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Background: As the leading cause of chronic kidney disease, diabetic kidney

disease (DKD) is an enormous burden for all healthcare systems around the

world. However, its early diagnosis has no effective methods.

Methods: First, gene expression data in GEO database were extracted, and the

differential genes of diabetic tubulopathy were obtained. Immune-related

genesets were generated by WGCNA and immune cell infiltration analyses.

Then, differentially expressed immune-related cuproptosis genes (DEICGs)

were derived by the intersection of differential genes and genes related to

cuproptosis and immune. To investigate the functions of DEICGs, volcano

plots and GO term enrichment analysis was performed. Machine learning and

protein-protein interaction (PPI) network analysis helped to finally screen out hub

genes. The diagnostic efficacy of them was evaluated by GSEA analysis, receiver

operating characteristic (ROC) curve, single-cell RNA sequencing and the

Nephroseq website. The expression of hub genes at the animal level by STZ

-induced and db/db DKD mouse models was further verified.

Results: Finally, three hub genes, including FSTL1, CX3CR1 and AGR2 that were

up-regulated in both the test set GSE30122 and the validation set GSE30529,

were screened. The areas under the curve (AUCs) of ROC curves of hub genes

were 0.911, 0.935 and 0.922, respectively, and 0.946 when taking as a whole.

Correlation analysis showed that the expression level of three hub genes

demonstrated their negative relationship with GFR, while those of FSTL1

displayed a positive correlation with the level of serum creatinine. GSEA was

enriched in inflammatory and immune-related pathways. Single-nucleus RNA

sequencing indicated the main distribution of FSTL1 in podocyte and mesangial

cells, the high expression of CX3CR1 in leukocytes and the main localization of

AGR2 in the loop of Henle. In mouse models, all three hub genes were increased

in both STZ-induced and db/db DKD models.
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Conclusion: Machine learning was combined with WGCNA, immune cell

infiltration and PPI analyses to identify three hub genes associated with

cuproptosis, immunity and diabetic nephropathy, which all have great potential

as diagnostic markers for DKD and even predict disease progression.
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1 Introduction

Diabetic kidney disease (DKD), the main complication of

diabetes, mainly features hypertension, proteinuria and

progressive decreases in kidney function. It is also a leading cause

of chronic and even end-stage kidney diseases worldwide (1–3).

DKD is expected to experience an increase of nearly 50% in

morbidity in the next two decades, which results in an estimated

783 million patients. It is estimated that the 10-year cumulative

mortality rate of DKD patients is up to 31.1% (4). Detecting DKD

early is important to prevent its evolution into renal failure.

Unfortunately, only abnormal proteinuria can be found due to

the silence at the early stages of the disease, which makes its

diagnosis difficult. Various studies have identified associations of

DKD with markers of renal tubule injury such as kidney injury

molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin

(NGAL) and N-acetyl-b-D-glocosaminidase (NAG), inflammatory

markers like tumor necrosis factor-a (TNF-a) and interleukin-1b
(IL-1b), as well as markers of oxidative stress like 8-hydroxy-2’-

deoxyguanosine (8-OHdG) (5). However, no available biomarkers

can accurately diagnose or predict the progression of DKD.

Tubular injury in the progression of DKD has been recognized

to play a significant role for the past few years and is named diabetic

tubulopathy (6). Regarding mechanism, oxidative stress, hypoxia,

albumin overload, inflammation, epithelial-mesenchymal transition

(EMT), cellular senescence and nutrient-sensing pathways in tubule

cells continue to occur during the development of diabetic

nephropathy. They jointly promote the progression of tubule

injury and interstitial fibrosis, which thus affects the prognosis of

DKD patients (7).

Cuproptosis, a novel copper ion-dependent cell death regulatory

process, has recently been recognized to be strongly correlated with

mitochondrial respiration and the lipoic acid (LA) pathway (8). As an

important micronutrient in the human body, copper is a key catalytic

cofactor, which is vital in mitochondrial respiration, antioxidant

defense, biocompound synthesis and other biological processes. Its

concentration has been maintained in a low range. When

accumulating abnormally, copper ions show serious cytotoxicity.

However, the specific mechanisms that have evolved to do that are

not fully understood.
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Proximal tubules are the main site of renal reabsorption, in which

a large number of mitochondria are distributed to produce energy (9).

In the early phase of DKD, high glomerular filtration is accompanied

by the increased reabsorption of proximal tubules. This causes a

sharp increase in energy consumption and the exposure of proximal

tubules to hypoxia, which leads to mitochondrial dysfunction. It was

hypothesized that the process of diabetic renal tubular disease is

accompanied by copper death, given the close relationship between

cuproptosis and mitochondrial function. Recent studies have shown

that all the stages of DKD are accompanied by immune infiltration,

predominantly macrophage infiltration. In addition, the degree of

immune infiltration has also been observed to have a close association

with the progression of end-stage renal disease (ESRD) in DKD

patients (10, 11). Therefore, the aim of this research was to investigate

the associations of immune infiltration and cuproptosis with diabetic

tubulopathy, and then construct and externally validate a novel DKD

prediction model.

In this study, the diagnostic genes of DKD tubule injury were

predicted by making a combination of the bioinformatics methods

related to immune infiltration and cuproptosis. Additionally, the

external data set was used as the verification set, and mouse models

were also involved. The specific process of the experiment is shown

in Figure 1.
2 Materials and methods

2.1 Data acquisition

The Gene Expression Omnibus (GEO) database was searched, and

three data sets were obtained from renal tubules in diabetic nephropathy

patients, namely gene set enrichment 30122 (GSE30122), GSE104954

and GSE30529, which were derived from the GPL571 and GPL22945

platforms, respectively. Their detailed information is shown in Table 1. A

cuproptosis-related geneset was constructed by searching for

“cuproptosis” in Gene Set Enrichment Analysis (GSEA) and

GeneCards databases (https://www.gsea-msigdb.org)(https://

www.genecards.org), respectively. After that, they were merged with

key genes for cuproptosis mentioned in an article published in 2022 (8).

The specific gene list is shown in Supplementary Table 1.
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2.2 Identification of differentially
expressed genes

Firstly, difference analysis was conducted on the three GEO datasets

respectively by the R package “limma”, and volcano maps were drawn

with the help of the “ggplot” package. It was considered that P-value <
Frontiers in Immunology 03
0.05 and |log2FC| >0.5 had statistical significance. A summary was made

on the basis of the above three sets of differentially expressed genes

(DEGs) and cuproptosis-related genes. A Venn diagram was plotted to

obtain the collection of differential genes in diabetic nephropathy tubular

tissues associated with copper death, which were named differentially

expressed cuproptosis-related genes (DECGs).
TABLE 1 Summary of the data sets utilized in this research and their features.

Dataset Database Platform Sample Tissue

GSE30122 GEO GPL571 10 cases of DN and 24 cases of controls Tubulointerstitium

GSE104954 GEO GPL22945 7 cases of DN and 3 cases of controls Tubulointerstitium

GSE30529 GEO GPL571 10 cases of DN and 12 cases of controls Tubulointerstitium
Three gene expression datasets from renal tubule samples from DKD patients were incorporated in our research, as detailed in the table.
FIGURE 1

Flow chart for the study.
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2.3 Immune infiltration and weighted
correlation network analysis

The cibersort platform (https://cibersortx.stanford.edu) helped

us identify immune cell infiltration in diabetic nephropathy and

control samples by matching their M22 dataset with the expression

profile of this study. Weighted correlation network analysis

(WGCNA) is a systems biology approach. It is used for

describing patterns of gene associations between various samples

by identifying high-covariance gene sets and candidate treatment

targets or biomarker genes based on the interconnectivity of gene

sets and the connection between gene sets and clinical features.

Specifically, gene expression profiles were utilized to calculate the

median absolute deviation (MAD) for each gene. The top 50% of

genes with the smallest MAD were eliminated, and the

“goodSamplesGenes” method of the R software package

“WGCNA” was employed to remove outlier genes and samples. It

was found that six modules, including dark orange, bisque4,

darkgrey, orangered4, cyan and darkslateblue, exhibited the

strongest correlation with immune cells. Therefore, they were

selected for subsequent analysis. Afterwards, the genes in the

DECGs gene set were intersected with the six key modules

obtained by WGCNA. Intersection gene sets were named

differentially expressed immune-related cuproptosis genes

(DEICGs), and further research was carried out.
2.4 Gene ontology functional enrichment
and GSEA analyses

The R software package “inSilicoMerging” was used for merging

GSE104954 with GSE30122. Further, the batch effects between

them were removed using the removeBatchEffect function of the

R software package “limma”. The R package “ComplexHeatma” was

adopted to generate heatmaps for visualization. For the functional

enrichment analysis of gene sets, the gene ontology (GO)

annotation of genes in the R software package “org.Hs.eg.db” was

used for mapping genes into the background set. Enrichment

analysis was performed using the clusterProfiler package. In the

above process, the minimum and maximum gene sets were set to 5

and 5,000, respectively. It was considered that P value < 0.05 and

false discovery rate (FDR) < 0.25 had statistical significance. In the

follow-up study, the “clusterProfiler” package was also utilized to

conduct GSEA enrichment analysis on the three finally selected

hub genes.
2.5 Screening hub genes by machine
learning and PPI networks

Least absolute shrinkage and selection operator (LASSO)

regression is a constraint term model with L1 norm after the cost

function of a linear regression model, which can be used for the

variable screening and feature selection of high-dimensional data

and model construction (12). The support vector machine-recursive
Frontiers in Immunology 04
feature elimination (SVM-RFE) algorithm is a method of machine

learning that uses support vector machines as classifiers to identify

the best core genes (13).

The protein interaction networks of seven proteins were

retrieved from the STRING website (https://cn.string-db.org/) and

imported into Cytoscape for visualization. With the aid of the

cytohubba plug-in software in Cytoscape, eight kinds of algorithms

such as boeeleneck, closeness, degree, density of maximum

neighborhood component (DMNC), eccentricity, edge percolated

component (EPC), maximal clique centrality (MCC) and newsun

were obtained to forecast key genes. The top four genes in the

results obtained by each algorithm were intersected. The

intersection genes that overlapped in at least five algorithms were

taken as a new gene set. The differential genes obtained by machine

learning were further intersected. Finally, hub genes were obtained.

The receiver operating characteristic (ROC) analysis of three hub

genes was conducted by use of the “pROC” package and visualized

by the “ggplot2” package.
2.6 Clinical analysis

The expression levels of three hub genes were compared using

unpaired two-sample t-tests in the training cohort GSE30122 and

the validation cohort GSE30529. Then, the correlations between the

expression levels of hub genes and the serum creatinine and

glomerular filtration rate (GFR) of clinical patients on Nephroseq

(http://v5.nephroseq.org), a comprehensive information website

related to kidney diseases, were searched.
2.7 Single nucleus RNA sequencing

The Kidney Integrative Transcriptomics (K.I.T.) database was

invented in the laboratory of Ben Humphrey at Washington

University (http://humphreyslab.com/SingleCell/) (14). Thanks to

the database, the single-cell sequencing data of three hub genes in

the renal tubular lesion samples of diabetic nephropathy were

mined in this study, and the results were visualized.
2.8 DKD mouse models

The type 1 diabetes was induced by low-dose streptozocin

(STZ) treatment in C57 male mice aged 8-10 weeks. All the mice

received 12-week and 5-day feeding with a 60% high fat diet (HFD)

(Guangdong Medical Animal Center, Guangzhou, China) and were

given an intraperitoneal injection of STZ or citrate buffer after a 4-

hour fast for 5 days before the start of feeding. Fasting blood glucose

was measured one week after drug withdrawal. Mice with fasting

blood glucose greater than 15mmol/L were considered to have

successfully constructed a diabetes model. For the validation of

diabetic nephropathy, the increase of urinary albumin level is an

important indicator. Tubular atrophy, glomerular enlargement,

thickened capsule and inflammatory cell infiltration in H&E
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staining and mesangial hyperplasia, basement membrane

thickening and glomerular sclerosis with PAS staining can further

verify the renal damage caused by hyperglycemia At the same time,

we introduced 12-week-old male db/db mice from Shanghai Model

Organisms Center, Inc. to model type 2 diabetes, with db/m mice

as controls.
2.9 Hematoxylin-eosin and periodic acid-
Schiff staining

Mouse kidneys were fixed with 4% paraformaldehyde

immediately after sacrifice. After tissue processing and paraffin

embedding, sections of 2 mm were cut for further staining.

Hematoxylin-eosin (H&E) staining on kidney sections was

performed according to standard H&E staining protocols, in

which the staining time of hematoxylin and eosin was 18

minutes and 30 seconds, respectively. Periodic acid-Schiff (PAS)

staining for glycogen was performed using the Solarbio

kit (G1281).
2.10 RNA extraction from mouse kidney
and quantitative real-time polymerase
chain reaction

Ribonucleic acids (RNAs) were extracted by use of TRIzol

[Invitrogen, Carlsbad, California (CA), the United States of America

(USA)], followed by chloroform extraction. Subsequently, RNA

precipitated in isopropanol and resuspended in nuclease-free double

distilled water (ddH2O). Complementary deoxyribonucleic acids

(cDNA) were synthesized using 1 mg corresponding RNAs (Takara

Bio, Japan). Total cDNAs were diluted at a ratio of 1:3, and utilized for

quantifying the three genome segments by SYBR Green qPCR

(Vazyme,027E2220GB) with the following primer pairs: FSTL1:

Forward: 5’-CTCCCACCTTCGCCTCTAAC-3’, Reverse: 3’-TTC

TAGGTTCCTCCTCGCCG-5’, GAPDH: Forward:5’-GTTGGTT

GGAGCAAACATCCC-3’ , Reverse: 3’- TTAGGAGTGGG

GGTGGCTTT-5 ’ , AGR2 : Forward: 5 ’-GTGGGAAGCCC

AGATTTGCC-3’, Reverse: 3’-TAGTTTGGGCCGAGAGTCCT-5’,

CX3CR1: Forward: 5’-CCATCTGCTCAGGACCTCAC-3’, Reverse:

3’-CACCAGACCGAACGTGAAGA-5’.The amplification process

was completed on a 7500 fast real-time PCR System (Applied

Biosystems, CA, USA).
2.11 Statistical analysis

Statistical Package for the Social Sciences (SPSS) software 23.0

(SPSS Inc., Chicago, USA) or GraphPad Prism 9 (GraphPad

Software, CA, USA) was used to conduct statistical analysis. The

expression levels of immune cells in diabetic nephropathy (DN) and

control groups from the Cibersort website and those of hub genes in

both groups were compared using unpaired t-tests. Statistical

significance was set when p value was below 0.05.
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3 Results

3.1 Identification of differential genes

Differential genes associated with renal tubulointerstitial

damage in mice with diabetic nephropathy were searched for by

downloading three gene sets, including GSE30122, GSE104954 and

GSE30529, from the GEO database. The package “limma” was used

for differential analysis to obtain 2,201, 488 and 1,649 diabetic

nephropathy differential genes associated with tubulointerstitial

damage in three datasets, respectively. (Figures 2A–C). The above

gene sets were intersected with 1,046 cuproptosis-related gene sets

collected by literature review and database mining. Then, a DECG

gene set with 33 genes was obtained. (Figure 2D).
3.2 Immune infiltration analysis and
construction of weighted gene co-
expression networks

Cibersort analysis suggested that the infiltration levels of nine

kinds of immune cells in the GSE30529 database showed statistical

differences in the tubulointerstitial damage of the diabetic

nephropathy group. These immune cells included plasma cells, T

cells cluster of differentiation 8 (CD8), T cells CD4 memory resting,

T cells regulatory (Tregs), T cells gamma delta, natural killer (NK)

cells resting, macrophages M1, and mast cells resting and activated.

(Figure 3A). Meanwhile, 10 immune cell types were also shown to

differ in infiltration level between DKD and control groups in the

GSE 30122 dataset. These immune cell types contained T cells CD8,

CD4 memory resting, Tregs, T cells gamma delta, NK cells resting,

macrophages M0 and M1, dendritic cells resting, and mast cells

res t ing and act ivated . (Figure 3B) In addi t ion, two

differentially distributed immune infiltrating cells were in the

GSE104945 dataset, namely dendritic cells and mast resting.

(Supplementary Figure 1).

The soft-threshold power, which was more than a scale-free

topology fit index of 0.86 for each network, was 16. Thus, 16 was

selected as the soft power threshold for the construction of

WGCNA. (Figure 3C). In the meantime, the network connectivity

under different soft thresholds is shown in Figure 3D. Subsequently,

18 modules were presented in the analysis process. Among them,

six modules, including dark orange, bisque4, darkgrey, orangered4,

cyan and darkslateblue, demonstrated the strongest positive

correlation with the infiltration level of immune cells and were

taken into consideration for further investigation (Figure 3E).
3.3 Identification and GO enrichment
of DEICGs

DEICGs were further harvested by intersecting the six

correlation modules obtained from WGCNA with the DECGs

obtained from the previous analysis. (Figure 4A). To increase the

representativeness of the subsequent results, the GSE104954 dataset
frontiersin.org
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was combined with the GSE30122, and the batch effect was

removed. (Figures 4B, C). Increased messenger RNA (mRNA)

levels of DEICGs were observed in the heatmaps of two datasets.

(Figure 4D). The GO enrichment analysis results demonstrated that

DEICGs mainly got involved in biological processes like response to

stress and anatomical structure morphogenesis, were distributed in

cellular components like extracellular space, and played a role in

cytokine receptor activity and other molecular functions

(Figures 4E–G).
3.4 Screening of hub genes by machine
learning and PPI networks

A machine learning algorithm model was further built to extract

key genes from DEICGs that have more diagnostic significance for

diabetic nephropathy. We first tested the machine learning algorithm

on the dataset merged with GSE30122 and GSE104954. Through the

LASSO regression algorithm, a signature of five genes was obtained.

(Figures 5A, B). As for SVM-RFE, seven genes experienced the lowest

classifier error and highest classifier accuracy (minimal error = 0.0837,

maximal accuracy = 0.916) (Figures 5C, D). We then tested the above

analysis with GSE30122, and five and seven genes were validated in

LASSO regression algorithm and SVM-RFE analyses, respectively.

The overlapping part of the test and validation results were selected to

represent the final results of LASSO regression algorithm and SVM-

RFE analyze to participate in the subsequent produce the final hub

genes. Meanwhile, five genes were predicted from the PPI network by

using the CytoHubba plug-in software in Cytoscape (Figure 5E). By

intersecting the above three gene sets through the Venn diagram,
Frontiers in Immunology 06
three hub genes were obtained at last (Figure 5F). Among them,

FSTL1 has been proved to promote the progression of focal segmental

glomerular sclerosis(FSGS), membranous nephropathy (MN),

immunoglobulin A (IgA) nephropathy (IgAN), and other chronic

kidney diseases. CX3CR1 has been reported to regulate immune

responses such as inflammation, cell adhesion, and chemotaxis, and

therefore plays a crucial role in the progression of kidney diseases

such as IgA nephritis, nephrotoxic nephritis, and renal candidiasis.

The role of AGR2 in DKD disease progression has been predicted but

not confirmed by experimental data. Combined with the above

information, we believe that the three hub genes have great

potential as markers of progression of diabetic tubulopathy. In

further evaluation, the ROC curve showed high AUC levels for

FSTL1, CX3CR1 and AGR2, which were 0.911, 0.935 and 0.922,

respectively. The cut-off values of FSTL1,CX3CR1 and AGR2 genes

were 4.636, 3.425 and 3.101, respectively. The sensitivity and

specificity were 0.926 and 0.765 for FSTL1, 1 and 0.882 for

CX3CR1 and those of AGR2 is 0.926 and 0.765 (Figure 5G). The

above data indicated the three genes’ high diagnostic accuracy. When

taken as a whole, the AUC of the ROC curve of the disease prediction

model composed of the three hub genes was 0.946, the cut-off value

was 0.633 and the sensitivity and specificity were 0.963 and 0.941

respectively (Figure 5H).
3.5 Expression of hub genes and validation
of external datasets

Both the training set GSE30122 and the validation set

GSE30529 from the GEO database showed a consistent increase
B C

D

A

FIGURE 2

Identification of differential genes. (A–C) Differential gene expression on training cohort (GSE30122, GSE104954 and GSE30529). (D) Venn diagrams
of differentially expressed genes.
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in the mRNA levels of three hub genes, including FSTL1, CX3CR1

and AGR2, in the DKD group. (Figures 6A–F). When it comes to

clinical patients, correlation analysis showed that the expression

level of FSTL1 had a positive correlation with the level of serum

creatinine (p=0.02, R2 = 0.311) and a negative correlation with GFR

(p<0.001, R2 = 0.597) (Figures 6G, H). The expression levels of

CX3CR1 and AGR2 also displayed a negative correlation with GFR

(p1<0.001,p2<0.001,R12 = 0.614,R22 = 0.742) (Figures 6I, J).
Frontiers in Immunology 07
3.6 GSEA analysis

GSEA analysis revealed that the FSTL1 high-expression group

was mostly concentrated in pathways like primary focal segmental

glomerulosclerosis (FSGS), nephrotic syndrome, and IL-4 and IL-13

signaling and neutrophil degranulation (Figure 7A). The CX3CR1

high-expression group was highly enriched for the innate immune

system, signaling by ILs and the complement cascade (Figure 7B).
B

C D

E

A

FIGURE 3

Immune infiltration analysis and construction of weighted gene co-expression networks. (A, B) Comparison of infiltration levels of immune cells in
DKD group and control group inGSE30529 and GSE30122 database. (C, D). The mean connectivity plot and scale-free topology plots, 16 was an
appropriate soft-power. (E) 18 modules revealed by the WGCNA analysis. DKD, diabetic kidney disease; WGCNA, weighted gene co-expression
network analysis. p values were showed as: *,p < 0.05; **,p < 0.01, ***,p <0.001.
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Reactomes like the innate immune system, cytokine signaling in the

immune system and signaling by ILs were all associated with

elevated AGR2 levels. (Figure 7C).
3.7 Single Nucleus RNA sequencing of
hub genes

Single-nucleus RNA sequencing was performed to identify how

the three hub genes were distributed in 12 cell populations

(Figure 8A). Among them, FSTL1 was mainly distributed in

podocyte and mesangial cells (Figure 8B), CX3CR1 was highly

expressed in leukocytes (Figure 8C) and AGR2 was mostly

localized in the loop of Henle (Figure 8D).
Frontiers in Immunology 08
3.8 Expression level of hub genes in the
kidneys of DKD mice

To assess the diagnostic value of hub genes at the mouse level, a

mouse model of type 1 diabetes with STZ was constructed, and the

specific methods are described in Figure 9A. One week after the

injection, the fasting blood glucose of the DKD group was all greater

than 15mmol/L, which indicated the successful construction of the

diabetes model. (Figure 9B). After the mice were weighed weekly for

12 weeks, it was found that the DKD group was lighter than the

control one, which is consistent with the clinical manifestations of

diabetes (Figure 9C). H&E staining indicated that the DKD group

was characterized by the hypertrophy of glomerular capillary loops,

glomerular enlargement and the vacuolar degeneration of renal
B C

D E

F G

A

FIGURE 4

Identification of DEICGs and GO enrichment of them. (A) The immune-related genes screened by WGCNA analysis were combined with DECGs to
draw the Venn diagrams, and thus DEICGs was obtained. (B, C) Sample distribution of GSE104954 and GSE30122 data sets before and after batch
effect correction. (D) Distribution of DEICGs in GSE104954 and GSE30122 datasets. (E–G) Gene functions were categorized based on BP, MF, and
CC by GO enrichment analysis. DECGs, differentially expressed cuproptosis-related genes; DEICGs, differentially expressed immune-related
cuproptosis genes; BP, Biological Process; CC, Cell Component; MF, Molecular Function).
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tubular epithelial cells (Figure 9D). PAS staining demonstrated

mesangial hyperplasia, basement membrane thickening, glomerular

sclerosis and other additional abnormalities in the DKD group

(Figure 9D). The quantitative real-time polymerase chain reaction

(RT-qPCR) results of the mouse renal cortex sample suggested that

the expression levels of all hub genes showed an increase in both STZ

treatment group and db/db group. (Figures 9E–G).
Frontiers in Immunology 09
4 Discussion

Proximal tubular injury associated with DKD, a microvascular

complication with the highest mortality rate in diabetes, has always

been a vital focus of investigation on the pathogenesis of the disease

(15). It has been shown that oxidative stress, hypoxia, albumin

overload, inflammation, EMT, cellular senescence and
B

C D

E F

G H

A

FIGURE 5

Screening hub genes by machine learning. (A, B) Cross-validation curves and regression coefficient path diagram in LASSO logistic regression
algorithm. (C, D) The curve of change in the predicted true and error value of each gene in SVM-RFE algorithm. (E) Plot the PPI interaction network
for DEICGs. (F) Venn diagram demonstrates the intersection of the above three analyses. (G) ROC curve analysis for 3 hub genes. (H) ROC analysis
of prediction model composed of 3 hub genes. LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine-recursive
feature elimination; PPI, protein-protein interaction; ROC, receiver operating characteristic.
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dysfunctional nutrient-sensing pathways all play a vital role in the

progression of diabetic tubulopathy (7). However, it remains

difficult to diagnose DKD early due to the complexity of the

disease, and effective biomarkers are insufficient to diagnose the

disease and predict its prognosis. It is known that the progression of

diabetic tubulopathy is closely related to immune infiltration and

mitochondrial dysfunction (16).
Frontiers in Immunology 10
In this study, a series of differentially expressed genes were

obtained in DKD renal tubules by mining the GEO database. They

were intersected with genes related to cuproptosis and immunity to

get the DEICGs gene set. Machine learning algorithms, which

process large amounts of biological data to group them and build

models, are widely used for predicting disease markers and

treatment targets (17). During the analysis process, genes were
B C

D E F

G H

I

A

J

FIGURE 6

The expression of hub genes in disease database and its correlation with clinical features (A–C). The expression level of FSTL1, CX3CR1 and AGR2 in
DN group and control group in training cohort GSE30122. (D–F) The expression level of FSTL1, CX3CR1 and AGR2 in DKD group and control group
in validation cohort GSE30529. (G, H) Correlation analysis of FSTL1 expression with serum creatinine and GFR level. (I) Correlation analysis of
CX3CR1 expression with GFR level. (J) Correlation analysis of AGR2 expression with GFR level. GFR, glomerular filtration rate. p values were showed
as: ***,p <0.001.
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further screened with the help of machine learning, the WGCNA

algorithm and PPI protein interaction analysis. Eventually, three

hub genes were found, namely FSTL1, CX3CR1 and AGR2. The

ROC curve mapping of hub genes and the correlation analysis of the

gene expression levels, serum creatinine and GFR of clinical patients

further suggested their significant diagnostic and prognostic

efficacy. To explore the possible mechanism of hub genes, GO

and GSEA pathway enrichment analyses were also conducted on

them. It was found that inflammatory and immune-related

pathways like IL-4 and IL-13 signaling and the innate immune

system occurred frequently, which may be crucial for the

progression of DKD. After the validation of the aforementioned

hug genes in the external dataset GSE30529, the higher levels of hub

genes in STZ-induced type 1 and db/db type 2 diabetic mouse

models were further demonstrated, respectively.

FSTL1 is a secreted glycoprotein that is important in various

physiological processes, such as angiogenesis, immune response

regulation, and cell proliferation and differentiation. In human

kidneys, single-cell transcriptomic data suggest that FSTL1 is only

distributed in interstitial fibroblasts and myofibroblasts (18). By

activating nuclear factor-kappa B (NF-kB) and wingless (Wnt)/b-
Frontiers in Immunology 11
catenin pathways, FSTL1 has been found to promote the

progression of different forms of CKD, including focal segmental

glomerular sclerosis(FSGS), membranous nephropathy (MN),

immunoglobulin A (IgA) nephropathy (IgAN), etc. (19, 20). In

the present study, the expression level of FSTL1 in the renal tubules

of DKD individuals was increased in both test and validation sets

and displayed a positive correlation with the serum creatinine level

of patients and a negative correlation with GFR levels. The above

results were further validated in both type 2 and 1 diabetic mouse

models. ROC analysis indicated that the AUC area of FSTL1 in

diabetic tubulopathy was 0.911, which indicated its strong

diagnostic efficacy. The association between FSTL1 and DKD has

not been reported previously. However, it has been reported that

FSTL1 influences the progression of fibrosis in diabetic retinopathy,

another type of diabetic microangiopathy, through the extracellular

matrix (ECM) receptor pathway (21). GSEA strongly implicated

that immune-related pathways such as IL-4 and IL-13 signaling,

neutrophil degranulation and complement and coagulation

cascades pathways are significantly affected by FSTL1 in DKD.

CX3CR1 belongs to the G-protein coupling receptor (GPCR)

superfamily and is a cell surface receptor mostly expressed in T
B

C

A

FIGURE 7

GSEA analysis of hub genes. (A–C). The differential genes with high and low FSTL1, CX3CR1 and AGR2 expression in GSE30122 database were
enriched by ESEA analysis. GSEA, Gene Set Enrichment Analysis.
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lymphocytes, monocytes and NK and mast cells (22–24). Studies

suggest that CX3CR1 regulates many aspects of the immune

response, such as inflammation, cell adhesion and chemotaxis.

CX3CR1 is crucial in the progression of IgA nephritis,

nephrotoxic nephritis, renal candidiasis and other renal diseases

(25). Few relevant studies have focused on CX3CR1 in DKD. It was

only noted that CX3CR1 was up-regulated in DKD many years ago.

In the current study, CX3CR1 was observed to be up-regulated in

the renal tissues of DKD patients and have a diagnostic accuracy

value (AUC = 0.935). The expression levels of CX3CR1 were

negatively correlated with GFR levels in DKD patients. The

related mechanism mainly involved the innate immune system,

signaling by interleukins and complement cascade pathways.

AGR2 was screened from MCF7, an estrogen receptor positive

breast cancer cell line, and its transcription is responsive to estrogen

at the molecular level (26). AGR2 has been implicated in

inflammatory bowel disease and cancer progression (27, 28), and

mechanically, promotes angiogenesis and increases the invasiveness

of tumor cells (29). Previous bioinformatics studies predicted the

efficacy of the AGR2 gene in the detection of diabetic renal tubular

disease but failed to verify their conclusions in disease samples (30).

In this study, it was noticed that AGR2 was up-regulated in the

tubule tissues of DKD individuals and higher expression levels of

AGR2 were often associated with lower GER levels, which signified

a close association between AGR2 and diabetic tubulopathy

progression. The ROC curve showed that AGR2 had a high AUC

level of 0.992, which indicated its high diagnostic accuracy. In

addition, the mechanism of AGR2 getting involved in DKD is
Frontiers in Immunology 12
mostly ascribed to the innate immune system, cytokine signaling in

the immune system and signaling by interleukins.

Common mechanisms discovered in DKD include metabolic,

hemodynamic, inflammatory and fibrotic mechanisms, each of

which provides potential therapeutic targets (31–33). A plethora

of studies have demonstrated the functional role of inflammation in

DKD, which can be triggered by the interaction of metabolic

defects, secondary injury mediators (like angiotensin II and

aldosterone) and pathological consequences of kidney cell injury

or dysfunction (such as albuminuria, loss of Klotho production,

lipid accumulation and lipotoxicity) (34, 35). At this point, the

infiltration of massive immune cells occurs. The enrichment

analysis of hub genes found that they affect the progression of

DKD mainly through immune and inflammatory pathways, which

corresponds to the pathophysiological process of DKD and

indicates their diagnostic efficacy.

In this study, three hub genes in diabetic tubulopathy, which are

closely related to cuproptosis and immunity and have high

diagnostic efficacy, were innovatively identified. Some limitations

are worth noting. First, the specific mechanism of hub genes in

DKD needs to be further verified, which is also the focus of our

follow-up work. Moreover, the expression level and predictive

performance of hub gene in other renal diseases that are often

differentiated from diabetic nephropathy, such as hypertensive

nephropathy, IgA nephropathy and membranous nephropathy,

should also be considered, which is crucial for the subsequent

application of the prediction model composed of these three hub

genes, although their diagnostic efficacy of this model for diabetic
B

C

D

A

FIGURE 8

Single Nucleus RNA Sequencing of hub genes. (A) The division of 12 cell types. (B) The distribution of FSTL1. (C) The distribution of CX3CR1. (D) The
distribution of AGR2. CD, collecting duct. ICA, Type A intercalated cells. ICB, Type B intercalated cells. PEC, parietal epithelial cells. PC, principal cell.
DCT, distal convoluted tubule. CT, connecting tubule. LOH, loop of Henle. PODO, podocyte. ENDO, endothelium. MES, mesangial cell.
LEUK, leukocyte.
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kidney disease has been fully verified. As a result, it is necessary to

test the expression of hub genes in other chronic kidney diseases in

future work.
5 Conclusion

In this study, immune infiltration analysis was combined with

WGCNA analysis, machine learning and PPI network analysis to
Frontiers in Immunology 13
obtain three valuable hub genes: FSTL1, CX3CR1 and AGR2. Then,

the valuable clinical efficacy of these hub genes was further

demonstrated, and their possible mechanisms were predicted with

the help of GSEA analysis, a ROC curve, single-cell RNA

sequencing and some online clinical databases. Finally, a DKD

model of C57 mice was constructed, and the expression of animal-

level hub genes was verified. FSTL1, CX3CR1 and AGR2 all have

great potential as diagnostic markers for DKD and even predict

disease progression.
B C

D E

F G

A

FIGURE 9

The expression level of hub genes in kidney of DKD mice. (A) Schematic diagram of STZ-induced mouse DKD models. (B) Fasting glucose in both
control and STZ-induced DKD mice. (C) Body weight in both control and STZ-induced DKD mice. (D) The H&E and PAS staining in control and STZ-
induced DKD mice. (E–G). mRNA expression of FSTL1, AGR2 and CX3CR1 by RT-qPCR. p values were showed as: *,p < 0.05; **,p < 0.01, ***,p <
0.001. STZ, streptozocin; H&E, hematoxylin-eosin; PAS, schiff periodic acid shiff.
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