs were found to

be positively associated with COQ4 and NDUFV1, while negatively

associated with COQ2. Tregs serve a crucial function in maintaining

immune homeostasis, which could target T cells via regulating antigen-

presenting cells by expressing anti-inflammatory cytokines such as IL-

10 and TGF-b (57). B cells producing autoantibodies, which

contributed to lupus progress, could be suppressed by Tregs directly

as well (58). In individuals with lupus, the amount of Tregs and their

ability to inhibit the proliferation of effector T cells are greatly reduced,

while the proportion of effector T cells is significantly increased. This

imbalance results in a breakdown of immune tolerance to self-antigens,

causing damage to multiple tissues and organs (59). However, in TME,

the ability of Tregs to differentiate, proliferate, and suppress the anti-

tumor immune system would be enhanced by lactate, via the

expression of FOXP3 (60). Researchers have highlighted the

antagonistic effect of glucose on Treg function and properties, while

lactate can both be used by Tregs as fuel and protect their high

suppressive capacity from the negative effects of glucose as well (61).

Meanwhile, local treatment with lactate has been found to effectively

prevent intestinal inflammation and histopathological damage in the

colitis model (62). Other researchers have found that through a

hypoxia-inducible factor 1a (HIF-1a) mediated mechanism, lactate

from immune cells like activated DCs could facilitate the expression of

NDUFA4L2. NDUFA4L2 then limited mitochondrial reactive oxygen

species, leading to the activation of XBP1-driven transcriptional

modules in DCs, which could control pathogenic autoimmune T

cells. Based on this, they developed a synthetic lactate-producing

probiotic, which successfully suppressed T cell-driven central nervous

system autoimmunity in experimental autoimmune encephalomyelitis

(EAE) models through the activation of HIF-1a–NDUFA4L2 signaling
Frontiers in Immunology 10
in DCs (63). Collectively, we formulate the hypothesis that lactate

treatment or targeting lactate-related biomarkers might be a novel

treatment strategy for LN, while the underlying mechanisms of lactate

in autoimmune diseases like LN need further research.

To our knowledge, this is the first bioinformatic research to explore

the relationship between LN and lactate-related genes. However, there

are still several limitations to this study. First, we have not verified the

differential expression of LRGs in kidney samples of LN patients and

normal controls due to the difficulties in sample collection. According

to current academic research, single-cell analysis of both the peripheral

blood mononuclear cells (PBMCs) (64) and the kidney biopsies (65) of

lupus nephritis has shown the immune cell landscape of the disease.

Further analysis of the datasets from these articles could show the

expression profiles of the hub LRGs in various immune cells of LN and

validate ourmain findings. However, the validation analysis was hard to

accomplish due to the data acquisition issues. Second, the lack of

experimental data makes it hard to explain the underlying mechanisms.

Third, we didn’t differentiate between various pathological types of LN,

such as proliferative and membranous lupus nephritis. Despite that

future investigations are necessary to validate our conclusions, this

study still sheds light on novel biomarkers involved in LN pathogenesis.
5 Conclusion

In conclusion, this study has identified 3 lactate-related hub genes

that demonstrated strong diagnostic value for LN, including COQ2,

COQ4, and NDUFV1 They might contribute to LN pathogenesis via

‘antigen processing and presentation’ and ‘NOD-like receptor signaling

pathway’. MacrophagesM0 and Tregs were also associated with these 3

biomarkers. This study provides valuable insights for elucidating the

lactate’s role in LN and the 3 biomarkers could lay a theoretical

foundation for the diagnosis and treatment of LN.
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