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affect human protective adaptive
immune responses
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and Joel E. Cohen3,4,5*

1Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York,
NY, United States, 2Department of Dermatology, Icahn School of Medicine at Mount Sinai,
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NY, United States, 4Department of Statistics, Columbia University, New York, NY, United States,
5Department of Statistics, University of Chicago, Chicago, IL, United States
Recognizing the “essential” factors that contribute to a clinical outcome is critical

for designing appropriate therapies and prioritizing limited medical resources.

Demonstrating a high correlation between a factor and an outcome does not

necessarily imply an essential role of the factor to the outcome. Human

protective adaptive immune responses to pathogens vary among (and perhaps

within) pathogenic strains, human individual hosts, and in response to other

factors. Which of these has an “essential” role? We offer three statistical

approaches that predict the presence of newly contributing factor(s) and then

quantify the influence of host, pathogen, and the new factors on immune

responses. We illustrate these approaches using previous data from the

protective adaptive immune response (cellular and humoral) by human hosts

to various strains of the same pathogenic bacterial species. Taylor’s law predicts

the existence of other factors potentially contributing to the human protective

adaptive immune response in addition to inter-individual host and intra-bacterial

species inter-strain variability. A mixed linear model measures the relative

contribution of the known variables, individual human hosts and bacterial

strains, and estimates the summed contributions of the newly predicted but

unknown factors to the combined adaptive immune response. A principal

component analysis predicts the presence of sub-variables (currently not

defined) within bacterial strains and individuals that may contribute to the

combined immune response. These observations have statistical, biological,

clinical, and therapeutic implications.
KEYWORDS

Taylor's law, adaptive immune response, bacterial pathogenesis, correlation, data
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Introduction

Humans vary widely in their susceptibility to infection (1).

Many studies identify variability in human immune genetics as a

major cause of this variability (2–4). Some promote the major role

of inborn errors of immunity as outweighing the possible role of

pathogen variability as a source for the observed variability in

human susceptibility to infection (5–7). However, recent evidence

suggests that variability in the pathogen (e.g., bacterial inter-strain

variability, viral inter-variant variability) contributes importantly to

variability in human susceptibility to infection. For example, the

Delta and Omicron variants of the SARS-CoV-2 virus carry

different risk for severe outcomes i.e., different rates of

hospitalization and death (8, 9), a variability that is probably a

result of the high mutation rate in RNA viruses (10).

Before the current pandemic, we demonstrated that different

strains of the same bacterial species can induce varied antigen-

specific protective adaptive immune responses (11). We showed

that the contribution to the variability in the human adaptive

immune response by different bacterial strains of the same species

(staphylococci) is at least as high as the variability in the immune

response to the same bacterial strain by different human hosts.

Considering that, during infection, at least two biological systems

interact, human and pathogen, and each with its own evolving

genetics, it is not surprising that the variability of the pathogen

contributes importantly to the variability in immune responses.

These findings raise the question about human susceptibility to

infection: How much do other factors, beyond genetic variability in

humans and pathogens, influence the variability in the human

protective adaptive immune response to a pathogen? One

approach to answering this question is to evaluate each candidate

factor with bench work and directly perform the immune assays. If

executed, a different and possibly more general approach might be

taken before evaluating a specific candidate. Can we predict the

existence of potential variables (without specifying them) that may

contribute to the variability in protective adaptive immune

responses? What is the relative contribution of these predicted

factors in comparison to the known ones? Answering these

questions may pave the way to defining which factor(s) might

have “essential” roles in the variability.

In this study, we use three statistical tools that may help to

predict the possible presence of other factors contributing to human

protective adaptive immune responses and to evaluate their relative

contribution: Taylor’s power law (TL), principal components

analysis (PCA), and a mixed-effects linear model (MLM).

Taylor’s power law (TL) describes a linear relationship between

the logarithm (hereafter log, always to the base 10) of the variance of

the population size or the density of a species and the log of the

mean of population size or density (12). While this relationship was

demonstrated in several thousand publications (13), its application

in human immunology is limited [Pp. 399-403 of reference 13].

Here, (i) we examine whether our previous findings that

demonstrate variability in the protective adaptive immune

responses (T and B cell) to the human pathogen Staphylococcus

aureus (11) can be modeled using TL, and (ii) we analyze the result

using MLM and PCA, a dimensionality reduction method, to
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predict that other variables may contribute to variability in the

human protective adaptive immune response to a pathogen.
Results

Peripheral blood mononuclear cells from 10 healthy human

donors were exposed to 16 different strains of S. aureus (11). For

each donor-strain pair, we measured four adaptive immune

responses: i) T cell proliferation, ii) interferon gamma (IFNg)
expression by proliferating T cells, iii) B cell proliferation, and iv)

immunoglobulin G (IgG) expression by proliferating B cells.

For each response separately, for each strain separately, we

calculated the mean and the variance of the response across the 10

donors and plotted the log variance (y axis) against the log mean (x

axis) of the resulting 16 (mean, variance) pairs. Also, for each

response separately, and for each donor separately, we calculated

the mean and the variance of the response across the 16 strains and

plotted the log variance (y axis) against the log mean (x axis) of the

resulting 10 (mean, variance) pairs.

To evaluate whether these results can be modeled with TL, we

fitted by least squares a straight line for T cell proliferation and IFNg
expression for the values across the 10 donors (Figure 1A;

Supplementary Figure 1A, respectively) as well as across the 16

strains (Figure 1C; Supplementary Figure 1B, respectively).

Similarly, we fitted a straight line for B cell proliferation and IgG

expression across the 10 donors (Figure 1B; Supplementary

Figure 1C, respectively), as well as across the 16 strains

(Figure 1D; Supplementary Figure 1D, respectively).

The linear regressions for T cell proliferation and IFNg
expression both across donors and across strains had squared

correlation coefficients R2 greater than 0.85, suggesting a strong

linear relationship of log variance to log mean. Visual inspection of

the plots is consistent with a linear relationship. By contrast, the

linear regressions for B cell proliferation and IgG expression (both

across donors and across strains) had much lower squared

correlation coefficients R2 (Table 1).

To test quantitatively whether the linear relationship of log

variance to log mean is better than plausible alternatives, we

evaluated whether an additional quadratic term significantly

better captures the relationship between log mean and log

variance (Materials and Methods, Equation 1). Adding a

quadratic term does not significantly improve the coefficient of

determination (R2) across donors and across strains for T cell

proliferation (Figure 2A and Supplementary Figure 2), IFNg
expression and IgG expression (Table 2; Supplementary Table 2;

Supplementary Figure 2). However, for B cell proliferation across

donors (Figure 2B), a quadratic fit is better than the linear one (B2 is

statistically significantly negative with a p-value=0.005). Thus, at

least for T cell proliferation and IFNg expression, both across

donors and across strains, a linear fit is the best fit among the

models we considered.

To compare whether strains or donors contribute more to the

variability in the immune responses, we test whether there is a

significant difference between the slope across donors and the slope

across strains in those cases where we verify a linear fit across
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donors and across strains. Because our data across donors and

strains are taken from the same samples, the usual assumption that

observations are independent does not hold and we cannot use the

standard analysis of covariance to compare the slopes across strains

and across donors from Figure 1 and Supplementary Figure 1.

Instead, we bootstrapped the data, repeatedly sampling with

replacement from the original data to create an ensemble of

statistically equivalent data sets.

Supplementary Figure 3A plots the histograms of the slopes

resulting from bootstrapping of T cell proliferation across donors

(red) and strains (blue). Figure 3A plots the histogram of the slope

across donors minus the slope across strains and demonstrates that

there is no significant difference in slopes for T cell proliferation.

This lack of significant difference in slopes of TL means that there is

no significant difference in the fractional increase of the variance

associated with a fractional increase of the mean T cell proliferation

whether the means and variances are calculated across donors or

across strains. Similarly, Figure 3B demonstrates no significant

difference in slopes of B cell proliferation across donors and

strains and Supplementary Figure 3 demonstrates similar findings
Frontiers in Immunology 03
for IFNg (Supplementary Figure 3D) and IgG expression

(Supplementary Figure 3H). Thus, in all four immune responses,

this analysis does not detect a significant difference in the rate of

increase of the variability in the adaptive immune response

resulting from given increases in the mean responses associated

with donors or strains. However, this finding of no difference in the

rate of increase of variability is a different question from whether, at

a given fixed average of the immune response level, donors or

strains contribute more to the variability of the immune response.

We address that question below.

The similarity between the slopes across donors and the slopes

across strains is not a tautologous or automatic consequence of using

the same array of data to estimate both versions of TL. To prove this,

the Supplementary Information Text and Supplementary Figures 4, 5

give two artificial examples of numerical arrays with 16 rows

(analogous to strains) and 10 columns (analogous to donors) in

which the slope of TL across rows is large and positive while the slope

of TL down columns is quite negative.

Where the data support a linear relationship (Figures 1, 2 and

Table 1) between log variance and log mean, we now ask whether the
TABLE 1 R2 values for log variance as a linear function of log mean, across donors and across strains, for four human immune responses.

T-cell IFNg B-cell IgG

Across donors 0.9388* 0.8598* 0.2020 0.4270

Across strains 0.9642* 0.9567* 0.0213 0.0930
*R2 > 0.85.
A B

DC

FIGURE 1

Modeling the human adaptive immune response to S. aureus with Taylor’s law. The mean and the variance of T-cell (A, C) and B-cell (B, D) proliferation
across 10 donors (A, B) and across 16 strains (C, D) were calculated. Then the log variance (y axis) was plotted against the log mean (x axis) of the
resulting 16 (log mean, log variance) pairs across donors, and a straight line was fitted by least squares. Similarly, the 10 pairs (log mean, log variance)
across strains were plotted, and a straight line was fitted by least squares. Results for IFNg and IgG expression by T-cells and B-cells, respectively, are in
Supplementary Figure 1.
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magnitudes of the slopes are more consistent with a Poisson (purely

random) distribution (in which the mean and variance are the same,

so the slope equals 1), or are more consistent with overdispersion (in

which variance is greater than mean, with a slope greater than 1)

which suggests some additional (yet unobserved) source of variation

beyond purely Poisson variation (14). As shown in Table 3, the slope is

greater than 1 for T cell proliferation across donors and across strains

and IFNg expression across strains. This result strongly suggests that

in addition to the variation induced by donors and strains, other

variable(s) may contribute to the variability in T cell proliferation and

IFNg expression.
Except for IFNg across donors, the slope of log variance as a

function of log mean is also less than 2. When that slope is less than

2, the coefficient of variation (standard deviation divided by the

mean) decreases as the mean increases, suggesting that the variation

in the immune response is increasingly controlled or regulated as

the average strength of the immune response increases.

TL may predict the presence of other contributing factors, as it

does here, but it does not quantify their relative contribution. Finding

slopes greater than 1 prompted us to compare the relative

contribution to the combined adaptive immune response of

bacterial variability between strains within the S. aureus species

with the contribution of the inter-individual-host variability. To

this end, we fitted a MLM in which the continuous dependent
Frontiers in Immunology 04
variable is the logit-transformed percentage of 10,000 cells that

responded, and the independent categorical variables are the four

assays (T-cell and B-cell proliferation, IFNg and IgG expression), the

16 bacterial strains, the 10 donors, the pairwise interactions of strains

with assays, and the pairwise interactions of donors with assays

(Materials and Methods). The predicted dependent values from the

MLM correlated very strongly with the logit-transformed response

percentages in the data (coefficient of determination R2 = 0.968,

Figure 4). The components of variance from this MLM (Table 4)

demonstrate that beyond the relatively large contribution of intra-

species inter-strain variability (31.1%) and inter-individual variability

(54.9%), other currently not known potential “Residual” sources

contribute 15% to the combined adaptive immune response.

The relatively high contribution of interindividual host

variability and inter-strain variability to the combined adaptive

immune response (Table 4) raises the question whether potential

additional sources (or “sub-variables”) contribute to the variance

within the groups of donors and or bacteria. To explore this

possibility, we performed PCA (Table 5). The first two

components in combination explain most of the variance in each

group (across all four assays, at least 84% of the variation among the

donors and at least 79% of the variation among the bacteria).

Further investigation may reveal specific features that play a major

role in explaining the principal components.
A

B

FIGURE 2

Linear and quadratic fit of the relationship between log-variance and log-mean in cell proliferation. Blue and red lines in the scatter plot represent
the linear and quadratic fit, respectively, for T-cell proliferation (A) and B-cell proliferation (B) across donors. See Table 2 for statistical differences
between the two fits, and Supplementary Figure 2 for other variables across donors and strains.
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Discussion

Even if a candidate factor A correlates strongly with protective

response B, to demonstrate that factor A has an “essential role” in

human susceptibility to infection, two additional steps are

required: (i) to evaluate whether additional factors may
Frontiers in Immunology 05
contribute to response B; and (ii) to evaluate the relative

contribution of factor A to response B. While factor A may

contribute to outcome B, its contribution relative to other factors

may be either negligible or essential. Therefore, to this end, in this

paper, we use an approach that first predicts the presence of

potential other factors that may contribute to the protective
A B

FIGURE 3

Bootstrap sampling distribution of difference in slope of Taylor’s law across donors and across strains for cell proliferation. Histogram of frequency
distribution of differences between the estimated slopes across donors and across strains obtained from 5000 bootstrapped samples for T-cell
(A) and B-cell (B) proliferation. Mean and standard deviation (sd) are depicted at top, and red vertical lines represent 95% confidence interval (2.5 and
97.5 percentiles are represented by left and right red lines, respectively).
TABLE 2 Linear and quadratic fits for T-cell and B-cell proliferation across donors.

T-Cells across donors (Linear)

Coefficients Estimate Std.Error t-value p-value R2

B0 0.609 0.323 1.88 0.081 0.939

B1 1.675 0.114 14.66 0.000

T-Cells across donors (Quadratic)

Coefficients Estimate Std.Error t-value p-value R2

B0 -2.315 2.956 -0.783 0.447 0.943

B1 3.795 2.134 1.779 0.099

B2 -0.379 0.381 -0.995 0.338

B-Cells across donors (Linear)

Coefficients Estimate Std.Error t-value p-value R2

B0 4.160 1.109 3.751 0.002 0.207

B1 0.620 0.324 1.910 0.077

B-Cells across donors (Quadratic)

Coefficients Estimate Std.Error t-value p-value R2

B0 -29.284 9.910 -2.955 0.011 0.579

B1 20.646 5.918 3.489 0.004

B2 -2.985 0.881 -3.387 0.005
fr
Least-squares estimates for intercept (B0), slope (B1) and curvature (B2), followed by standard error, Student's t statistic, p-value and coefficient of determination (R2).
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adaptive immune response beyond the known factors (human and

bacterial). Then, we analyze statistically the relative contributions

of different factors (including newly predicted ones) to human

protective adaptive immune responses (Table 6).

TL and a MLM can be used to suggest the potential presence of

additional variables, beyond the known factors, that may contribute

to the human immune response. The MLM can estimate their

relative contribution (both the known factors and the predicted

additional ones). PCA shows that the variability within each known

factor, here donors and bacteria, may be decomposed into finer sub-

variables. For example, the relatively high contribution of the

interindividual host variability (54.9%, Table 4) to the combined

adaptive immune response may indicate that host variability,

especially human immune genetics, has an essential contribution.

PCA raises the possibility that the host contribution results in part,
Frontiers in Immunology 06
at least, from several potential sub-variables, such as: interindividual

variability in Vitamin D level, a vitamin that is essential for proper

immune response during infection (15); variability in B12 and folic

acid, zinc and other trace elements that are necessary for proper

immune system function and for eliminating the infection (16–18);

variability in the microbiome; variability in body mass index

[obesity impairs immune function, leukocyte count and adaptive

immune response (19–21)]; and perhaps others.

A similar analysis should be applied to other potential sub-

variables that might be included in inter-strain variability. As all

bacterial strains were grown under the same nutritional conditions

and temperature, our current knowledge suggests that most effects

contributed by inter-strain variability probably originate from

genetic variation among strains.

By using TL, we have shown a previously unrecognized,

systematic pattern in the variability of some human immune

responses. Specifically, for T cell proliferation and IFNg
expression, the variance of the fraction of responsive human

blood cells increases as a power of the corresponding mean

responses, whether mean and variance are calculated across

human subjects or across bacterial strains within S. aureus. A

practical statistical implication of this finding is that ordinary

analysis of variance (ANOVA) cannot be used to compare the

responses of two groups of such observations because ANOVA

assumes equal variances in all groups being compared. TL shows

how the variance can be rescaled to render ANOVA applicable if the
FIGURE 4

The association between logit-transformed data (observed logit) and predictions (predicted logit) from a mixed-effects linear model. The MLM
includes assay, strain, donor, and two-way interactions of strain with assay and of donor with assay as fixed effects and random effects for bacteria
and donor, and interactions donor with assay and bacteria with assay. The dashed lines are 95% prediction intervals. R2 is the coefficient
of determination.
TABLE 3 Slope plus or minus 95% confidence interval, across donors and across strains, for four human immune responses.

T-cell Prolif IFNg B-cell Prolif IgG

Across donors 1.6754 ± 0.2452* 1.8608±0.4308 0.6144±0.700 0.5588±0.3710

Across strains 1.599±0.2511* 1.6805±0.2914* 0.1715±0.8762 0.4159±1.0591
*1 < Slope ±95% CI < 2.
TABLE 4 Variance components extracted from the mixed-effects model.

Source
of

Variation

Variance
(Random
Effect)

Std. Dev. %
Component
of Variance

Bacteria* 0.718 0.847 31.1

Donors^ 1.31 1.15 54.9

Residual 0.36 0.6 15
*Total Bacterial contribution in isolation plus their interaction with assay.
^Total Donors contribution in isolation plus their interaction with assay.
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mean response varies among groups. Biologically, TL shows that the

higher the immune response, the more variable it is, in an orderly

way. Consequently, there is more room for evolution, as evolution

depends on variation (22, 23).

The statistical approaches proposed in our study have

independent variables (predictors) and dependent variables

(outcomes). Our examples currently have only categorical

independent variables such as various bacterial strains or different

human donors, and only continuous dependent variables such as %

T cell proliferation response. The statistical approaches can

potentially be extended in future work to include, for example,

categorical independent variables and categorical dependent

variables, e.g., the relative contribution of a mutation in a human

immune gene (independent) to death or survival during

infection (dependent).

Our results may also have medical and therapeutic implications.

The relatively high variability in protective adaptive immune

responses to different pathogenic bacterial strains may lead to

variabil ity in the clinical outcome. In the future, an

understanding of inter-strain variability may affect how we treat

an infection. For example, in the case of S. aureus bacteremia, two

main factors that affect the way we treat the patients are the

antibiotic sensitivity of the specific strain, and whether the

bacteremia is defined as complicated (in which case, 4 weeks

instead of 2 weeks (24) of intravenous antibiotic treatment are

warranted). However, currently, the strain-dependent variability in

intensity of the protective adaptive immune response is not yet part

of the decision algorithm used for treatment. Yet, if it were, a

treatment tailored to the specific characteristics of the infecting

strain’s genetics would result in a more predictable outcome.
Frontiers in Immunology 07
Materials and methods

Blood and bacterial samples

For details see Sela et al. (11). Briefly, blood samples were

collected from 10 healthy donors according to our IRB guidelines.

PBMCs were isolated and reacted against each of 16 Staphylococcus

aureus strains from our lab repository. T cell and B cell proliferation

as well as IFNg expression by T cells and IgG expression by B cells

were measured with flow cytometry.
Quadratic variance function

For each response, and for each alternative across donors or

across strains, X = log mean and Y = log variance. The quadratic

model is [25; see page 388, Equation (14)]:

Y = B0 + B1 ∗X + B2 ∗X
2 + Error (1)
Bootstrapping

Bootstrap was performed to assess differences between slopes

estimated across donors and bacteria strains. 5000 resamples were

drawn using the function “sample” in R software, setting a seed

parameter for reproducibility. In each resample, we fitted two linear

regressions modeling the log variance as a function of the log mean

of responses; one across donors, the other across strains. The 95%

confidence limits were derived from computing the 2.5 and 97.5

percentiles of differences between slopes generated in the resamples.
Mixed effect models and components
of variance

We fitted a linear mixed-effects model to logit-transformed

responses (percentage of donor blood cells responding). The model

was fitted by the Restricted Maximum Likelihood method

implemented in the “lmer” R package. In R notation, our model was:
TABLE 5 Percentage of variance explained by components 1, or 2, or 1 and 2 from principal components analysis.

Variable Observation Component B cell T cell IFNg IgG

Donor Bacteria 1 71.4183 86.4368 64.1242 75.3673

Donor Bacteria 2 12.8487 5.4403 19.8557 10.2623

Donor Bacteria 1 and 2 84.267 91.8772 83.9799 85.6296

Bacteria Donor 1 79.2881 82.3364 55.9695 74.5172

Bacteria Donor 2 8.3626 6.1720 22.6551 11.8781

Bacteria Donor 1 and 2 87.6507 88.5085 78.6246 86.3952
Boldface lines 3 and 6 combine and summarize lines 1, 2 and 4, 5 respectively.
TABLE 6 Statistical tools useful to determine whether a proposed factor
has an “essential role” in an immune response.

Statistical test Conclusions

Taylor’s law (TL) Points to the existence of other variables

Logit transformation/
mixed effects
model (MLM)

Points to the existence of other variables (residuals)
and their relative contribution compared to the
known variables

Principal components
analysis (PCA)

Points to the existence of additional sub-variables
within the known variables
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lmer(logitp ∼  1 + bacteria + assay + donors + bacteria : assay

+ donors : assay + 1jbacteriað Þ + 1jdonorsð Þ + 1jbacteria : assayð Þ

+ 1jdonors : assayð Þ :
The fixed effects were bacteria, assay, donors, bacteria:assay

interaction, and donors:assay interaction. The random effects were

(1|bacteria) + (1|donors) + (1|bacteria:assay) + (1|donors:assay).

Using the intra-class correlation coefficient, we attributed to donors

the components of variance due to both terms (1|donors) + (1|

donors:assay). Similarly, the components of variance we attributed

to bacterial strains were due to both terms (1|bacteria) + (1|bacteria:

assay) (Table 4).

We fitted a simple linear regression to evaluate how close the

predicted values from the mixed model were to the observed logit-

transformed responses. We also computed the coefficient of

determination R2 and the 95% prediction interval (Figure 4) with

the formulation described in [26, pp. 226-227].
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SUPPLEMENTARY FIGURE 1

Modeling the adaptive immune response to S. aureuswith Taylor’s law for IFNg
(A, B) and IgG expression (C, D) across donors (A, C) and strains (C, D).

SUPPLEMENTARY FIGURE 2

Linear and quadratic fit of the relationship between log-variance and log-mean

in cell proliferation and expression. Blue and red lines represent the linear and
quadratic fit, respectively, for T-cell (A) and B-cell (B) proliferation across strains,

IFNg (C, D) and IgG (E, F) expression across donors (C, E) and strains (D, F).

SUPPLEMENTARY FIGURE 3

Bootstrap sampling distribution for slopes and difference between slopes
across donors and across strains. Histogram of frequency distribution of 5000

bootstrapped slopes across donors (left panel in A, C, E, G) and across strains
(right panel in A, C, E, G) in T-cell (A), B-cell (E) proliferation, IFNg (C), and IgG

(G) expression. Histogram of frequency distribution of 5000 bootstrapped

differences (B, D, F, H) between estimated slopes across donors and across
strains in T-cell (B) B-cell (F) proliferation, IFNg (D) and IgG (H) expression.
Red vertical bars delimiting 95% confidence interval (2.5 percentile and 97.5
percentile are represented by left and right red lines, respectively).

SUPPLEMENTARY FIGURE 4

First of two artificial examples of numerical arrays with 16 rows (analogous to

strains) and 10 columns (analogous to donors) in which the slope of TL across
rows is large and positive while the slope of TL down columns is negative.

SUPPLEMENTARY FIGURE 5

Second of two artificial examples of numerical arrays with 16 rows (analogous

to strains) and 10 columns (analogous to donors) in which the slope of TL

across rows is large and positive while the slope of TL down columns
is negative.

SUPPLEMENTARY TABLE 2

Linear and quadratic fits of log variance as a function of log mean for T-cell

and B-cell proliferation across strains and IFNg and IgG across donors and
across strains.
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