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Poly I:C elicits broader and
stronger humoral and cellular
responses to a Plasmodium vivax
circumsporozoite protein malaria
vaccine than Alhydrogel in mice
Tiffany B. L. Costa-Gouvea1, Katia S. Françoso1†,
Rodolfo F. Marques1†, Alba Marina Gimenez1, Ana C. M. Faria1,
Leonardo M. Cariste2, Mariana R. Dominguez1,
José Ronnie C. Vasconcelos2, Helder I. Nakaya1,3,4,
Eduardo L. V. Silveira1*‡ and Irene S. Soares1*‡

1Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of
São Paulo, São Paulo, Brazil, 2Laboratório de Vacinas Recombinantes, Departamento de Biociências,
Universidade Federal de São Paulo, Santos, Brazil, 3Institut Pasteur São Paulo, São Paulo, Brazil,
4Hospital Israelita Albert Einstein, São Paulo, Brazil
Malaria remains a global health challenge, necessitating the development of

effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf)

malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we

evaluated the murine immunogenicity of a recombinant PvCSP incorporating

prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both

formulations induced prolonged IgG responses, with IgG1 dominance by the

Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart.

Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-

differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-

combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed

an antibody-secreting cell- and MBC-differentiating gene expression profile.

Biological processes such as antibody folding and secretion were highlighted by

the Poly I:C-adjuvanted vaccination. These findings underscore the potential of

Poly I:C to strengthen immune responses against Pv malaria.
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1 Introduction

Malaria continues to exert a substantial global health burden in

tropical and subtropical regions worldwide. According to theWorld

Health Organization (WHO), this disease affected an alarming 3.2

billion individuals in 84 countries in 2021, highlighting that 40% of

the world population live in areas at risk of infection. Nearly,

620,000 individuals were killed, especially children, by this illness

in the African sub-Saharan region. Among the Plasmodium

parasites capable of transmitting malaria to humans, five species

stand out: Plasmodium falciparum (Pf), Plasmodium vivax (Pv),

Plasmodium ovale, Plasmodium malariae, and Plasmodium

knowlesi. Pf, the deadliest of these species, commands attention,

but Pv, with its wide distribution and status as the second most

prevalent species, presents unique challenges. Contrary to historical

perceptions of Pv malaria as benign, recent observations reveal

severe symptoms, including cerebral damage, acute kidney injury,

anemia, and respiratory complications in afflicted individuals (1).

Notably, data from the WHO indicate 4.9 million Pv infections

diagnosed annually in Asia, the Western Pacific, the Mediterranean,

Central, and South America (2). Adding complexity to the Pv

malaria landscape, the parasite can establish dormant hypnozoites

in the liver, which may reactivate and lead to recurrent malaria

episodes (3).

Malaria elimination and, ultimately, eradication require a

multifaceted approach. While vector management and timely

diagnostics and treatment remain pivotal, the development of a

protective and universally effective malaria vaccine stands as a

critical objective long pursued by the scientific community. The

circumsporozoite protein (CSP), expressed abundantly on

Plasmodium sporozoites during the pre-erythrocytic stage of

infection, has emerged as a leading vaccine candidate (4). Its

central-repeat portion, the most immunogenic region, has

demonstrated the ability to generate antibodies capable of

neutralizing sporozoites, thereby inhibiting hepatocyte invasion

and preventing subsequent morbidity and mortality. Due to the

antigen density in the blood-stage of infection and ability to evade

infection, residents of malaria-endemic regions tend to develop an

increased frequency of antibody-secreting cells (ASCs) and memory

B cells (MBCs) specific to non-CSP targets over CSP (reviewed by

5). To overcome this issue, the RTS,S vaccine was conceived. This

AS01 adjuvanted-vaccine comprises virus-like particles (VLP),

encoded by the hepatitis B virus antigen, expressing different

portions of the Pf circumsporozoite protein (CSP): the central-

repeat domain and the C-terminal region containing T-cell

epitopes. While the full RTS,S vaccination displayed variable

efficacy depending on the local parasitic transmission levels, its

protection proved to be of limited duration (6). Importantly, high

antibody titers specific to the central-repeat region of CSP have

been considered RTS,S-derived correlates of protection against Pf

malaria (7). Notably, children aged 5-17 months exhibited higher

anti-PfCSP IgG titers and protection following a full RTS,S

vaccination regimen compared to their 6-12 week-old

counterparts (8). Hence, the WHO has approved the

implementation of RTS,S vaccination in malaria endemic areas of

the African sub-Saharan region (9). However, the central-repeat
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region of PvCSP has a particularity relative to its Pf counterpart.

While Pf sporozoites display a conserved central-repeat region of

CSP, polymorphisms have been associated with the Pv sporozoite

origin (10–12). Despite this diversity, neutralizing antibody-specific

epitopes have been identified within the PvCSP central-repeat

region (13, 14), further emphasizing the need for a universal

vaccine against Pv malaria.

In the pursuit of a malaria vivax vaccine, two distinct

approaches have been explored: PvCSP-derived peptides and

virus-like particles (VLPs). The former has demonstrated safety

and immunogenicity, stimulating both humoral and cellular

responses in a naive population (15). Additionally, the Qb-
peptide platform has induced robust humoral responses and

protection against minimal PvCSP peptides (16). On the other

hand, VLPs consist of a vector system to display foreign antigens as

viral to the host immune system. This strategy has been extensively

evaluated, being remarkably effective in generating protection in

numerous animal models of infections, including malarial Pv

sporozoites. In the latter, immunization with VLP-expressing

Rv21 provided a high degree of protection against virulent Pv

sporozoite challenges in mice, with Rv21-specific IgG2a

antibodies associated with protection, even in the absence of

PvCSP-specific T cell responses (17). Moreover, our group

revealed that the Poly I:C-adjuvanted immunization with a

recombinant PvCSP, encoding its central-repeat region composed

by sequences of the 3 major alleles (VK210, VK247, and P. vivax-

like) and the C-terminal region, elicited high and long-lasting IgG

responses against all alleles in mice (18). Overall, this immunization

conferred partial protection against parasitic challenges with

transgenic P. berghei (Pb) sporozoites expressing VK210 or

VK247 or P. vivax-like PvCSP alleles in their central-repeat

region (18–20). Also, the fusion of these 3 PvCSP alleles with the

mumps viral nucleocapsid protein formed stable nucleocapsid-like

particles (NLP) and protected mice against a malarial challenge

with transgenic Pb sporozoites expressing VK210 when combined

with Poly I:C (21). However, the precise mechanisms of protection

associated with these vaccines remain elusive.

The adjuvant selection is a critical step in vaccine development,

with multiple adjuvants described, some advancing to clinical trials,

and a few approved for human use. Among them, aluminum salts

are widely used adjuvants, comprising amorphous aluminum

hydroxyphosphate sulfate, aluminum phosphate, potassium

aluminum sulfate, and aluminum hydroxide (including

Alhydrogel). Regarding their adjuvant properties, aluminum salts

were initially thought to present a slow and continuous antigen

release (depot effect) to recruit antigen-presenting cells (22) and

eosinophils to the inoculum site (23). Nowadays, it is accepted that

their mechanism of action is linked to the activation of NLRP3

inflammasome (24). More specifically, aluminum salts are

phagocyted by dendritic cells (DCs) at the injection site, leading

to their lysosome blockade and necrosis. Monosodium urate

derived from a damage-associated molecular pattern, such as uric

acid, can also inhibit DC lysosomes, facilitating the release of

antigens and cathepsin B in those necrotic cells. Finally, cathepsin

B stimulates the potassium flux that triggers the NLRP3

inflammasome (25–27). Another promising adjuvant is the Poly
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I:C, a synthetic double-stranded RNA molecule recognized by Toll-

like receptor 3 (28, 29) and the cytoplasmic melanoma

differentiation-associated protein-5 (MDA-5) (30). This adjuvant

stimulates the production of IL-12 and type I IFN, intensifying the

innate immunity (31) and vaccine-derived immune responses (32,

33). After interaction, TLR3 dimers cluster along Poly I:C, enabling

TRIF recruitment (34, 35) and assembly for the proper downstream

signaling through TRAF (36). Furthermore, adjuvants based on the

Poly I:C structure have reached clinical trials in humans (37).

In this context, we embark on a comparative analysis,

examining the humoral and cellular immune responses elicited by

immunizations with yPvCSP-AllCT epitopes combined with Poly I:

C or Alhydrogel. In addition, we conduct transcriptomic analysis on

splenocytes from mice vaccinated with yPvCSP-AllCT epitopes or

yNLP-PvCSPCT adjuvanted with Poly I:C, or Poly I:C alone,

shedding light on the mechanisms underlying these B-cell

responses. These findings hold the potential to enhance the

development of efficient malaria vivax vaccine formulations and

bring us closer to the ultimate goal of malaria eradication.
2 Materials and methods

2.1 Animals

Six to eight-week-old female C57Bl/6 mice were purchased

from the mouse facility at the School of Medicine at the

University of São Paulo (USP). The animals were housed under

specific pathogen-free conditions at the animal facility of the School

of Pharmaceutical Sciences and Biochemistry Institute, USP, with

unrestricted access to water and food. All experiments and

procedures were performed in accordance with guidelines

approved by the local ethics committee (CEUA/FCF 055.2019-

P594 and CEUA/FCF 74.2016-P531).
2.2 Production of the vaccine antigen

The yPvCSP-AllCT epitopes recombinant protein was expressed

and purified from Pichia pastoris yeast (y) as previously described

(18), following good laboratory practices by The Biological Process

Development Facility, The College of Engineering at the University

of Nebraska (USA).
2.3 Immunizations and sampling

To evaluate both humoral and cellular responses, C57Bl/6 mice

underwent three intramuscular (i.m.) immunizations with a 2-week

interval between each dose. Each vaccine dose consisted of 10

micrograms of yPvCSP-AllCT epitopes adjuvanted with 50

micrograms of Poly I:C HMW (Invivogen) or a 1:1 volume of

Alhydrogel (Invivogen), totaling 100 microliters. Half of this

volume was administered into each thigh muscle. Plasma samples

were collected from immunized animals one day before each

vaccination dose through submandibular vein puncture. To
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investigate the Poly I:C effect on the splenic transcriptome of

vaccinees, C57Bl/6 mice were immunized three times, two-weeks

apart, with 10 micrograms of recombinant protein (yPvCSP-AllCT
epitopes or yNLP-PvCSPCT) adjuvanted with 50 micrograms of

Poly I:C HMW (Invivogen) in both cases via the subcutaneous (s.c.)

route (38). Spleens were excised after different time points after the

2nd or 3rd vaccine doses for the analysis of cellular responses

or transcriptome.
2.4 ELISA

Enzyme-linked immunosorbent assays (ELISAs) were

conducted to determine titers of plasma IgG antibodies and their

isotypes (IgG1, IgG2b, IgG2c, and IgG3) specific to the vaccine

antigen (yPvCSP-AllCT epitopes). These assays followed a standard

operating procedure (SOP) developed by the Clinic Parasitology

Laboratory staff (led by Dr. Irene Soares, School of Pharmaceutical

Sciences at USP) with modifications. Briefly, ELISA plate wells

(Costar high-binding - REF 3590) were coated with 1µg/mL of the

recombinant protein used in immunization (yPvCSP-AllCT
epitopes). Following overnight incubation at 4°C, plate wells were

washed four times with PBS and four times with PBS containing

0.5% Tween 20 (0.5% PBS-T20). Subsequently, they were blocked

with a 2-hour incubation in blocking solution (PBS supplemented

with 10% FBS) at room temperature. Plasma serial dilutions from

immunized mice, ranging from 1:100 in blocking solution, were

individually added to each plate well and incubated for 90 minutes

at room temperature. Plate wells were washed four times with 0.5%

PBS-T20, followed by a 90-minute incubation with anti-mouse IgG,

IgG1, IgG2b, IgG2c, or IgG3 antibodies conjugated with peroxidase

(Southern Technologies, Chattanooga, TN, USA) diluted 1:3,000 in

blocking solution at room temperature and in the dark. The final

washing steps included four washes with 0.5% PBS-T20 and four

washes with PBS. Revelation was carried out using 1mg/mL of O-

phenylenediamine (OPD) diluted in phosphate-citrate buffer (pH

5.0) containing 0.03% hydrogen peroxide. The addition of 4N

sulfuric acid to each plate well halted the reaction. Plates were

immediately read in an ELISA reader (Awareness Technology,

model Stat Fax 3200, USA) at an optical density of 492 nm. We

considered the end-point titer of a tested sample when its respective

dilution presented an optical density (OD) value equal or higher

than three-times the blank counterpart.

To estimate the avidity of vaccine-derived antibodies, we

conducted an ELISA as described above with the following

modifications. After the 90-minute incubation with selected

dilutions of day 90-derived plasma samples that generated optical

density ratios (450nm/630nm) nearly 1.0, plate wells were washed

twice with 0.5% PBS-T20, followed by two washing steps with PBS.

Different urea concentrations (6 M, 2 M, and 0.66 M), diluted in

PBS, were individually added to each plate well and incubated for 30

minutes at room temperature. Plate wells were washed twice with

PBS, followed by the incubation with peroxidase-conjugated anti-

mouse IgG antibodies as described above. Values corresponding to

the plate wells incubated with no urea represented maximum

antibody avidity.
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2.5 Measuring spleen areas

To estimate the size of the spleen areas, we used the ImageJ

software and performed the following steps: 1) A picture of a

murine spleen was always taken with a ruler on its side; 2) Image

was duplicated, gray-scale transformed (8-bit images), and had its

scale adjusted to cm2 with the aid of a line of known length; 3)

Image was cropped, had its defective region segmented through a

manual-adjusting threshold, and the respective remaining area

was measured.
2.6 ELISPOT

To enumerate antibody-secreting cells specific to the yPvCSP-

AllCT epitopes recombinant protein used in immunization, the

enzyme-linked immunosorbent spot (ELISPOT) assay was

employed, following a previously described protocol (39) with

modifications. Briefly, 10 µg/mL of the vaccine antigen (yPvCSP-

AllCT epitopes) were diluted in PBS to coat individual wells of

ELISPOT plates (Millipore - cat. MSHAN4B50). After overnight

incubation at 4°C, plate wells were washed four times with PBS

containing 0.05% Tween 20 (0.05% PBS-T20), followed by four

washes with PBS. Plate wells were blocked for 2 hours with RPMI

1640 cell culture medium supplemented with 10% FBS (blocking

solution) in a 5% CO2 incubator at 37°C. After blocking, the

solution was removed, and 106 splenocytes from each immunized

mouse were diluted in blocking solution and added to the first-row

wells of the ELISPOT plates. Serial cell dilutions, with a 3-fold

factor, were performed across the remaining rows, and the plates

were incubated overnight at 37°C in a 5% CO2 incubator.

Subsequently, cells were removed from the ELISPOT plates, and

wells were washed four times with 0.05% PBS-T20. An anti-mouse

IgG secondary antibody conjugated with biotin (Thermo Fisher

Scientific - Cat. B2763), diluted 1:1,000 in PBS containing 0.05%

Tween 20 and 2% FBS, was added to the plate wells and incubated

for 90 minutes at room temperature. Plate wells were washed four

times with 0.05% PBS-T20 and incubated with Avidin-D-HRP

(Vector labs), diluted 1:1,000 in 1X PBS containing 0.05% Tween

20 and 2% FBS, for 3 hours in the dark at room temperature.

Following incubation, plate wells were washed four times with

0.05% PBS-T20 and four times with PBS. Revelation was carried

out by adding the 3-amino-9-ethyl carbazole (AEC) substrate (BD

Cat. # 551015) to the plate wells as recommended by the

manufacturer. Plate wells were washed with running water and

dried before images were obtained using an AID ELISPOT plate

reader (KS ELISPOT, Zeiss, Oberkochen, Germany).
2.7 Cell staining

After anesthesia and euthanasia, the spleens were removed and

macerated in PBS. Red blood cells (RBCs) were eliminated after a 5-
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minute incubation with the Ack lysis buffer (Lonza) at room

temperature. The remaining splenocytes were washed twice with

PBS supplemented with 2% FBS (PBS-2% FBS) before staining for

distinct B cell subsets. An antibody cocktail was added to the

samples for 30 minutes in the dark at 4°C, including anti-B220-

APC-Cy7 (clone RA3-6B2 - BD), anti-CD3-FITC (clone 17A2 -

Biolegend), anti-F4/80-FITC (clone BM8 - Biolegend), anti-CD138-

PE (clone 281.2 - Biolegend), and anti-CD38-APC (clone 90 -

eBioscience). Stained cells were washed twice with PBS-2% FBS and

fixed with a 4% paraformaldehyde solution. Event acquisition was

performed using a FACSCelesta (BD), and data analysis was

conducted with FlowJo software.
2.8 RNA extraction, cDNA library
preparation, and sequencing

Mice immunized with yPvCSP-AllCT epitopes or yNLP-

PvCSPCT adjuvanted with Poly I:C, or Poly I:C alone had their

spleens excised two weeks after the immunization regimen as well as

naive mice. Splenic B-cells were purified using MagniSort ™Mouse

B cell Enrichment (ThermoFisher Scientific), resuspended in

RNAlater solution (ThermoFisher Scientific), and stored at -80°C

until use. Total RNA was extracted using the Quick - RNA

Miniprep kit (Zymo Research, USA) following the manufacturer’s

instructions. RNA integrity was verified for each sample using the

Agilent 2100 BioAnalyzer and Agilent RNA 6000 Nano Chips

(Agilent). mRNA preparation was performed using the rRNA

depletion technique with the Agilent DNA 1000 kit and Agilent

2100 BioAnalyzer equipment. cDNA library preparation and

sequencing were conducted by Quick Biology Inc (Pasadena, CA,

USA) using the HiSeq 4000 equipment, generating approximately

24 million reads.
2.9 Systems biology analysis

Differentially expressed genes (DEGs) were identified using the

edgeR program (40). A gene was considered differentially expressed

when the p-value was < 0.05 and the fold change (FC) was > 1.5

times compared to naive mice. Functional enrichment analysis

utilized the Reactome database (41) through the EnrichR tool

(http://amp.pharm.mssm.edu/Enrichr/), with an adjusted

p-value < 0.05 indicating statistically significant enrichment.

Protein-protein interaction networks were constructed using the

NetworkAnalyst 3.0 platform (42) with IMEX interactome curated

from the InnateDB database (43), considering only experimental

evidence and a 900 confidence-score cutoff. Transcription factor-

DEG interaction networks were also defined using the

NetworkAnalyst 3.0 platform with the ENCODE ChIP-seq data

package following set-up: peak intensity signal <500 and predicted

regulatory potential score <1 (through the BETAMinus algorithm).

Based on particular parameters, such as degree and betweenness

centrality, the resulting networks were visualized with Cytoscape
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version 3.7.2 (44), and the subnetworks illustrated only immunity-

related pathways. DEGs exclusively detected in mice immunized

with yPvCSP-AllCT epitopes + Poly I:C were highlighted in red,

while DEG-associated transcription factors or DEG-relative

protein-associated proteins were represented in purple or

yellow, respectively.
2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism for

Windows, version 6.0 (GraphPad Software, Inc., La Jolla, CA, USA)

using a Two-way ANOVA with multiple comparisons through

Sidak’s test, computing confidence interval and significance. A p-

value (p<0.05) indicated a significant difference between the two

groups evaluated.
3 Results

3.1 Poly I:C-adjuvanted vaccination
induced a balanced and durable IgG
response compared to Alhydrogel

To assess the immunogenicity of a malaria vaccine targeting

PvCSP (yPvCSP-AllCT epitopes) with different adjuvants, we

conducted a comprehensive study involving 12 C57Bl/6 mice

immunized via intramuscular injection with three doses
Frontiers in Immunology 05
administered at 14-day intervals. The vaccine formulations were

combined with either Poly I:C or Alhydrogel as adjuvants. We

closely monitored the immune responses of these mice for nearly

500 consecutive days. Plasma samples were collected at various time

points before, during, and after vaccination to measure total IgG

titers specific to the vaccine antigen using ELISA (Figure 1A).

As expected, we observed a significant increase in IgG titers

after each vaccination, regardless of the adjuvant used. Interestingly,

the presence of Poly I:C as an adjuvant resulted in a slightly faster

onset of the vaccine-induced humoral response compared to

Alhydrogel. Specifically, Poly I:C-adjuvanted vaccination led to

the peak of IgG titers at day 42, maintaining this elevated level

until day 120. In contrast, the group that received Alhydrogel had a

delayed peak in antibody titers, occurring at day 90 (Figure 1B).

Importantly, both adjuvants induced IgG antibodies with similar

avidity against the vaccine antigen (yPvCSP-AllCT epitopes)

(Supplementary Figure 1A). Antigen-specific IgG titers declined

significantly by day 150 but were maintained at a certain level until

day 495 for both adjuvants. This suggests that vaccination with

either adjuvant can induce durable humoral responses in

mice (Figure 1B).
3.2 IgG isotype profile highlights
differential immune responses

The vaccine formulations elicited distinct IgG isotype profiles,

shedding light on the nature of the immune response induced by
B

A

FIGURE 1

Adjuvanted-malaria vaccine specific to P. vivax circumsporozoite protein elicits long-lasting IgG responses in mice. (A) Outline of the blood draws
and intramuscular vaccination with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C (n=6) or Alhydrogel (n=6). (B) IgG titers
specific to the vaccine antigen were measured before, during and after vaccination in plasma samples through ELISA. Dots and columns represent
individual values detected for each mouse and median, respectively. Red and blue colors indicate animals immunized with yPvCSP-AllCT epitopes +
Poly I:C or Alhydrogel, respectively. *p<0.05; **p<0.01; ****p<0.0005.
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each adjuvant. Notably, IgG1 dominated the humoral response in

Alhydrogel-adjuvanted vaccinees, with significantly higher titers

observed at day 42 compared to those in the Poly I:C-adjuvanted

group (Figure 2A). In contrast, while IgG1 displayed the highest

titer among the IgG isotypes in Poly I:C-adjuvanted vaccinees,

IgG2c, IgG2b, and IgG3 titers followed a hierarchical pattern,

peaking also at day 42, with higher magnitudes and a more

balanced IgG1/IgG2c ratio (Th1/Th2 profile) compared to
Frontiers in Immunology 06
Alhydrogel counterparts (Supplementary Figure 1B). These

antibody titers significantly declined by day 150 (IgG1) or day

180 (IgG2b, IgG2c, and IgG3), becoming undetectable at day 495

(IgG3) in the Poly I:C-adjuvanted group. In contrast, Alhydrogel-

adjuvanted vaccinees initiated the decline a bit earlier (day 90) for

IgG1, but their remaining IgG isotypes maintained low titers, as

observed at day 42, except for IgG3, which was undetected by day

495 (Figures 2B–D).
B

C

D

A

FIGURE 2

Poly I:C-adjuvanted malaria vaccine triggers a broader isotypic diversification of IgG responses via the intramuscular route in comparison to the
Alhydrogel counterpart. Mice were immunized via intramuscular with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C (n=6)
or Alhydrogel (n=6). (A) IgG1; (B) IgG2b; (C) IgG2c; (D) IgG3) titers specific to the vaccine antigen were measured before, during and after
vaccination in plasma samples through ELISA. Red and blue colors indicate animals immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel,
respectively. Dots and columns represent individual values detected for each mouse and median, respectively. *p<0.05; **p<0.01; ****p<0.0005.
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3.3 Poly I:C-adjuvanted vaccination
enhances the frequency of antibody-
secreting cells and memory B cells

To investigate the impact of adjuvants on the spleen cellularity

and on the frequency of B cell subsets, 18 animals were immunized

with half receiving each adjuvant (Figure 3A). Disregarding the

adjuvant used, spleen areas tended to increase from 2nd to final
Frontiers in Immunology 07
vaccination (day 5). Five days later, those organs returned to initial

measures (Supplementary Figures 2A, B). Since B cells, involved with

antibody responses, are the most abundant immune cells in murine

spleens (45), we quantified the frequency and absolute number of

several B-cell subsets at various time points following immunization

with Poly I:C or Alhydrogel using flow cytometry (Supplementary

Figure 3). Short-lived plasmablasts (PBs) typically follow specific

kinetics upon immunization in different mammals (46–49). In this
B

C D

E F

A

FIGURE 3

Poly I:C-adjuvanted malaria vaccine induces a more potent antibody-secreting cell response in the mouse spleen via the intramuscular route than
the Alhydrogel counterpart. (A) Outline of intramuscular vaccination with the recombinant yPvCSP-AllCT epitopes protein combined with Poly I:C
(red - n=9) or Alhydrogel (blue - n=9) and tissue sampling (n=3 per group per time point). (B) Sequential gating strategy to enumerate plasma cells
(PCs) through flow cytometry. (C) Percentage and (D) absolute number of splenic PCs at different time points upon vaccination through flow
cytometry. (E) Representative images of the ELISPOT results for PvCSP-specific IgG-secreting cells at day 10 of the third vaccine dose (left panel).
The numbers on top of each image indicate the quantity of spot-forming cells enumerated per well plated with 0.66 × 106 mouse splenocytes. (F)
Magnitude of PvCSP-specific IgG-secreting cells per spleen of immunized mice (right panel). Dots and bars represent the totality of splenic PvCSP-
specific IgG-secreting cells individually detected for each mouse and median, respectively. *p<0.05
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study, both B cells (B220+) and PBs (B220+ CD138int CD38+)

tended to increase in the spleens of mice vaccinated with Poly I:C

compared to those receiving Alhydrogel, particularly after boosters

(Supplementary Figures 4A–D). In contrast, Poly I:C-adjuvanted

vaccinees maintained a similar percentage and count of long-lived

plasma cells (PCs) at the same period, while Alhydrogel-adjuvanted

vaccinees exhibited a significant decrease in both parameters at day 5

after the third immunization (Figures 3B, C). To address the

specificity of these splenic antibody-secreting cells (ASCs), we

enumerated IgG-secreting cells specific to the vaccine antigen at

day 10 after the third vaccination using ELISPOT. The Poly I:C-

adjuvanted vaccine induced a higher, though not statistically

significant, number of IgG-secreting cells specific to the vaccine

antigen compared to the Alhydrogel group (Figures 3D, E).

The secretion of IgG antibodies relies on the activation and

differentiation of follicular B cells, which participate in germinal
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center (GC) reactions with follicular T cells (TFh) (reviewed by 50),

into ASCs. We measured the frequency of important GC players

and observed increasing trends in the percentage and absolute

numbers of FoBs (B220+ CD23+), GC-Bs (B220+ CD138- CD38-

GL7+) and TFh (GC-TFh (CD3+ CD4+ GL7+ CD40L+ CXCR5+)

and non-GC TFh (CD3+ CD4+ GL7- CD40L+ CXCR5+)) with the

last booster for both adjuvants (Supplementary Figures 3, 4E–H, 5),

although without statistical significance.

Critical for the durability of vaccine-derived responses and

protection, we also evaluated the frequency of memory B cell

(MBC) precursors (B220+ CD138- CD38+ GL7+) and terminally-

differentiated MBCs (B220+ CD138- CD38+ GL7-) in the spleens of

vaccinees. A significantly lower percentage and absolute number of

MBC precursors and MBCs were observed in Alhydrogel-

adjuvanted vaccinees after the third vaccine dose compared to

their Poly I:C-adjuvanted counterparts (Figures 4A–D).
B C

D E

A

FIGURE 4

Poly I:C-adjuvanted malaria vaccine induces a stronger memory B-cell response via the intramuscular route relative to the Alhydrogel counterpart.
(A) Sequential gating strategy to enumerate follicular B cells and memory B cells through flow cytometry. Percentage (B, D) absolute number of cells
(C, E) detected in the spleen of mice at different time points upon vaccination through flow cytometry. Red and blue colors indicate animals
immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively. Dots and columns represent individual values detected for each
mouse and median, respectively. * p<0.05
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3.4 Poly I:C-adjuvanted vaccination
modulates the expression of genes
associated with antibody-secreting cells
and memory B cells

Subcutaneous vaccination with yPvCSP-AllCT epitopes

combined with Poly I:C demonstrated similar immunogenicity to

that obtained via the intramuscular route (data not shown) and

protection against transgenic P. berghei sporozoites expressing

PvCSP alleles (VK210, VK247, or P. vivax-like) (18–20).

Additionally, a vaccine formulation based on the fusion of the

mumps viral nucleocapsid and yPvCSP-AllCT epitopes (yNLP-

PvCSPCTCT) protected mice against parasitic challenges (21). To

gain insights into the molecular mechanisms underlying these

responses, we compared the splenic B-cell transcriptome of mice

vaccinated with yPvCSP-AllCT epitopes + Poly I:C, yNLP-

PvCSPCTCT + Poly I:C, or Poly I:C alone (Figure 5A). This

analysis identified nearly 120 differentially expressed genes

(DEGs) that were either exclusive to each group or shared among

groups (Figure 5B; Supplementary Tables 1–3). Among the 33

exclusive DEGs derived from animals immunized with yPvCSP-

AllCT epitopes + Poly I:C, 16 were upregulated, and 17 were

downregulated (Figure 5C). Of these exclusive DEGs, 6 were

associated with facilitating B-cell differentiation into ASCs

(Col18a1, Hspa2, Pstk, S100a8, Zfp457, and Tubb4a), while

others were linked to MBC generation (Gpr3, Hmgb1-rs17, and

Igsf23) (Figure 5D). Gene ontology analysis indicated that these 33

exclusive DEGs were involved in processes related to cell

localization, protein secretion, wound response, and cation

homeostasis (Figure 5E). At the molecular level, the activities of

protein dimerization and transmembrane transport were associated

with these DEGs (Figure 5F). Gene networks revealed interactions

between some of these DEGs, transcription factors (IRF4 and

S100a8), or proteins (CamK2a and Cdk1) respectively critical for

B-cell differentiation into ASCs or MBCs (Figures 5G, H).
4 Discussion

The durability of vaccine-induced immune responses is a

critical factor in assessing the long-term protective efficacy of

vaccination and the potential need for booster doses. Our study

demonstrates that both Poly I:C and Alhydrogel adjuvants can elicit

robust and long-lasting humoral responses following immunization

with the yPvCSP-AllCT epitopes formulation. Notably, anti-PvCSP

IgG titers persisted for extended periods, declining only after 120

days post-vaccination and remaining stable for almost 350 days

thereafter for both adjuvants (Figures 1, 2). This suggests that the

number of antibody-secreting cells (ASCs), particularly plasma cells

(PCs), generated by yPvCSP-AllCT epitopes vaccination with Poly I:

C or Alhydrogel does not significantly decrease in the bone marrow

of vaccinated individuals within the first year, a phenomenon

observed in humans vaccinated against influenza (51).

Furthermore, it is plausible that PCs originating from both Poly I:
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C- and Alhydrogel-adjuvanted vaccinations maintain similar levels

of the ZBT720 transcription factor, which is known to sustain

humoral responses (52).

Different than the concern raised by the excessive amount of

serum anti-CSP antibodies induced by RTS,S vaccination before

completing the entire regimen, which hinder the increase of the

humoral response (53), all booster doses of yPvCSP-AllCT epitopes

+ Poly I:C or Alhydrogel triggered an enhancement of anti-PvCSP

IgG titers (Figure 1B). Interestingly, each adjuvant induced a

distinct IgG profile specific to PvCSP. The Poly I:C-adjuvanted

vaccine triggered a balanced production of PvCSP-specific IgG1 and

IgG2c, along with a notable IgG2b response, whereas the

Alhydrogel-adjuvanted vaccine was dominated by IgG1

(Figure 2). This suggests a potential Th1/Th2 immune profile,

which may be advantageous for protection against PvCSP. In

comparison to the PfCSP-specific response, the RTS,S vaccination

stimulates higher secretion of IgG1, and some IgG3 and IgG2 in

humans, being protective when specific to the central-repeat or C-

terminal region of the PfCSP. However, these antibody titers

significantly wane in less than 8 months and continue to

gradually decline in subsequent years. IgG2 and IgG4 have been

associated with increased Pf malaria risk and are detected at lower

magnitudes than IgG1 and IgG3 (54–56). Regarding the IgG

subclasses induced by another malaria vaccine formulation to be

implemented (R21 + Matrix-M), they remain elusive in humans. In

mice, this latter vaccine elicited higher humoral and cellular

responses, culminating with higher protection against transgenic

sporozoites compared to R21 + Alhydrogel (57) or R21 alone (58).

In this case, the non-protective R21 alone triggered an IgG1-

dominated profile (Th2 type) (58) as well as our immunization

with yPvCSP-AllCT epitopes + Alhydrogel. When other adjuvants,

such as SQ or LMQ, were combined with R21, they protected Balb/c

mice against a malaria challenge. While the humoral response

induced by R21 + SQ was dominated by IgG1 (Th2 profile), the

R21+LMQ immunization resulted in comparable titers of IgG2a,

IgG1, and IgG3 (balanced Th1/Th2 profile) (58). Notably, our

immunization with yPvCSP-AllCT epitopes + Poly I:C elicited a

similar humoral response, Th profile, and ability to protect against a

malaria challenge (18, 19) as R21+LMQ does. Considering that

human IgG1 and IgG3 and murine IgG2 are cytophilic, fix

complement (59) and interact with Fcg-receptors on phagocytes,

adjuvants capable of triggering distinct Th profiles can eventually

facilitate protection against Pv malaria. Moreover, these functional

properties of anti-PvCSP antibodies have not been explored yet.

Serum anti-CSP antibodies derived from individuals living in

malaria-endemic regions or those immunized with different

formulations have been shown to possess neutralizing capabilities

against Pf sporozoites (reviewed by 5, 60), reduce the hypnozoite

burden, and delay the onset of blood-stage Pv infection (61). Recent

molecular dynamics simulations and crystallography analyses

suggest that anti-PvCSP neutralizing antibodies efficiently interact

with their epitopes, despite the structural disorder of the central-

repeat portion of PvCSP (62). However, a non-neutralizing anti-

PfCSP monoclonal antibody, isolated from immunized mice, was
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recently demonstrated to abrogate protection against Pf

sporozoites, even in the presence of neutralizing counterparts

(63). Given that previous subcutaneous immunizations with

yPvCSP-AllCT epitopes combined with Poly I:C provided only
Frontiers in Immunology 10
partial protection in mice exposed to transgenic PvCSP-

expressing sporozoites (18–21), it remains unclear whether the

vaccine-induced humoral response specific to yPvCSP-AllCT
epitopes includes non-neutralizing anti-PvCSP antibodies.
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FIGURE 5

Poly I:C-adjuvanted malaria vaccine elicits modifications in the transcriptome of splenic B cells, enhancing their differentiation into antibody-
secreting or/and memory B cells. (A) Subcutaneous immunization with yPvCSP-AllCT epitopes + Poly I:C, yNLP-PvCSPCT + Poly I:C, or Poly I:C
alone, number of doses and their intervals, and euthanasia time for spleen excision, B-cell isolation and freezing for further RNA extraction. (B) Log
fold-change (FC) of differential expressed genes (DEGs) exclusively induced by the yPvCSP-AllCT epitopes + Poly I:C vaccination or mutually induced
by yPvCSP-AllCT epitopes + Poly I:C and one of the remaining immunizations. (C) Number of DEGs exclusively detected in splenic B cells of mice
vaccinated with yPvCSP-AllCT epitopes + Poly I:C. (D) LogFC of DEGs associated with B-cell differentiation into antibody-secreting cells (PB/PC) or
memory B cells (MBC) detected upon yPvCSP-AllCT epitopes + Poly I:C vaccination. (E) Major biological processes and (F) molecular functions of
splenic B-cell DEGs derived from mice vaccinated with yPvCSP-AllCT epitopes + Poly I:C through Gene Ontology analyses. Interaction networks
between B-cell-derived DEGs (red dots) elicited upon yPvCSP-AllCT epitopes + Poly I:C vaccination with transcription factors (G) and DEG-encoding
protein with proteins (H). Dotted lines represent LogFC values ≥ -2 and ≤ 2. .
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Another crucial mechanism of malaria immunity is the

opsonization of sporozoites mediated by anti-CSP antibodies.

Human anti-PfCSP IgG1 and IgG3 have been shown to interact

with neutrophils via FcRIIa and FcRIII, as well as to a lesser extent

with monocytes and NK cells, facilitating parasite clearance (64).

Antibody-dependent complement activation and fixation are also

vital components of effective immunity. Human IgG1 and IgG3

specific to the N-terminal, central-repeat, and C-terminal regions of

PfCSP have been demonstrated to fix complement (65). However, it

remains unexplored whether anti-PvCSP antibodies induced by

yPvCSP-AllCT epitopes immunizations can execute these functions,

regardless of the adjuvant employed.

Despite the observed discrepancies in IgG responses with the

two tested adjuvants, PvCSP vaccination did not result in

differences in splenic sizes (Supplementary Figure 2). B cells are

the most prevalent immune cells within this organ in mice, and

various B cell subsets may have their frequencies altered following

infection or vaccination. To elicit protective immunity against

malaria, a combination of multiple B cell subsets is required. For

instance, immunization with irradiated sporozoites (IrSpz), which

have CSP as the immunodominant antigen (4), provides protection

to several murine models of disease and humans. In mice, the

IrSpz-derived response triggers an increased number of CSP-

specific plasmablasts and long-lasting germinal center (GC) B

cells. The functionality of that cellular response seems to be

dependent on T cells, as CD28 KO mice displayed reduced

numbers of GC B cells and plasmablasts, and an ensuing higher

susceptibility to wild-type (WT) Spz infection (66). The blood stage

of malaria is another parameter known to alter the composition of

B cell subsets, increasing susceptibility to infection. Mice infected

with WT Spz present reduced anti-CSP antibody titers upon the

establishment of the blood stage due to an inhibition of the CSP-

specific GC B cell response (67). Straight infection with infected

red-blood cells also elicits a detrimental GC B cell response (68).

Consequently, plasmablasts show a faster decline and only a

reduced number of memory B cells (MBCs) are maintained. If

mice are treated with atovaquone during the blood-stage of the

infection, parasitemia is cleared and animals present a subsequent

enhancement in the number of splenic B cells, GC B cells,

plasmablasts and anti-CSP antibody titers as observed with

IrSPz-immunized mice (67). Notably, a fine tuning for

metabolites between plasmablasts and GC B cells seems to occur

for prompting protection against malaria. During the blood stage of

infection in mice, plasmablasts rapidly proliferate, diminishing

levels of blood L-glutamine. Somehow, this scenario delays the

proliferation of GC B cells, resulting in reduced numbers of MBCs

and plasma cells, and higher-peak parasitemia. On the other hand,

if plasmablast depletion or an L-glutamine treatment is done

during the beginning of the blood stage of infection, it triggers an

effective proliferation of GC B cells and follicular helper T cells,

culminating with increased numbers of MBCs and plasma cells,

and lower parasitemia peak (69). In this study, Poly I:C-adjuvanted

vaccinees displayed significantly higher absolute numbers of PCs,

follicular B cells, and terminally-differentiated MBCs compared to
Frontiers in Immunology 11
Alhydrogel counterparts (Figures 3, 4). Regarding PCs, both

qualitative (flow cytometry) and quantitative assays (ELISPOT)

exhibited similar kinetics (Figure 3), parallel to what has been

observed in vaccinated macaques (47) and humans (49). However,

the specificities of follicular B cells and terminally-differentiated

MBCs induced by our vaccination require further investigation.

Moreover, the study sheds light on the cellular aspects of immunity,

indicating that Poly I:C may enhance the generation of higher-

affinity memory and long-lasting protection against PvCSP relative

to Alhydrogel.

The differences in the gene expression profiles of B cells between

the two adjuvant groups provide valuable insights into the

mechanisms underlying the observed immune responses. Beyond

the DEGs identified as B-cell markers in the EMBL-EBI public data

repository (Figure 5D; https://www.ebi.ac.uk/), several others were

exclusively found in splenic B-cells derived from mice of the Poly I:

C group, reflecting the robust B-cell response elicited by this

adjuvant when compared to Alhydrogel. The enhanced and

sustained humoral responses in Poly I:C-adjuvanted vaccinees

may be associated with the downregulation of Syn1, which

reduces its interaction with CamK2a (Figure 5H). This may

hinder the transmission of calcium ions within B cells, impacting

the regulation of B-cell activation and differentiation (reviewed by

70, 71). Additionally, the downregulation of Hmgb1-rs17 may

contribute to the accumulation of splenic PCs and MBCs

(Figures 3, 4) by inhibiting B-cell egress from lymphoid tissues,

such as Peyer’s patches (72). The regulation of vaccine-derived

responses by regulatory T cells (Tregs) could also be affected, as

indicated by the downregulation of Gm10408 and Gm14391

(Supplementary Table 1), potentially limiting their frequency or

functionality in the spleens of Poly I:C-adjuvanted vaccinees

(Supplementary Table 1). Other downregulated DEGs in Poly I:

C-adjuvanted vaccinees represent long non-coding RNAs

(Gm6297, 1110002L01Rik, 5830416I19Rik, 6330409D20Rik, and

A430093F15Rik), which are more highly expressed in T cells than

in B lymphocytes (https://www.ebi.ac.uk/). About the upregulated

DEGs, Lilrb4 has been associated with attenuated PRDM1

expression and antibody production. It is possible that the

recognition of Poly I:C by TLR3 or MDA5 may maintain Lilrb4

expression at a dysfunctional level. Additionally, Hspa2, which

interacts with Cdk1 (Figure 5H), is essential for the

transcriptional regulation of PC function (73). The positive

expression of Col18a1 suggests signaling toward PB formation,

particularly when compared to MBCs and naive B cells. Notably,

this DEG also interacts with DENV proteins based on disease

severity, a condition that leads to a massive PB expansion (74).

Phlda1 is a transcription factor with hierarchical expression in naive

B cells, followed by MBCs and PBs, and complexes with the IRF4

transcription factor (Figure 5G), a fundamental marker for ASC

differentiation. S100a8 is highly expressed on the surface of B cells

in patients with systemic lupus erythematosus, with its expression

decreasing upon disease treatment (75). However, S100a8 displays

lower expression in splenic ASCs than in bone marrow counterparts

(76). Therefore, the downregulation of genes associated with B-cell
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activation, calcium ion transmission, and B-cell egress, as well as the

upregulation of genes involved in PC formation and ASC

differentiation in the Poly I:C group, contribute to our

understanding of the enhanced humoral and cellular responses

elicited by this adjuvant.

The administration of several vaccine adjuvants, such as

products from aluminum hydroxide, has demonstrated to be safe

in humans. However, their immunogenicity is long-away off the

levels displayed by other adjuvants. For instance, Poly I:C activates

immune responses through TLR3 signaling that result in the IFN-a
and MDA-5 production (30). In our model, this adjuvant clearly

enhances humoral and cellular responses against PvCSP in such

levels that immunized mice are protected from malaria challenges

(18, 19). Toxicological studies have also supported our vaccination

regimen as a safe immunogen (data not shown). However, analogs

of Poly I:C have been preferred in clinical trials, such as Hiltonol

(also called Poly I:C/L:C), due to its higher stability against serum

nucleases present in the plasma of primates, and higher

immunogenicity than Poly I:C (77). Thus, the establishment of a

clinical trial in which individuals from P. vivax-endemic or non-

endemic areas be vaccinated with yPvCSP-AllCT epitopes +

Hiltonol seems to be a critical and subsequent step. An important

question to answer is whether the vaccinees would develop high

titers of IgG against all repeat domains contained within the

yPvCSP-AllCT epitopes as observed in mice (18, 19),

characteristics that attribute the universality aspect and protection

to our vaccine formulation.

In conclusion, our murine model of PvCSP vaccination presents

compelling evidence that Poly I:C surpasses Alhydrogel as an

adjuvant, eliciting a more balanced and long-lasting humoral

response, as well as a more robust cellular memory and an

effective response. This provides a strong rationale for further

investigation and optimization of adjuvant formulations in the

pursuit of a potent and effective vaccine against P. vivax malaria.

We believe that the insights gained from this comprehensive and

longitudinal study will contribute to the accelerated development of

a much-needed protective vaccine, ultimately reducing the burden

of P. vivax malaria in endemic regions and improving global

health outcomes.
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SUPPLEMENTARY FIGURE 1

Similar IgG avidity against the P. vivax circumsporozoite protein and

differential T-helper (Th) cytokine response patterns triggered by Poly I:C-
or Alhydrogel-adjuvanted vaccination. Red and blue colors indicate animals

immunized with yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively.
Plasma samples (Day 42 (A) and Day 90 (B)) frommice vaccinated with Poly I:

C- or Alhydrogel-adjuvanted malaria vaccine were evaluated for (A) IgG and

(B) IgG1 and IgG2c binding to the vaccine antigen in the presence of different
concentrations of urea through ELISA. (A) Dots and error bars represent

average ± SEM, respectively. (B)Dots and columns represent individual values
detected for each mouse and their median, respectively. ** p<0.01.

SUPPLEMENTARY FIGURE 2

Similar spleen area in mice immunized with a P. vivax circumsporozoite

protein-specific malaria vaccine adjuvanted with Poly I:C or Alhydrogel.
Red and blue colors indicate animals immunized with yPvCSP-AllCT

epitopes + Poly I:C or Alhydrogel, respectively. (A) Representative images
of murine spleens collected upon first or second boosters. (B) Dots and
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columns represent individual values detected for each mouse and their
median, respectively.

SUPPLEMENTARY FIGURE 3

Sequential gating strategy to enrich distinct splenic murine B-cell subsets: (1)

lymphocytes and monocytes; (2 and 3) singlets; (4) B220+ and B220- cells;
(5a) Plasma cells (PCs - B220- CD138hi); (5b) B220+ MZBs (CD23-) and FoBs

(CD23+); (5c) B220+ cells (CD138- and CD138int); (6a) B220+ CD138-
lymphocytes (GCs (GL7+ CD38-), MBC precursors (GL7+ CD38+), and

MBCs (GL7- CD38+); and (6b) Plasmablasts (PBs - CD138int CD38+).

SUPPLEMENTARY FIGURE 4

Similar increasing trend for B cells (A), plasmablasts (B), follicular B cells (C),
and germinal center B cells (D) in mice immunized with a P. vivax

circumsporozoite protein-specific malaria vaccine adjuvanted with Poly I:C
or Alhydrogel. Red and blue colors indicate the frequency (A, C, E, G) and
absolute number (B, D, F, H) of cells derived from animals immunized with

yPvCSP-AllCT epitopes + Poly I:C or Alhydrogel, respectively. Dots and
columns represent individual values detected for each mouse and their

median, respectively. * p<0.05; ** p<0.01.

SUPPLEMENTARY FIGURE 5

Similar increasing trend for follicular helper T cells in mice immunized with a

P. vivax circumsporozoite protein-specific malaria vaccine adjuvanted with

Poly I:C or Alhydrogel. (A) Sequential gating strategy to enrich distinct splenic
murine B-cell subsets: (1) lymphocytes and monocytes; (2 and 3) singlets; (4)

T lymphocytes (CD3+ CD4+); 5) Activated CD4+ T cells (CD40L+ GL7- and
CD40L+ GL7+); 6a) Non-germinal center follicular helper T cells (CXCR5+

GL7-); and 6B) germinal center follicular helper T cells (CXCR5+ GL7+). Red
and blue colors indicate the frequency (B, D) and absolute number (C, E) of
cells derived from animals immunized with yPvCSP-AllCT epitopes + Poly I:C

or Alhydrogel, respectively. Dots and columns represent individual values
detected for each mouse and their median, respectively.

SUPPLEMENTARY TABLE 1

Exclusive differential expressed genes and their respective log fold-change
(FC) values detected in splenic B cells upon distinct immunizations.

SUPPLEMENTARY TABLE 2

Similar differential expressed genes and their respective log fold-change (FC)

values mutually detected in splenic B cells upon distinct immunizations. (A)
yPvCSP-AllCT epitopes + Poly I:C and yNLP-PvCSPCT + Poly I:C. (B) yPvCSP-
AllCT epitopes + Poly I:C and Poly I:C alone. (C) yNLP-PvCSPCT + Poly I:C and
Poly I:C alone.

SUPPLEMENTARY TABLE 3

Similar differential expressed genes and their respective log fold-change (FC)

values detected in splenic B cells upon distinct immunizations.
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