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A new 4-gene-based prognostic
model accurately predicts breast
cancer prognosis and
immunotherapy response by
integrating WGCNA and
bioinformatics analysis
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Jiale Cheng1*, Shengbin Pei2,3* and You Meng1*

1Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical
University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China,
2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 3Department of Breast Surgical Oncology, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China
Background: Breast cancer (BRCA) is a common malignancy in women, and its

resistance to immunotherapy is amajor challenge. Abnormal expression of genes

is important in the occurrence and development of BRCA andmay also affect the

prognosis of patients. Although many BRCA prognosis model scores have been

developed, they are only applicable to a limited number of disease subtypes. Our

goal is to develop a new prognostic score that is more accurate and applicable to

a wider range of BRCA patients.

Methods: BRCA patient data from The Cancer Genome Atlas database was used

to identify breast cancer-related genes (BRGs). Differential expression analysis of

BRGs was performed using the ‘limma’ package in R. Prognostic BRGs were

identified using co-expression and univariate Cox analysis. A predictive model of

four BRGs was established using Cox regression and the LASSO algorithm. Model

performance was evaluated using K-M survival and receiver operating

characteristic curve analysis. The predictive ability of the signature in immune

microenvironment and immunotherapy was investigated. In vitro experiments

validated POLQ function.

Results:Our study identified a four-BRG prognostic signature that outperformed

conventional clinicopathological characteristics in predicting survival outcomes

in BRCA patients. The signature effectively stratified BRCA patients into high- and

low-risk groups and showed potential in predicting the response to

immunotherapy. Notably, significant differences were observed in immune cell

abundance between the two groups. In vitro experiments demonstrated that

POLQ knockdown significantly reduced the viability, proliferation, and invasion

capacity of MDA-MB-231 or HCC1806 cells.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1331841/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1331841&domain=pdf&date_stamp=2024-02-02
mailto:13912774015@163.com
mailto:psb@student.pumc.edu.cn
mailto:438586918@qq.com
https://doi.org/10.3389/fimmu.2024.1331841
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1331841
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2024.1331841

Frontiers in Immunology
Conclusion:Our 4-BRG signature has the potential as an independent biomarker

for predicting prognosis and treatment response in BRCA patients,

complementing existing clinicopathological characteristics.
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1 Introduction

Breast cancer (BRCA) has overtaken lung cancer to become the

world’s leading cancer and the most deadly malignancy among

women (1). With the continuous progress of BRCA diagnosis and

treatment technology, the 5-year survival rate of early BRCA

patients can reach 95%, so early screening, diagnosis, and

treatment of BRCA are the keys to a good prognosis (2). BRCA is

a highly heterogeneous disease, and patients differ in their response

to treatment and prognosis even if the clinical stage and

pathological grade are the same. Although these molecular

subtypes are widely used, the prognosis of BRCA cases of each

subtype is still very different. Therefore, it is of great clinical

significance to explore new prognostic features.

In cancer research, prognostic models are widely used to predict

the prognosis of patients. Van De Vijver et al. first performed 70

genetic signatures that were strongly associated with survival in

BRCA patients (3). Peng et al. constructed a molecular prognostic

score based on 23 genes that accurately predicted the overall

survival of BRCA patients (4). In addition, various prognostic

models were constructed between cancer types, and these features

were shown to be more accurate in predicting clinical prognosis

than assessed by traditional pathological and imaging methods (5–

7). In the field of BRCA research, new prognostic models are not yet

fully developed. Therefore, we included breast cancer-related genes

in the construction of prognostic models to estimate novel strategies

for predicting outcomes in BRCA patients.

Over time, immunotherapy has made more significant progress

in other cancer types, including melanoma, kidney cancer, and lung

cancer (8). In the early stage, due to the weak immunogenicity of

BRCA, it is regarded as a “cold tumor”, and scholars believe that

immunotherapy is difficult to make a big breakthrough in it. Still, in

recent years, immunotherapy has made good progress in triple-

negative BRCA, especially in metastatic BRCA (9–12). Therefore,

finding an effective way to predict long-term survival and response

to immune checkpoint inhibitor treatment in BRCA patients is

critical (13).

In this study, weighted gene co-expression network analysis was

used to screen out the genes associated with BRCA prognosis. The

prognostic features were derived from univariate Cox regression

and LASSO regression analyses performed on the TCGA BRCA

training cohort. After rigorous validation in multiple cohorts, we
02
demonstrated that the POLQ-related signature can effectively

predict BRCA prognosis. By using the median risk score, we

stratified the BRCA samples into high-risk and low-risk groups,

which displayed distinct overall survival, progression-free survival,

and disease-free interval, as well as differences in clinical

characteristics, immune infiltration, response to ICI treatment,

and chemotherapy drug sensitivity. To facilitate clinical

application, we developed a nomogram that can guide BRCA

treatment. These findings shed light on the immunological and

prognostic significance of POLQ in BRCA and highlight the

potential of its related biomarkers as promising targets for the

diagnosis and treatment of BRCA.
2 Materials and methods

2.1 Data collection

Utilizing multiple datasets, including GSE16228, GSE20685,

GSE20711, GSE42658, and GSE88770 from the Gene Expression

Omnibus (GEO) database, you collected a total of 745 BRCA tumor

tissue samples and 43 normal tissue samples as training sets.

Additionally, 1089 BRCA tumor samples from TCGA were used as

the testing cohort. To ensure accurate analysis, patients lacking

important clinical information such as OS and relapse status were

excluded, and data normalization was performed to mitigate

batch effects.
2.2 WGCNA

By constructing a weighted gene coexpression network using

the WGCNA R software package, you aimed to identify

coexpression gene modules, investigate the relationship between

the gene network and phenotype, and identify core genes within the

network. Here’s an overview of the process we followed: Calculation

of Median Absolute Deviation (MAD): You calculated the MAD for

each gene in the BRCA gene expression profile. Selection of genes:

The top 50% of genes with the smallest MAD values were excluded.

This step helped filter out less informative genes. Removal of

outliers: The “goodSamplesGenes” method from the WGCNA

package was used to remove outlier genes and samples from the
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dataset. Construction of a scale-free co-expression network: Using

WGCNA, you built a scale-free co-expression network. The

Pearson correlation matrix and average linkage method were

employed for pairs of genes. Weighted adjacency matrix

construction: A power function (A_mn=|C_mn|^b) was applied

to construct the weighted adjacency matrix. The soft threshold

parameter, b was used to accentuate strong gene correlations and

compensate for weaker ones. Topological overlap matrix (TOM):

The weighted adjacency matrix was transformed into a TOM to

estimate network connectivity. The hierarchical clustering method

helped create a cluster tree structure for the TOM matrix. Module

analysis: Dissimilarity of characteristic genes within the modules

was computed. Tangent lines of the module tree were selected, and

some modules were combined for further analysis.
2.3 Identification of DEGs and functional
enrichment analysis

We identified 129 differentially expressed genes between the

BRCA group and the normal control group using the “Limma”

package. The selection criteria included a |logFC| ≥ 1 and p < 0.01.

Next, you employed the “clusterProfiler” package for conducting

the Gene Ontology (GO) function and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis based

on these DEGs. GO function analysis categorizes genes into

different functional groups, while KEGG pathway analysis

explores molecular interactions and networks within cells. These

analyses provide valuable insights into the biological mechanisms

underlying BRCA and can reveal potential therapeutic targets

and interventions.
2.4 Random survival forest
variable screening

Random Survival Forest (RSF) is an ensemble method that

consists of a collection of randomly growing survival trees. The tree-

building rules in RSF are similar to those of random forest, which is

an extended methodology used for analyzing survival data. To

identify prognostic genes in the training set, univariate Cox

proportional regression models were initially employed. Then,

1000 classification trees were constructed using bootstrap

samples. During the tree-building process, candidate variables

were randomly selected at each node, and nodes were classified

based on survival criteria such as survival time and truncation

information. To determine the variables entering the model, gene

screening was performed using exponential sequencing or gene

occurrence frequency. Each decision tree within the random

survival forest is a binary survival tree, generated following the

top-down recursive splitting principle. This approach involves

sequentially dividing the training set from the root node, which

helps prevent model overfitting. Using RSF, researchers can obtain
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valuable insights into the prognosis of specific diseases, including

potential prognostic genes and their impact on survival outcomes.
2.5 GeneMANIA analysis

GeneMANIA (http://www.genemania.org) is an excellent

resource for constructing protein-protein interaction (PPI)

networks and analyzing gene function and interactions. This user-

friendly database enables researchers to visualize functional

networks between genes and gain insights into gene behavior.

The GeneMANIA website provides the flexibility to customize the

data sources of gene nodes, including physical interaction, gene

coexpression, gene colocalization, gene enrichment analysis, and

predictions from other sources. By incorporating these diverse data

sources, researchers can obtain a comprehensive understanding of

gene relationships and their functional implications. In this study,

we utilized GeneMANIA to construct a core gene network specific

to ovarian cancer patients. This network serves as a valuable tool to

investigate the potential mechanisms underlying the action of

identified genes within the context of ovarian cancer. By

visualizing and analyzing these gene interactions, we can gain

insights into the functional associations and pathways involved in

the disease. Make sure to carefully interpret the findings from the

gene network analysis and consider additional validation strategies

to strengthen the conclusions.
2.6 Analysis of immune cell infiltration

To assess various aspects of the tumor microenvironment

(TME) in BRCA patients, we employed several algorithms. The

ESTIMATE algorithm allowed us to evaluate the Stromalscore,

Immunescore, and TMEscore. These scores provide insights into

the levels of stromal and immune cell infiltration within the tumor.

For a detailed analysis of immune cell types in the TME, we utilized

the CIBERSORT algorithm. CIBERSORT is a widely used method

that employs support vector regression to deconvolute the

expression matrix of immune cell subtypes. This enabled us to

quantify the levels of immune cell infiltration in each patient. To

further assess the TME, we employed the MCPcounter algorithm.

This algorithm generates abundance scores for eight immune cell

types and two stromal cell types (including T cells, CD8+ T cells,

cytotoxic lymphocytes, NK cells, B lymphocytes, monocytes, bone

marrow dendritic cells, neutrophils, endothelial cells, and

fibroblasts) based on the gene expression matrix. Notably,

MCPcounter has been verified to exhibit a high correlation

between estimated scores and actual cell scores when conducting

quantitative validation. By evaluating the association between the

risk scores (derived from the previously constructed prognostic

model), gene expression levels, and immune cell infiltration, we aim

to understand the interplay between the genetic signature and the

immune microenvironment in BRCA. Additionally, we examine

subgroup differences in immune checkpoint expression and
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immune function, providing valuable insights into potential

immunotherapeutic targets and treatment strategies.
2.7 Development of the prognostic model

From a pool of 100 intersection genes, we conducted univariate

Cox regression (uniCox) analysis to identify 18 genes that showed

associations with prognosis. Subsequently, we employed the

“glmnet” package for regression analysis, specifically utilizing

LASSO-cox analysis, to construct a prognostic model. The risk

scores for individual patients were calculated by summing the gene

expression values multiplied by their respective gene coefficients in

the model. This risk score served as an indicator of the likelihood of

an adverse prognosis. To further analyze and visualize the patient

data, we divided the patients into high and low-risk groups based on

the median risk score. Utilizing the “stats” package (version 3.6.0),

we performed Principal Component Analysis (PCA). This analysis

aids in dimensionality reduction by transforming and clustering the

patients’ gene expression profiles. Specifically, we initially applied a

z-score transformation to standardize the gene expression data and

then utilized the prompt function to obtain a reduced matrix

representing the principal components. It’s worth mentioning

that the selection of genes and the use of LASSO-cox analysis

contribute to the construction of a robust prognostic model.

Moreover, conducting PCA analysis allows for a comprehensive

visualization of the patient data, which may reveal patterns or

clusters related to prognosis.
2.8 Clinical significance analysis of the
risk model

After excluding patients with missing data, we integrated their

clinical information and risk score to conduct uniCox and

multivariate Cox regression (multiCox) analyses. These analytical

approaches allow us to assess the relationship between the risk score

model and patient prognosis. To evaluate the accuracy of the risk

score model as a prognostic predictor, we performed ROC analysis

using the pROC package (version 1.17.0.1). The Area Under Curve

(AUC) values were calculated to provide a quantitative measure of

the predictive power. We also used the CI function of the package to

determine the Confidence Intervals (CI) around the AUC values,

providing a measure of the uncertainty associated with the

predictions. By analyzing the AUC values and their corresponding

CI, we can determine the final results and assess whether the risk

score model can serve as an independent and reliable prognostic

predictor. It’s important to note that further studies may explore

alternative methods or consider additional variables to enhance the

predictive capabilities of the risk score model. The pROC package is a

valuable resource in this process, facilitating the calculation of AUC

values and their associated confidence intervals.
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2.9 Establishment of a
predictive nomogram

In addition to the patient’s risk score and clinicopathological

features, we employed the “rms” package to construct a nomogram.

This nomogram combined multiple variables to visualize their

relative contributions in predicting patient outcomes. To assess the

prognostic predictive power of these clinical features, particularly for

1-year, 3-year, and 5-year OS, we performed ROC analysis. The ROC

analysis allows us to evaluate the accuracy of the predictive models by

examining the true positive rate against the false positive rate. To

validate the predictive accuracy of the nomogram, we utilized

calibration curves. These curves provide graphical representations

of the agreement between predicted outcomes and observed

outcomes. The incorporation of calibration curves allows for an

assessment of the accuracy and reliability of the predictive model.

It’s important to note that future studies may further explore

alternative methods or consider additional factors to enhance the

predictive capabilities of the nomogram. The “rms” package serves as

a valuable tool in this process, facilitating the creation of

comprehensive and informative prediction models.
2.10 Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database,

accessible at https://www.cancerrxgene.org/, serves as a valuable

resource for cancer drug sensitivity genomics. In our study, we

utilized the R software package called “pRRophetic” to predict the

sensitivity of tumor samples to chemotherapy. By applying a filter

condition of p < 0.001, we determined the chemotherapy sensitivity

for each tumor sample. The prediction process involved regression

analysis to estimate the IC50 values for specific chemotherapeutic

agents. To evaluate the accuracy of regression and prediction, we

conducted 10-fold cross-validation tests using the GDSC training

set. For all parameters, including the removal of batch effects using

“combat” and averaging repeated gene expression, we opted for the

default values. These steps enable us to mitigate potential biases and

enhance the reliability of the predictions. It is worth noting that

future research may explore alternative parameter settings or

incorporate additional validation techniques to further refine the

predictions. The GDSC database and the pRRophetic package offer

a powerful combination for investigating and understanding

chemotherapy sensitivity in cancer samples.
2.11 Cell transfection

Two distinct small interfering RNAs (siRNAs) targeting POLQ

were synthesized by Ribobio (Guangzhou, China). The transfection

protocols were executed following the manufacturer’s guidelines,

using Lipofectamine 3000 (Invitrogen, USA). Supplementary

Table 1 contains the siRNA sequences for POLQ.
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2.12 RT-qPCR

Total RNA was extracted from tissues or cell lines using TRIzol

reagent (15596018, Thermo) and standard protocols were followed.

Subsequently, cDNAs were synthesized using the PrimeScript™RT

kit (R232-01, Vazyme). The Roche LightCycler 480 platform (Roche,

GER) was employed to quantify gene expression levels, utilizing

SYBR qPCRMaster Mix (Q111-02, Vazyme). Supplementary Table 1

contains the primer sequences, which were sourced from Tsingke

Biotech (Beijing, China).
2.13 Cell counting kit-8 assay

Each well of a 96-well plate was seeded with 2000 treated cells.

Following this, the cells were subjected to treatment with the CCK-8

labeling reagent (A311-01, Vazyme) and evaluated at various time

points, including days 1, 2, 3, 4, and 5.
2.14 Wound healing

After achieving 95% confluency, the transfected cells were

subsequently plated into 6-well plates. To produce a straight line, a

sterile pipette tip with a volume of 200 mL was utilized, followed by

gentle rinsing with PBS to remove any unattached cells and debris.

Subsequently, the serum-free cell mediumwas replaced tomaintain cell

culture. Images were captured at 0 and 48 hours in the same location.
2.15 Transwell

A density of 2×104 cells per well in 200 mL of serum-free medium

was used to seed the cells in the upper chamber of a transwell plate.

The upper chamber was either coated or uncoated with matrix glue

(BD Biosciences, USA). The lower compartment was loaded with 700

mL of complete medium supplemented with 10% serum. After 36

hours of incubation, the cells were fixed, stained, and counted by

microscopy. Images were captured for analysis.
2.16 Statistical analysis

All statistical analyses were performed using R language

(Version 3.6). All statistical tests were bilateral, and P <0.05 was

considered statistically significant.
3 Results

3.1 Identification of DEG sets associated
with BRCA patients compared to
normal women

To establish our study cohort, we obtained gene expression

profiles from five GEO datasets, comprising 745 tumor tissue
Frontiers in Immunology 05
samples and 43 normal control tissue samples, which served as

the training cohort. Additionally, we utilized the TCGA-BRCA

cohort, consisting of 1089 BRCA tumor tissue samples, as the

validation cohort. In the training set, we identified genes that

demonstrated significant differential expression (|logFC|>1 &

p<0.01) (Figures 1A, B). We employed WGCNA analysis to

construct a gene coexpression network for BRCA using the

training set. Subsequently, we employed dynamic hybrid cutting

to generate a hierarchical clustering tree, which facilitated the

identification of gene modules. The tree branches represented

groups of genes with similar expression patterns, with each gene

represented as a leaf in the tree (Figures 1C–E). Furthermore, we

successfully constructed twelve modules within the training cohort,

and we identified the magenta modules as potential hub

modules (Figure 1F).
3.2 Acquisition of intersection genes and
molecular characteristics analysis in BRCA

To verify the reliability of the genes obtained above, we

performed a Venn analysis based on the DEG set and hub gene

set data (Figure 2A). A total of 100 intersection genes were screened

for GO and KEGG enrichment. GO analysis showed that these

intersection genes are enriched in a variety of biological processes,

including cell cycle, mitotic cell cycle process, cell division, nuclear

division, and chromosome segregation. KEGG analysis revealed

that cell cycle, oocyte meiosis, progesterone-mediated oocyte

maturation, and p53 signaling pathway were enriched by these

intersection genes (Figure 2B). In addition, we constructed PPI

networks using an online tool (https://cn.string-db.org) to explore

the association between the intersection genes. The results showed

that CDK1, BUB1B. KIF11, KIF20A, and CCNB1 were hub genes

(confidence score = 0.900) (Figures 2C, D). These hub genes are

highly expressed in tumor tissues compared to normal control

tissues and in the ROC curve, these hub genes displayed a pretty

AUC value (Figures 2E, F), implying their potentially critical roles

in BRCA. Furthermore, the Genemania network also indicated that

the five genes have a close interaction in multiple biological

functions, including mitotic nuclear division, negative regulation

of cell cycle phase transition, and cell cycle checkpoint (Figure 2G).

In immune cell infiltration analysis, we found that a variety of

immune cells, including CD8+T cells, plasma cells, activated NK

cells, and macrophages M2 were more abundant in normal tissues,

while macrophages M1, T cells CD4+ memory resting, and gd T cells

were more infiltrated in tumor tissues (Figures 2H, I).
3.3 Development and validation of the
prognostic model

Based on 100 intersection genes, the researchers conducted a

uniCox analysis and identified 18 prognostic-related genes, which

were found to be highly expressed in tumor tissues (Figure 3A). They

then developed a risk model to assess the prognostic predictive ability

of these intersection genes specifically in BRCA patients. To establish
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the optimal predictive model, LASSO and multiCox analysis were

performed on 18 prognosis-related differentially expressed genes.

Ultimately, four genes (RAD51AP1, HELLS, PLSCR4, and POLQ)

were identified, and the formula for the risk score was derived as

follows: risk score = (0.171787939 * expression of RAD51AP1) +

(0.180159626 * expression of HELLS) + (-0.35136865 * expression of

PLSCR4) + (0.35452173 * expression of POLQ). Following the risk

score calculation, the patients were divided into high-risk and low-

risk groups based on the median risk score. Kaplan-Meier analysis

demonstrated that low-risk patients had a better OS compared to the
Frontiers in Immunology 06
high-risk patients (Figure 3B). Additionally, PCA analysis showed a

distinct separation of patients into high-risk and low-risk groups

(Figure 3C). The prognostic model exhibited promising predictive

ability with AUC values of 0.76 (95% CI = 0.91-0.62), 0.68 (95% CI =

0.71-0.56), and 0.64 (95% CI = 0.68-0.56) for predicting patients’ OS

at 1, 3, and 5 years, respectively (Figure 3D). Moreover, there was an

inverse correlation between the risk score and patient survival, as

evidenced by the decreasing OS and increasing mortality rate with

higher risk scores (Figures 3E, F). The expression heatmap in

Figure 3G illustrates the gene expression patterns involved in
A B

C D

E F

FIGURE 1

Validation of the hub module via weighted gene coexpression network analysis. (A, B) Differentially expressed genes are shown on the heatmap and
the volcano plot for the five Gene Expression Omnibus (GEO) datasets. (C, D) The scale-free fit index and the average connectivity of soft threshold
power and hierarchical clustering tree of genes based on topological overlap are confirmed for the five GEO datasets. (E, F) A total of 12 modules
were obtained and the correlation of these modules between the normal group and tumor group for the five GEO datasets.
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constructing the prognostic model. Importantly, the prognostic

model was validated in an independent cohort and showed good

predictive power (Figures 4A–F).
3.4 Clinical correlation analysis of the
prognostic model and construction of
a nomogram

UniCox and multiCox analyses were conducted to assess the

independent prognostic value of the risk score (Figures 5A, B). The

forest plot indicated that the risk score is comparable to tumor
Frontiers in Immunology 07
grade and tumor stage as an independent risk factor for predicting

the prognosis of BRCA patients. Patients who experienced distant

metastasis or tumor relapse exhibited higher risk scores (Figures 5C,

D), suggesting a correlation between the risk score and increased

risk of metastasis and poorer prognosis. To enhance predictability, a

nomogram was developed based on clinical characteristics to

estimate the 1-year, 3-year, and 5-year OS of BRCA patients

(Figure 5E). The calibration curves in Figure 5F demonstrated the

high accuracy of the nomogram in predicting the 3-year and 5-year

OS of BRCA patients. Additionally, the receiver operating

characteristic (ROC) curve in Figure 5G revealed the AUC values

of the nomogram for predicting the 1-year, 3-year, and 5-year OS:
A B

C D

F

H I

G

E

FIGURE 2

Acquisition of intersection genes and molecular characteristics analysis. (A) Venn diagram based on differentially expressed genes and hub gene set.
(B) Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of intersection genes. (C) The protein-protein interaction network was
acquired from the STRING database among intersection genes. (D) Hub genes in the intersection gene set. (E) Receiver operating characteristic
curve of five hub genes. (F) Differential expression of hub genes in breast cancer (BRCA) and normal tissues. (G) The networks among five hub genes
are based on the GeneMANIA database. (H–I) Immune cell infiltration analysis in BRCA and normal tissues. (P<0.0001 ****).
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0.89 (95% CI = 0.97-0.92), 0.87 (95% CI = 0.95-0.79), and 0.86 (95%

CI = 0.94-0.79), respectively.
3.5 Assessment of TME, checkpoints, and
immune function in distinct groups

In our study, we explored the correlation between immune cell

abundance and the risk score. Our findings, as depicted in Figure 6A,
Frontiers in Immunology 08
revealed interesting associations between the risk score and different

immune cell types. Specifically, the risk score positively correlated

with memory B cells, naïve CD4+ T cells, macrophages M0, and

activated NK cells. Conversely, it exhibited a negative correlation with

naïve B cells, resting CD4+memory T cells, resting dendritic cells, and

gd T cells. Furthermore, our analysis demonstrated that the risk score

was linked to higher StromalScore, ImmuneScore, and

ESTIMATEScore, as illustrated in Figure 6B. This suggests that the

risk score may indicate increased stromal and immune activity within
A

B C

D E

F G

FIGURE 3

Construction of the prognostic model in the training cohort. (A) Differences in the expression of 17 prognostic-related genes among BRCA and
normal tissues. (B) Kaplan–Meier analysis of the Overall Survival (OS) between high- and low-risk groups. (C) Principal Component Analysis based on
the prognostic model. (D) Receiver operating characteristic curve to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to
the risk score. (E, F) Ranked dot and scatter plots showing the risk score distribution and patient survival status. (G) Expression patterns of 4 selected
prognostic genes in high- and low-risk groups. (P<0.05 *; P<0.01 **; P<0.001 ***, P<0.0001 ****).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1331841
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1331841
the TME. To delve deeper, we assessed the association between the

genes utilized in constructing the risk score model and the infiltration

levels of various immune cells. Notably, we observed significant

correlations between the expression levels of certain genes, such as

POLQ, and the abundance of specific immune cell types. For

instance, the expression level of POLQ displayed a significant

positive correlation with naïve B cell infiltration and a negative

correlation with activated NK cell infiltration, as shown in

Figure 6C. Figure 6D revealed significant differences in various

immune functions between the high-risk and low-risk groups, such

as T cell co-inhibition, immune checkpoint expression, cytolytic

activity, and type I IFN response. The MCPcounter analysis in

Figure 6E demonstrated that the high-risk group had decreased

infiltration levels of endothelial cells, fibroblasts, and immune cells

compared to the low-risk group. Moreover, by analyzing 35 common

immune checkpoints including PD-1, PD-L1, CTLA-4, and LAG3

between the high and low-risk groups (Figure 6F), it was observed

that the low-risk group exhibited lower levels of immune

checkpoint expression.
3.6 Drug sensitivity analysis

For evaluating the predictive power of the risk score in assessing

clinical drug therapy sensitivity among BRCA patients, we employed

the “pRRophetic” package to calculate the IC50 values associated with

138 drugs for each patient. Our analysis yielded intriguing findings

regarding potential drug responses based on the risk score. Patients

with low-risk scores exhibited promising indications of positive

responses to several drugs, including All-trans-retinoic acid
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(ATRA), bleomycin, cytarabine, doxorubicin, gemcitabine,

paclitaxel, and sorafenib. On the other hand, patients with high-

risk scores displayed a greater likelihood of positive responses to

bicalutamide, docetaxel, as well as various targeted therapy drugs

such as dasatinib, lapatinib, axitinib, and other similar medications

(Figure 7). Taken together, these outcomes suggest a noteworthy

correlation between the risk score and drug sensitivity. Nonetheless, it

remains essential to exercise caution and further validate these

observations through rigorous validation studies. May these

findings contribute to the advancement of personalized medicine

approaches for better management of BRCA patients!
3.7 Core genes related to genetic
alterations, TMB, and targeted therapy/
chemotherapy in BRCA

To determine whether four genes exist in the somatic mutation

frequencies in BRCA, we extracted the oncoprint profiles based on

the cBioPortal database (http://www.cbioportal.org/). The somatic

mutation frequencies of RAD51AP1, HELLS, PLSCR4, and POLQ

were 1.9%, 0.4%, 1.4%, and 1.7%, respectively (Figure 8A). In

addition, tumor mutation burden (TMB) is a very important and

identifiable clinical biomarker for immunotherapy. We calculated

the TMB of each sample, and after analysis, we found that there was

a significant correlation between the expression levels of

RAD51AP1, HELLS, PLSCR4, POLQ, and the TMB data.

Specifically, high expression of PLSCR4 was associated with lower

TMB. In contrast, high expression of RAD51AP1, HELLS, and

POLQ was associated with higher TMB in BRCA (Figure 8B).
A B C

D E F

FIGURE 4

Validation of the prognostic model in the test cohort. (A) Kaplan–Meier analysis of the Overall Survival (OS) between high- and low-risk groups.
(B) Principal Component Analysis based on the prognostic model. (C) Receiver operating characteristic curve to predict the sensitivity and specificity
of 1-,3-, and 5-year survival according to the risk score. (D–E) Ranked dot and scatter plots showing the risk score distribution and patient survival
status. (F) Expression patterns of 4 selected prognostic genes in high- and low-risk groups. (P<0.05*; P<0.01**; P<0.001***, P<0.0001****).
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In addition, previous studies have shown that abnormal

epigenetic modifications can drive tumorigenesis and resistance to

treatment. We extracted DNA methylation profiles of these core

genes in BRCA based on the TCGA database and the results showed

increased methylation levels in BRCA compared to normal breast

tissue (Figure 8C).

Taking into account the chemotherapy used in daily work, we

evaluated the response of gene expression subtypes (low or high

expression levels) to five chemotherapy agents and one ErbB-2

inhibitor: Docetaxel, Doxorubicin, gemcitabine paclitaxel, and

Apatinib. Interestingly, low RAD51AP1, HELLS, PLSCR4, and
Frontiers in Immunology 10
POLQ may be more sensitive to docetaxel, apatinib, while high

RAD51AP1, HELLS, PLSCR4, and POLQ may be more sensitive to

doxorubicin, gecitabine, and paclitaxel (Figure 8D).
3.8 Biological function and POLQ
expression in BRCA are confirmed

By doing in vitro tests, we furthered our understanding of

POLQ ‘s role. Firstly, the results of bioinformatics analysis

showed that the expression of POLQ in BRCA tissues was higher
BA

DC
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E

FIGURE 5

Clinical correlation analysis of the risk score and establishment of the prognostic nomogram. (A, B) uniCox and multiCox analysis showed the prognostic
value of the risk score. (C) Correlation between risk score and tumor metastasis of BRCA. (D) Correlation between risk score and tumor relapse of BRCA.
(E) Nomogram for predicting the 1-, 3-, and 5-year OS of BRCA patients in the entire cohort. (F) Calibration curve of the prognostic nomogram.
(G) Receiver operating characteristic curves of the prognostic nomogram for 1-, 3-, and 5-year OS in BRCA. (P<0.05 *; P<0.01 **; P<0.001 ***).
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than that in normal tissues (Figure 9A). We verified the results in 20

pairs of clinical tissue samples and obtained consistent results

(Figure 9B). To select suitable BRCA cell lines for POLQ

knockdown assay, we verified the expression level of POLQ in 5
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cell lines, and the results showed that the expression level of

HCC1806 and MDA-MB-231 cell lines was relatively high

(Figure 9C). Therefore, we selected these two cell lines for POLQ

knockdown experiments and verified their transfection efficiency
A

B C

D
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F

FIGURE 6

Evaluation of tumor microenvironment, checkpoints, and immune functions between the two groups. (A) Correlations between risk score and
immune cell infiltration levels. (B) Correlations between risk score and tumor microenvironment scores. (C) Correlations between the abundance of
immune cells and genes involved in the development of the prognostic model. (D) Assessment of differences in immune function between the two
groups. (E) Abundance of 8 infiltrating immune cell types and 2 stromal cell types in the two groups. (F) Expression of 35 common immune
checkpoints in the two groups. (P<0.05 *; P<0.01 **; P<0.001 ***, P<0.0001 ****).
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(Figure 9D). In CCK-8 studies, we saw that cells with POLQ

knockdown displayed significantly decreased proliferative activity

(Figures 9E, F). Colony-forming experiments also showed that the

proliferation ability of melanoma cells was significantly reduced

after POLQ knockdown (Figures 9G, J). Wound healing

experiments showed that the migration ability of BRCA cells was

significantly reduced after POLQ gene knockdown (Figures 9H, I).

After the knockdown of POLQ, two cell lines significantly reduced

their ability to heal, migration, and invasion (Figures 9K–M).
4 Discussion

Heterogeneity is one of the important characteristics of BRCA

(14). Although most studies believe that BRCA is monoclonal in

origin, due to multiple divisions, proliferation, and continuous
Frontiers in Immunology 12
evolution in the process of occurrence and development,

epigenetic, genomic, and microenvironment changes lead to

different phenotypes and biological characteristics of cells,

resulting in heterogeneity (15). It showed different histological

types, differentiation degree, cell proliferation rate, invasion and

metastasis ability, and therapeutic responsiveness. Therefore, the

accurate implementation of personalized medicine for BRCA

requires further research and exploration (16, 17).

In our study, we used the WGCNA method to screen out

BRCA-related genes that are specifically expressed in BRCA tissues.

Subsequently, four genes were identified by difference analysis,

univariate Cox regression, lasso regression, and multifactor Cox

regression, and were further used to create a new risk profile.

Patients were divided into high-risk and low-risk groups based on

a median risk score. The difference in survival rate between the

high-risk group and low-risk group was statistically significant, and
FIGURE 7

Relationships between risk score and drug sensitivity.
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the prognosis of the low-risk group was significantly better than that

of the high-risk group (P<0.01). Validation analysis of TCGA and

GEO databases showed that our prognostic model based on related

genes could well distinguish BRCA patients. The forest map showed

that risk score was an independent risk factor for predicting
Frontiers in Immunology 13
prognosis in patients with BRCA compared to tumor grade and

tumor stage. We also found that BRCA patients who developed

distant metastases or tumor recurrence had higher risk scores.

Overall, based on our findings, a higher risk score implies a

higher risk of metastasis and a worse prognosis. Compared to
A

B

C

D

FIGURE 8

Epigenetic modification and genetic alteration of 4 key genes. (A)The DNA alteration of 4 key genes. (B) Tumor mutation burden of 4 key genes.
(C) The DNA promoter methylation levels of 4 key genes are based on the Cancer Genome Atlas database. (D) The estimated IC50 values of
docetaxel, doxorubicin, gemcitabine, paclitaxel, and lapatinib for 4 key genes. (P<0.05 *; P<0.01 **; P<0.001 ***, P<0.0001 ****).
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other existing BRCA prognostic models, such as apoptosis-related

gene prognostic models (AUC at 1, 3, 5 years = 0.637, 0.701, 0.695),

platelet-related prognostic models (AUC at 1, 3, 5 years = 0.639,

0.563, 0.596), and anoikis and immune-related gene prognostic

models (AUC at 1, 3, 5 years = 0.521, 0.643, 0.695), our model

shows more accurate predictive performance (18–20).
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Immunotherapy is a new type of anti-tumor therapy that is

completely different from the previous anti-tumor therapy (21).

Under normal circumstances, immune cells are the protectors of

our body kingdom, and the body’s immune system has an immune

surveillance function, which can recognize, kill, and timely

eliminate abnormal cells in the body (22). As abnormal cells,
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FIGURE 9

In vitro experiment about POLQ. (A) POLQ is highly expressed in breast cancer. (B) The expression level of POLQ is higher in breast cancer tissues.
(C) The expression level of POLQ was higher in the MDA-MB-231 or HCC1806 cells. (D) Transfection efficiency of POLQ. (E, F) CCK-8. After POLQ
knockdown, the proliferative ability of MDA-MB-231 or HCC1806 cell lines decreased significantly. (G, J) Clone formation. After POLQ knockdown,
the proliferative ability of the two cell lines decreased significantly. (H, I) Healing test. After POLQ knockdown, the migration ability of MDA-MB-231
or HCC1806 cell lines decreased significantly. (K–M) Transwell assay. After POLQ knockdown, the migration and invasion abilities of MDA-MB-231
or HCC1806 cell lines were significantly decreased. (P<0.05*; P<0.01**; P<0.001***, P<0.0001****)
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tumor cells can be recognized and eliminated by the body’s immune

system under normal circumstances. Immunotherapy has also been

carried out in a series of studies in BRCA, although its effect is not as

significant as in lung cancer, melanoma, and other tumors, it has

achieved a certain effect in triple-negative BRCA (23, 24), while the

results in HR-positive/HER2-negative and HER2-positive BRCA

are still immature or the efficacy needs further exploration (25). At

present, the immune checkpoint inhibitor used in BRCA clinics is

programmed death protein-1 (PD-1) programmed death protein

ligand-1 (PD-L1), and other immune checkpoint inhibitors are still

being studied and explored (26). The effective rate of immune

checkpoint inhibitors is low, and most of them are combined with

chemotherapy drugs. The research on the combination with other

drugs is still underway (27). What we know is that one of the

important reasons for the low efficiency of immune checkpoint

inhibitors and their use in combination with chemotherapeutic

agents in clinical treatment is that the immunotherapy-sensitive

population cannot be accurately screened by the available means,

whereas the TMBmay drive effective anti-tumor immune responses

and ultimately lead to a sustained clinical response to

immunotherapy. Our results showed that the expression of genes

involved in the model, such as POLQ, was significantly correlated

with the TMB data in the BRCA patients, and that this group of

patients with high POLQ expression levels was more likely to show

better therapeutic effects to immunotherapy, which may provide a

certain reference value for the individualized precision treatment of

BRCA patients in the clinical practice. However, this needs to be

confirmed by more real-world studies. Chimeric antigen receptor T

(CAR-T) cell therapy is a personalized immunotherapy approach

that has made some progress in BRCA treatment (28). Car-T cell

therapy works by introducing a CAR that targets a BRCA-specific

antigen into a redesigned T cell in the patient’s body, thereby

activating and boosting the patient’s immune system to attack

tumor cells. Vaccine therapy is a method of using specific

antigens to stimulate the patient’s immune system to produce an

anti-tumor immune response. In BRCA immunotherapy,

researchers are developing various vaccines, including cancer

vaccines, tumor polypeptide vaccines, and genetic vaccines, to

activate the patient’s immune system to fight BRCA (29). In

addition to the strategies mentioned above, there are several other

BRCA immunotherapies under investigation. Examples being

explored include the combination of immune checkpoint

inhibitors, tumor-associated antigen (TAA) specific T cell

therapy, and the use of immune promoters (30). While there have

been some encouraging advances in BRCA immunotherapy, the

effectiveness and safety of these strategies are still being evaluated in

research and clinical trials. Therefore, for specific patients, it is still

necessary to discuss and make decisions in detail according to

individual circumstances.

In our study, we further calculated the correlation between

immune cell abundance and risk score. We found that risk scores

were positively correlated with memory B cells, primary CD4+ T

cells, macrophage M0, and activated NK cells, and negatively

correlated with primary B cells, resting CD4+ memory T cells,

resting dendritic cells, and gamma-delta T cells. Given the

important role of initial CD4+ T cells, macrophage M0, and other
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immune cells in immunotherapy, our prognostic model has a

certain guiding significance for the immunotherapy response of

BRCA patients. Our results also found that the genes involved in the

model construction were significantly correlated with the

infiltration levels of most immune cells. For example, POLQ gene

expression levels were significantly positively correlated with naive

B cell infiltration and negatively correlated with activated NK cell

infiltration. At present, the immune checkpoint inhibitor used in

BRCA clinics is programmed death protein-1 (PD-1) programmed

death protein ligand-1 (PD-L1), and other immune checkpoint

inhibitors are still being studied and explored. We analyzed 35

common immune checkpoints such as PD-1, PD-L1, CTLA-4, and

LAG3 between the high and low-risk groups, and found that the

expression level of immune checkpoints in the low-risk group was

lower. This may indicate a better response to immunotherapy in the

high-risk group. However, the efficacy of immune checkpoint

inhibitors is low in single-drug treatment, and most of them are

combined with chemotherapy drugs, and the study of combination

with other drugs is still ongoing. Therefore, clinicians must identify

individualized treatment at an early stage, as sensitive drugs vary

from person to person. To find chemotherapy drugs that are more

sensitive to high-risk populations, we perform drug sensitivity

analysis to develop specific drugs for high-risk populations.

DNA repair is indeed crucial for maintaining genomic stability

and preventing the development of cancer. The evolving

understanding of the DNA damage response pathway has

expanded the possibilities for therapeutic approaches in oncology.

It is becoming increasingly clear that genomic instability in cells

caused by defective DNA damage responses contributes to the

development of cancer (31, 32). On the other hand, these defects

can also serve as a therapeutic opportunity (33, 34). Targeting

various components of the DNA Damage Repair (DDR) pathway,

such as PARP, ATM, ATR, CHK1, WEE1, and DNA-PK, has led to

the development of DDR-targeted drugs, some of which are

currently under clinical study (35, 36). Currently, inhibitors of

these DDR components, some of which are under clinical study (37,

38). It’s also interesting to note the potential synergy between DDR

inhibitors and conventional cancer therapies, as well as their

correlation with immune checkpoint inhibitor response, which

promotes the exploration of combination therapies. These

advancements in DNA repair-targeting drugs are increasingly

playing a significant role in the field of tumor therapy (39, 40).

Drugs that target DNA repair pathways are showing an increasing

role in the field of tumor therapy (33, 39, 41).

POLQ is a large protein composed of helicase (HD) and

polymerase domains (PD), and deletion of either leads to synthetic

lethality of HR deficiency (42). POLQ is a promising target in cancer

therapy, and POLQ inhibitors are being actively developed by the

scientific and industrial communities (43). On August 5, 2021, Artios

Pharma published the clinical registration of the First-in-class drug

ART4215 on the clinical trials website. ART4215 is the world’s first

highly selective oral small-molecule targeted POLQ inhibitor in the

Polq polymerase domain to enter clinical studies. On August 10,

2022, Artios Pharma announced that it has initiated a Phase II study

of ART4215 in combination with the PARP inhibitor talazoparib in

BRCA-deficient BRCA. POLQ helicases and POLQ polymerase
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inhibitors have been developed, and these POLQ inhibitors (POLQi)

have specific effects on killing BRCA-deficient cells (44), but the

specific mechanism of action of POLQ is unknown. More clinical

trials are needed to confirm the promise of POLQ inhibitors in BRCA

patients, especially those at high risk.

The study looked for monitoring and predictors of

immunotherapy in BRCA patients, such as immune-related

markers or gene expression characteristics. This will help

determine which patients are suitable for immunotherapy and

provide individualized treatment decisions. By delving deeper into

immunotherapy for BRCA, we can reveal the interaction between

the immune system and the tumor, develop more accurate and

effective treatments, and improve patient outcomes and survival.

However, the prognostic model we constructed through

bioinformatics requires further external validation on

independent datasets to verify its predictive performance and

generalization ability. In addition, the application of the

prognostic model in clinical practice should fully consider the

actual clinical environment, feasibility, and interpretability. At the

same time, BRCA is a dynamically changing disease, and

biomarkers and clinical characteristics of patients may change

over time. Prognostic models need to be able to account for this

variation and provide real-time, valid recommendations in

treatment decisions.
5 Conclusions

In this study, transcriptomics and proteomics were combined to

conduct a comprehensive analysis. These data are integrated to

conduct in-depth research, break through the limitations of a single

omics study, conduct a joint analysis of different omics data, dig for

more meaningful information in the limited data, build the body

regulatory network, and deeply understand the regulation and

causality between various molecules. The immunological and

prognostic significance of POLQ in breast cancer was explored

systematically. Notably, we advocate effective prognostic signatures

based on POLQ-related genes. Our findings provide a novel and

accurate classification and treatment strategy for breast

cancer patients.
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