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Evolution of guanylate binding
protein genes shows a
remarkable variability within
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Background: GBPs (guanylate binding proteins), an evolutionary ancient protein

family, play a key role in the host’s innate immune response against bacterial,

parasitic and viral infections. In Humans, seven GBP genes have been described

(GBP1-7). Despite the interest these proteins have received over the last years,

evolutionary studies have only been performed in primates, Tupaia and rodents.

These have shown a pattern of gene gain and loss in each family, indicative of the

birth-and-death evolution process.

Results: In this study, we analysed the evolution of this gene cluster in several bat

species, belonging to the Yangochiroptera and Yinpterochiroptera sub-orders.

Detailed analysis shows a conserved synteny and a gene expansion and loss

history. Phylogenetic analysis showed that bats have GBPs 1,2 and 4-6. GBP2 has

been lost in several bat families, being present only in Hipposideidae and

Pteropodidae. GBPs1, 4 and 5 are present mostly as single-copy genes in all

families but have suffered duplication events, particularly in Myotis myotis and

Eptesicus fuscus. Most interestingly, we demonstrate that GBP6 duplicated in a

Chiroptera ancestor species originating two genes, which we named GBP6a and

GBP6b, with different subsequent evolutionary histories. GBP6a underwent several

duplication events in all familieswhileGBP6b is present as a single copy gene and has

been lost in Pteropodidae,Miniopteridae andDesmodus rotundus, a Phyllostomidae.

With 14 and 15 GBP genes, Myotis myotis and Eptesicus fuscus stand out as having

far more copies than all other studied bat species. Antagonistically, Pteropodidae

have the lowest number of GBP genes in bats.

Conclusion: Bats are important reservoirs of viruses, many of which have become

zoonotic diseases in the last decades. Further functional studies on bats GBPs will

help elucidate their function, evolutionary history, and the role of bats as

virus reservoirs.
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1 Introduction

Guanylate-binding proteins (GBPs) are a family of evolutionary

ancient, conserved proteins that have vital roles in host defence

against intracellular pathogens, ranging from viruses to bacteria

(1, 2). These proteins belong to the large dynamin guanosine

triphosphatases (GTPases) superfamily and the IFN-inducible

guanosine triphosphatases (3) and share structural and

biochemical similarities (3–5). The structure of these proteins

comprises a globular N-terminal large GTPase (LG) domain

connected by a hinge region to the middle domain (MD) and the

GTPase effector domain (GED) at the C-terminus. The LG domain

is involved in GTPase and GDPase activity and Mg2+ cofactor

finding [reviewed in (3, 6)]. GBP expression is triggered by

inflammatory signals, the most potent of which are interferons

(IFN), but also interleukins (IL) and tumour necrosis factor (TNF)

[reviewed in (3)]. As such, they are part of the cell-autonomous

innate immune response and have been considered major players in

the host’s innate immunity.

In mammals, GBPs are usually organized in tandem in one

chromosome (5, 7) but in some rodents, like Mus musculus and

Rattus norvegicus, GBPs are organized in two different gene clusters

(8). Surprisingly, this gene family was only studied in primates,

Tupaia and rodents (8–10). The evolutionary history of GBPs is

complex, with duplications, deletions and neofunctionalization of

genes as expected in gene families following the birth-and-death

model of evolution (11). The number of GBP genes varies among

species; not all GBP orthologs are present in every species and some

are limited to a specific mammalian group. Seven GBPs have been

described in humans, GBPs1-7 (1, 5). Of these, GBP3 seems to have

emerged through a duplication of GBP1 in Simiiformes gaining a

new function, regulation of caspase-4 activation (12). GBP7 most

likely emerged from a duplication of GBP4 in primates being

specific to this group (9). Muroids (Rodentia) share GBP2, GBP5

and GBP6 orthologs with primates and furthermore have four

exclusive GBPs, GBPa-d. Each of the seven Muroid GBPs has its

own pattern of duplications and deletions (8). In Tupaia, five GBPs

have been described: GBP1, GBP2, GBP4, GBP5 and GBP7, all

seemingly orthologs to primates’ GBPs except for GBP7 (10).

Bats belong to the order Chiroptera, the second largest mammalian

order after Rodentia and have adapted to diverse ecological niches across

the planet (13). The Chiroptera radiation occurred approximately 60

million years ago (mya) (14–16). Based on molecular genetics data, the

order Chiroptera is subdivided into two suborders, Yangochiroptera

(composed exclusively of microbat families) and Yinpterochiroptera

(composed of five microbat families and all megabat families) (14).

Bats are known reservoirs of many viruses in the animal kingdom, and

have been assigned as the source of many human viral diseases in

modern times, including SARS-CoV (China, 2002/2003) (17), Marburg

virus (Africa, 2005) (18), MERS-CoV (Middle East, 2012) (19, 20), Ebola

virus (West Africa, 2013) (21, 22) and the recent SARS-CoV2 (China,

2019) (23, 24). With shrinking habitats, caused by the Human

population expansion, wild populations are co-existing in closer and

closer proximity to humans leading to an increased threat of these events.

Studying the immune system of these species is key to assessing

their resilience in a changing environment as well as what makes
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these unique mammals such good virus reservoirs. Still, the bats’

immune system is poorly understood. The innate immunity system

(IIS) is the body’s first line of defence against pathogens. In this

work, we analysed the GBP evolution in bats. We found a complex

history of gene gain and loss with very different genetic repertoires

between bat families.
2 Materials and methods

2.1 Phylogenetic analysis

Complete coding sequences of GBPs were obtained from

publicly available databases. A total of 183 nucleotide sequences

were collected from bats (129), primates (41), Tupaia glis (5) and

Loxodonta africana (8). The accession numbers of these sequences

can be found in Supplementary Material: Table 1. The L. africana

GBP sequences were used as an outgroup. For bats, GBP sequences

were collected only for species for which good-quality genomes are

available at GenBank and Ensembl. Annotated GBP sequences were

obtained through BLASTn searches using Human GBP sequences

as queries. Searches were conducted in the NCBI’s GenBank (http://

www.ncbi.nlm.nih.gov/genbank/) and Ensembl (https://

www.ensembl.org/index.html) genome databases. Further

BLASTn searches using Bat GBP sequences were conducted in

both databases to ensure all bat GBP sequences were identified. In

total, GBP sequences were obtained for 19 different species of bats

belonging to eight families, Vespertilionidae, Miniopteridae,

Phyllostomidae, Hipposideridae, Pteropodidae, Rhinolophidae,

Mormoopidae and Molossidae.

Rodent GBP sequences, although available, were not used in

this study. Muroid rodents GBP genes have a complex and

seemingly specific pattern of evolution with four GBP genes that

appear to be exclusive to Muroids (8). This diversity will add noise

to our phylogenetic analysis causing a loss in resolution and correct

identification of Bats GBPs.

Sequences were aligned with Clustal W (25) as implemented in

BioEdit v7.2.5 (26), followed by visual inspection and necessary

manual corrections. This dataset was screened for gene conversion

using GARD (27); no recombination breakpoints were identified.

The final nucleotide sequence alignment is given in Supplementary

Material: Data 1.

The phylogenetic relationships between GBP nucleotide

sequences were inferred using MEGA version 11 software (28)

under a Maximum likelihood (ML) framework. The phylogenetic

tree was constructed using the GTR+G+I model of nucleotide

substitution, determined to be the best fitting model to our

dataset by the Model Selection option in MEGA 11 (28). Node

support was determined from 1000 bootstrap replicate trees.
2.2 Genomic synteny analysis

The relative syntenic positions and transcription orientation of bats

GBPs were assessed using NCBI (https://www.ncbi.nlm.nih.gov/

genome/gdv/).
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2.3 Divergence analyses

Genetic distances between the groups established based on the

ML tree (see Figure 1) were calculated using MEGA 11 (28). The net

between group mean distances function was used to obtain the

genetic distances between bat and primate GBP groups. This option

accounts for variance due to differences within groups. These were

calculated in MEGA 11 (28) software using the p-distance method,

uniform rates among sites, homogeneous rates among lineages and

pairwise deletion of gaps options.

The nucleotide substitution rate variation among the Chiroptera

GBP6 genes was estimated in DnaSp version 6.12 (33). Sliding window

analysis was performed with a window length of 250 nucleotides and a

step size of 12 nucleotides along the nucleotide sequence alignment and

plotting the differences as averages. Sites with alignment gaps were

not counted.
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3 Results

The obtained ML phylogenetic tree shows bats, primates,

Tupaia and L. africana GBP sequences grouped according to gene

with good bootstrap support (Figure 1). Sequences for bats GBP1,

GBP2, GBP4, GBP5, and GBP6 were identified. Within the GBP4

cluster, several sequences annotated as GBP6 and GBP7 appear.

These seem misannotated and need to be reclassified (see

Supplementary Material: Table 1).

Bat GBP1 is present in all species except Hipposideros armiger. An

incomplete sequence resembling GBP1 was found for this species,

located where GBP1 would be expected, but it is not possible to

confirm whether it is GBP1 or not. Most species have a single copy of

GBP1. However, Eptesicus fuscus has five GBP1 copies, Myotis myotis

three GBP1 genes and Pippistrelus khuli has two copies, showing that

duplication events have occurred in Vespertilionidae bats (Figures 1, 2).
FIGURE 1

Phylogenetic tree of GBP genes in Chiroptera. A Maximum likelihood (ML) method and the GTR+G+I model of nucleotide substitution were used to
obtain the GBP gene family phylogenetic tree. Bootstrap values are indicated near the most relevant branches.
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Bat GBP2 was identified only for species of Phyllostomidae and

Hipposideidae bats. Considering that these sequences are clustering

with the primate sequences and are present in both

Yangochiroptera (Phyllostomidae) and Yinpterochiroptera

(Hipposideidae) suborders (Figures 1, 2), it suggests that GBP2

was present in the Chiroptera ancestor and was lost independently

in several lineages.

Bat GBP4 and GBP5 are present in all studied species, the

exception being Phyllostomus discolor which has lost GBP5. For

these two genes,M. myotis has suffered duplications, being the only

studied bat species with more than one GBP5 and having six GBP4

genes, contrasting with most other species which have one or two

GBP4 copies (Figure 1, Table 1).

Within the GBP6 cluster, there are two well-supported

subgroups (100 bootstrap for GBP6b and 85 bootstrap for GBP6a;

Figure 1): a larger cluster containing sequences of the eight analysed

bat families and a smaller cluster encompassing sequences for four

of the analysed bat families. Within the larger cluster, most species

have at least two copies of this GBP6 gene, except for the species

belonging to the Pteropodidae family which carry only one copy

(Figure 1, Table 1). This is in contrast with the smaller cluster for

which most species have only one copy of the gene, the exception

being Molossus molossus with two copies (Figure 1, Table 1). This

pattern suggests that the GBP6 has duplicated in a Chiroptera

ancestor originating two genes that have since followed distinct

evolutionary patterns. Hereon, we shall designate the larger cluster

as GBP6a and the smaller cluster as GBP6b (Figure 1).

It thus seems that the different bat GBPs have independently

suffered deletions and/or duplications and are, thus, evolving under

distinct evolutionary pressures. Table 1 shows a summary of the

number and repertoire found for each studied bat species.

Pteropodidae species, having lost GBP2 and GBP6b, have the least
Frontiers in Immunology 04
diversity of GBP genes and also the fewest copies since these have

only one copy of each of the four other GBP genes present. The

exception is Rousettus aegyptiacus, which has two copies of GBP4,

resulting in five copies of GBP genes in R. aegyptiacus and four

copies in the remaining Pteropodidae species (Table 1). In contrast,

Vespertilionidae bats, in particularM. Myotis and E. fuscus, have an

expansion of GBP genes, with a total of 14 and 15 GBP genes each,

respectively (Table 1).
3.1 Synteny analysis

The bats’ GBP synteny is quite conserved (Figure 2). Despite the

variability in the number of genes, bats’ GBPs are organized in tandem

and flanked by KYAT3 and LRRC8B. For H. armiger, Pteropus alecto,

Pteropus vampyrus and M. myotis, unplaced GBP genes were found.

For H. armiger a genome gap exists between KYAT3 and the GBP

genes, not being possible to determine the full GBP locus organization

for this species. The unplaced GBP2 and GBP4 genes may be located in

the canonical GBP locus, between KYAT3 and GBP5, where these

would be expected to be according to the other bats’ synteny. The M.

natalensis and S. hondurensis assemblies also have one genome gap in

each one. The P. alecto, P. vampyrus andM. myotis unplaced genes are

most likely retrotransposons inserted in other genomic locations.
3.2 Divergence analysis

The genetic distances confirm that bat GBPs are orthologs to

primate GBPs, with low divergence between bat GBPs and their

primate counterpart (7%-10.2%; Table 2) and high divergence

between bats’ GBPs (6.8-28.6%; Table 2). Considering that
A

B

FIGURE 2

GBP gene family synteny in Chiroptera. (A) Organization of the GBP gene family in the studied species according to genomes available in NCBI
(www.ncbi.nlm.nih.org). (B) Unplaced GBP in the bat genomes. The diagram is not drawn to scale. Arrows represent transcription orientation.
Dashed lines represent gaps in the genome. Sequences excluded from the analysis for including stop codons or frameshifting indels are indicated as

Pseudo. Chromosomes are indicated when information is available. Colour scheme: GBP1, GBP2, GBP4, GBP5, GBP6a and

GBP6b.
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primates GBP1 and GBP3 are considered two genes with a

divergence as low as 4%, the divergence of 6.8% between the two

subgroups of bats’ GBP6, GBP6a and GBP6b (Table 2), supports

their classification as different genes that arose from a duplication of

GBP6 in a bat ancestor. Furthermore, several amino acid residues

that differentiate GBP6a from GBP6b are observable (Figure 3; see

Supplementary Material: Data 3) and the amino acidic distance

between these genes is high (11%). All the obtained results support

the classification of GBP6a and GBP6b as different genes. This is

considering 1) the good bootstrap support of the two bat GBP6

groups in the ML phylogenetic tree, 2) their genetic distance being

higher than that between pGBP1 and pGBP3 and 3) the existence of

amino acid characteristic positions between GBP6a and GBP6b.

The analysis of the nucleotide diversity along the two GBP6

genes shows that, overall, this parameter is higher in the 3’ end of

the LG, MD and GED domains. Focusing only on non-synonymous

sites shows that a high proportion of the nucleotide substitutions

between GBP6a and GBP6b are non-synonymous and confirms that

the two genes’ amino acid sequence is very divergent, particularly in

the effector regions of the genes (Figure 4; see Supplementary

Material: Data 2, 3).
4 Discussion

Bats have been identified as a major reservoir for zoonotic

viruses and have played roles in outbreaks of several emerging

zoonotic viruses including SARS-CoV (China, 2002/2003) (17),
Frontiers in Immunology 05
Marburg virus (Africa, 2005) (18), MERS-CoV (Middle East,

2012) (19, 20), Ebola virus (West Africa, 2013) (21, 22) and the

recent SARS-CoV2 (China, 2019) (23, 24). Viral reservoir species

have an organized immunological response to the virus but show no

overt clinical signs of disease. This means that the host usually

carries a low viral load and is able to tolerate some viral replication.

Studies have shown that bats have unique immunological

approaches to enable coexistence with viral infections, causing no

disease, while allowing enough viral replication for transmission

(30–32). Screening the virome for over 4000 healthy bats from 40

different species of both Yangochiroptera and Yinpterochiroptera

suborders, revealed an array of viruses belonging to diverse families,

the most prevalent being Herpesviridae, Papillomaviridae,

Retroviridae, Adenoviridae and Astroviridae, but also

Coronaviridae, Caliciviridae, Polyomaviridae, Rhabdoviridae,

among others (33), confirming bats as reservoirs of various virus.

The unique ability of bats to act as reservoirs is thought to be

mediated by a dampening of pro-inflammatory responses (30, 32,

34) as well as an increased resistance to infection mediated by

special features of the antiviral type I interferon (IFN) system

[reviewed in (35)]. GBPs are IFN-induced GTPases that have

been shown to have vital roles in host immunity to infection

and inflammation.

In this study, we screened available bat genomes for GBP genes.

Sequences for bats GBP1, GBP2, GBP4, GBP5, and GBP6 were

identified, indicating that these could be orthologs to their human

counterparts. It would be of interest to perform functional assays to

confirm if functions remain conserved, for example, both human
TABLE 1 Summary table showing the diversity of GBP genes found for each studied bat species.

Family Species
Genes

Total
GBP1 GBP2 GBP4 GBP5 GBP6a GBP6b

Rhinolophidae Rhinolophus ferrumequinum 1 0 1 1 2 1 6

Hipposideidae Hipposideros armiger 0 2 2 1 2 0 7

Pteropodidae

Rousettus aegyptiacus 1 0 2 1 1 0 5

Pteropus alecto 1 0 1 1 1 0 4

Pteropus giganteus 1 0 1 1 1 0 4

Pteropus vampyrus 1 0 1 1 1 0 4

Mormoopidae Pteronotus parnellii mesoamericanus 1 0 1 1 1 0 4

Phyllostomidae

Desmodus rotundus 1 1 1 1 3 0 7

Phyllostomus discolor 1 1 2 0 2 1 7

Sturnira hondurensis 1 1 1 1 3 1 8

Artibeus jamaicensis 1 1 2 1 2 1 8

Molossidae Molossus molossus 1 0 1 1 2 2 7

Miniopteridae Miniopterus natalensis 1 0 1 1 2 0 5

Vespertilionidae

Eptesicus fuscus 5 0 3 1 5 1 15

Pipistrellus kuhlii 2 0 1 1 3 1 8

Myotis myotis 3 0 6 2 2 1 14

Total 23 6 26 17 33 9 114
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and mouse GBP5 have been implicated in the NLRP3 activation

upon bacterial infection (36). However, considering the obtained

phylogenetic results, it is worth noting that some of the genes are

poorly identified in the public databases. For example, some of the

genes that are identified as GBP4 or GBP7 correspond, according to

the presented phylogenetic tree, to GBP6 genes. Furthermore, many
Frontiers in Immunology 06
genes in the GBP4 group are annotated as GBP7. GBP7, however,

has been shown to have emerged in primates as a duplication of

pGBP4 (9), our phylogenetic tree does not show a distinction

between bats GBP4 and GBP7 and these are also phylogenetically

close to Tupaia glis and Loxodonta africana GBP4. Accordingly,

these genes should be classified as GBP4. For these reasons, we
FIGURE 3

Bats Gbp6a and Gbp6b amino acid sequences diversity comparison. Alignments of the 33 Gbp6a and 9 Gbp6b sequences were used to create the
sequence’s logo graphical representations, using the WebLogo program (29). Only amino acid variable positions are depicted (see Supplementary
Material: Data 3). Amino acid residues that differentiate GBP6a from GBP6b are in red boxes; the position in the alignment for these residues is
indicated below the boxes.
TABLE 2 Estimates of net evolutionary divergence between GBP groups of sequences. .

Bats Primates

GBP1 GBP2 GBP4 GBP5 GBP6a GBP6b pGBP1 pGBP2 pGBP3 pGBP4/7 pGBP5

GBP2 0.092

GBP4 0.246 0.263

GBP5 0.113 0.142 0.233

GBP6a 0.251 0.265 0.092 0.247

GBP6b 0.270 0.286 0.115 0.267 0.068

pGBP1 0.083 0.119 0.288 0.149 0.288 0.308

pGBP2 0.123 0.084 0.289 0.179 0.292 0.317 0.134

pGBP3 0.080 0.118 0.285 0.150 0.291 0.309 0.043 0.127

pGBP4/7 0.250 0.262 0.087 0.250 0.104 0.129 0.288 0.289 0.284

pGBP5 0.174 0.204 0.300 0.102 0.309 0.332 0.202 0.223 0.197 0.313

pGBP6 0.285 0.297 0.123 0.286 0.071 0.102 0.325 0.323 0.329 0.123 0.344
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propose a review of the nomenclature of these genes in the

aforementioned databases and greater attention in subsequent

studies aiming to sequence genomes of bat species to avoid this

type of error (see Supplementary Material: Table 1). Gene

misannotation in public databases compromises not only

evolutionary studies but also, and maybe more relevantly, the

biological and functional understanding of the gene (37), leading

to erroneous conclusions.

Interestingly, our analysis shows the existence of two GBP6

genes in bats. The phylogenetic tree clustering (Figure 1), the

calculated genetic distances (Table 2) and the existence of specific

amino acids to both GBP6a and GBP6b, all support that these

should be considered two independent genes. Furthermore, GBP6a

and GBP6b seem to be evolving under different evolutionary

pressures. The duplication of GBP6 occurred in a Chiroptera

ancestor, circa 62 million years ago (38) given that both GBP6a

and GBP6b are present in Yinpterochiroptera and Yangochiroptera

suborders. GBP6a has persisted in all studied species and suffered

duplications in all but the Pteropodidae family species, Pteropus sp

and R. aegyptiacus. GBP6b, on the contrary, has been lost

independently in several lineages and is present mostly as a

single-copy gene. These different evolutionary patterns and the

existence of characteristic amino acids in each gene suggest that

GBP6a andGBP6b have evolved or are evolving to perform different

functions. All sequences present the four conserved elements for

nucleotide binding and hydrolysis (see alignment in Supplementary

Material: Data 2); G1-G4, where G1 (45GxxxxGKS/T52), G2 present
Frontiers in Immunology 07
a threonine (75T), G3 97DxxG100 and G4 with 179T/AVRD183 (for

GBP4, 6 and 7) (39). Despite this, the amino acid differences

between GBP6a and GBP6b are numerous. As such, functional

studies should be performed to understand how these differences

influence the biological roles of these two genes (expression,

localization and role against pathogens).

Of worth noticing, is also the discrepancy in the number and

diversity of GBP genes between bat families. Pteropodidae species,

having lostGBP2 andGBP6b, have the least diversity ofGBP genes and

also the fewest copies. On the opposite, Vespertilionidae bats, in

particular M. Myotis and E. fuscus, have an expansion of GBP genes,

each with a total of 15 GBP genes (Table 1). It is tempting to speculate

that the loss of GBP2 led to the expansion of GBP4 inM.Myotis and E.

fuscus since, in humans, upon Salmonella infection, GBP1 requires

GBP2 and GBP4 to recruit caspase-4 to the surface of the bacteria

(2, 40). However, in P. kuhlii or Pteropodidae bats, this trend is not

observed. The resulting patterns in the number of GBPs seem to be

species-specific and could have been caused by host-pathogen co-

evolution since bats can be reservoirs for several viruses. Gene

expansions have been described for other immune system genes in

Yangochiroptera bats, such as the IFITM locus (41), and more

specifically in the genus Myotis, for which an unusual expansion of

the S100A7 genes occurred (42).

Although bat genomes are smaller than the genomes of other

groups of mammals (13, 43), Pteropodidae (megabat) genomes tend to

be smaller than the genomes of other bats (44). One of the reasons

given is the fact that they have lost functions in an important line of
FIGURE 4

Sliding window analysis showing the nucleotide diversity along the GBP6a and GBP6b genes. The analysis was performed in DnaSP version 6.12 with
a window length of 250 nucleotides and a step size of 12 nucleotides. The GBP domains are indicated.
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long interspersed retrotransposable elements (LINES) known as LINE-

1 (45). LINE-1 retrotransposons are the most abundant in mammals;

in humans, for example, they account for around 15-20% of the

genome (46). That said, it is possible that this and other similar

events contributed to the notably reduced size of the megabat

genome and more specific studies are needed to understand the

reason for this reduction, as they are also the most distinct members

of the chiropteran order, given their size, distribution, food, among

others. The greater expansion of immune system genes in the genera

Myotis and Eptesicus may be related to the success of these genera in

colonizing new habitats (47).

This study further demonstrated that GBP3 and GBP7 are not

present in bats, genes which are also absent in rodents (8). These results

are congruent with the previous description of the emergence of these

genes in primates, GBP3 as a duplication of GBP1 and GBP7 as a

duplication of GBP4 (9). Several sequences of GBP pseudogenes were

identified in the bat genomes (see synteny; Figure 2A), several genes

were lost in different bat species and many GBP genes were duplicated.

These data strongly support the birth-and-death model of evolution,

which postulates that during evolution the genes from multigene

families suffer duplications; some of these genes can be maintained

in the genome, some can become pseudogenised and others can

acquire a new function (3, 8, 9).
5 Conclusion

The results of this study show that several evolutionary processes

occurred in the bats’ GBP gene family, such as gene deletions and

duplications. These data are in accordance with the birth-and-death

model of evolution, already attributed to members of this multigene

family. An expansion of this gene family was also demonstrated in M.

myotis and E. fuscus, and a reduction in it in members of the

Pteropodidae family. A duplication of the GBP6 gene was identified,

which gave rise to two new genes, here named GBP6a and GBP6b.

These genes present several different amino acids between the two

genes, changes which may affect function; therefore, it is suggested that

specific studies on the functions of these new genes should be carried

out. Here, we also propose a review of the nomenclature of this gene

family in order Chiroptera, since our results demonstrate that GBP

genes in bats were poorly annotated. Additionally, each bat species

presents a specific GBP evolution, possibly due to host-pathogen co-

evolution. More evolutionary studies should be carried out to fully

understand the complex evolution of GBPs and provide more insights

into their function. Additionally, it will be important to sequence more

bat species and improve the quality of some currently available

genomes, so that more complete evolutionary studies can be

carried out.
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