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Objective: Emerging evidence has provided compelling evidence linking gut

microbiota (GM) and diabetic nephropathy (DN) via the “gut-kidney” axis. But the

causal relationship between them hasn’t been clarified yet. We perform a Two-

Sample Mendelian randomization (MR) analysis to reveal the causal connection

with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2

diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2

diabetes mellitus (T2DM).

Methods: We used summary data from MiBioGen on 211 GM taxa in 18340

participants. Generalized MR analysis methods were conducted to estimate their

causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure

the reliability of the findings, a comprehensive set of sensitivity analyses were

conducted to confirm the resilience and consistency of the results.

Results: It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651,

95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651,

95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae

(OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN.

Our analysis found significant associations between GM and T2DN, including

Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139),

Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024),

Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family

Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The

Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021)

exhibited a protection against T1DN. Sensitivity analyses confirmed that there

was no significant heterogeneity and pleiotropy.
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Conclusions: At the gene prediction level, we identified the specific GM that is

causally linked to DN in both T1DM and T2DM patients. Moreover, we identified

distinct microbial changes in T1DN that differed from those seen in T2DN,

offering valuable insights into GM signatures associated with subtype

of nephropathy.
KEYWORDS
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Introduction

One of the prevalent microvascular complications associated

with diabetes is diabetic nephropathy(DN), usually diagnosed

through symptoms such as albuminuria or a decreased estimated

glomerular filtration rate (eGFR) (1, 2). Diabetes poses a significant

global public health challenge. In modern times, diabetes has

emerged as a highly consequential and prevalent chronic ailment,

leading to severe and costly complications that pose a threat to life

and well-being, as well as diminishing life expectancy (3).

Approximately 537 million adults globally are affected by

diabetes, with type 2 diabetes mellitus (T2DM) constituting

almost 90% of the total cases, and the projected increase is

expected to reach 783 million by the year 2045 (4). Of all diabetic

patients diagnosed annually, 30% to 40% subsequently develop DN,

and one-third of those individuals eventually advance to the end

stage renal disease (ESRD) (5, 6). When comparing diabetic patients

with kidney disease to those without, it is observed that the

mortality rate of patients with DN is 30 times higher (7). T2DM

is often associated with diabetic nephropathy (8), and it is crucial to

note that as the incidence of T2DM increases, so does the

frequency of DN (9). In recent decades, significant progress has

been achieved in gaining a deeper understanding of the critical

pathogenic aspects of DN, with the aim of developing enhanced

therapeutic and preventive measures (10, 11). Despite these, current

multifaceted intervention strategies intended to mitigate the risk of

microangiopathy in people with diabetes have proven inadequate,

primarily due to the lack of treatment options that can effectively

and specifically address the molecular characteristics of DN. Hence,

it is crucial and urgent to clarify the mechanism behind renal

fibrosis in DN and to identify new biomarkers or targets associated

with the gradual decline of renal function in patients with DN.

Additionally, exploring the factors that impact nephropathy in

patients with T2DM is a crucial measure, towards comprehending

the disease’s impact and establishing research priorities.

Both physiology and disease state are significantly influenced by

the gut microbiota, with connections to various health problems In

recent times, there has been growing evidence suggesting a link

between gut dysbiosis and diabetic nephropathy (DN), along with

other conditions including diabetes, aging, obesity, and cancer (12–
02
16). The latest research suggests that the onset and advancement of

DN are linked to an altered gut microbial ecology or dysbiosis (17,

18). In age- and gender-matched patients with DN, lower levels of

Prevotella_9 in the intestine were found compared to diabetic

patients without kidney disease (19), capable of producing short-

chain fatty acids and reducing the inflammatory response of kidney

injury. The alteration of the intestinal microbiota is intricately

linked to the progression of diabetes, as indicated by numerous

studies. For instance, Bacteroides fragilis, Akkermansia muciniphila

and Roseburia intestinalis have demonstrated the ability to enhance

glucose metabolism and insulin sensitivity while also suppressing

pro-inflammatory cytokines (20). Metabolic factors associated with

oxidative stress and inflammatory response have been found to be

interconnected with intestinal dysbiosis and T2DM, thereby

impacting the onset and progression of diabetes-related

complications (17, 21). However, the precise causal role of GM in

the advancement of DN remains somewhat uncertain.

Mendelian randomization (MR) is a powerful methodology that

utilizes summary data derived from genome-wide association

studies (GWAS) to investigate potential causality of exposure

factors and outcomes. The objective is to minimize the influence

of confounding factors. The approach allows for a more robust

analysis of the possible association between these factors, providing

valuable insights into the underlying biological mechanisms

implicated in the progression of diseases. The utilization of MR

analysis is frequently employed as a means of assessing the potential

correlation between exposure factors and outcomes (22). Recent

studies utilizing MR analysis have made significant advancements

in unveiling the causality of autoimmune disorders and GM (23)

along with neuropsychiatric conditions (24).Nonetheless, the

utilization of MR analysis methods to investigate the progression

and pathogenic mechanism of DN remains unexplored.

This study places significant emphasis on investigating the

causal relationship between exposure to GM and the outcome of

DN, employing a method rooted in mendelian randomization

analysis. The identification of specific GM strains correlated with

DN patients offers prospects for the discovery of novel biomarkers,

diagnostic, and treatment methods. Thus, this initiative could

potentially be of significant benefit towards the development of

precision medicine.
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Materials and methods

General outline of MR analysis and
three assumptions

Overall, the causality of gut microbiota and diabetic

nephropathy was examined via conducting a Two-Sample MR

analysis. We assessed open GWAS summary statistics for DN as

well as GM, and the workflow for this study between GM taxa and

DN is presented in Figure 1. The MR analysis relied on three

fundamental assumptions, as depicted in Figure 1: 1) the

instrumental variables (IVs) which were screened for the analysis

needed to be highly associated with exposure factors; 2) both of

confounding factors and instrumental variables that affect GM taxa

and DN should be independent of one another; 3) there was no

evidence of horizontal pleiotropy, indicating that instrumental

variables merely impacted DN via GM taxa. Furthermore, we

incorporated GWAS data pertaining to T1DM, T2DM, as well as

type 1 diabetic nephropathy (T1DN) and type 2 diabetic

nephropathy (T2DN) outcomes. These data also satisfied the

aforementioned three essential assumptions during the

implementation of MR analysis.
Data sources for exposure and outcome

We obtained the GWAS summary statistics of GM from the

MiBioGen Consortium, a comprehensive multi-ethnic GWAS

meta-analysis comprising 18,340 individuals from 24 cohorts. The
Frontiers in Immunology 03
data was accessed on January 12, 2023, from the consortium’s

website (www.mibiogen.org). The summary statistics of GWAS

typically included data on 211 taxonomic groups at various levels,

ranging from genus to phylum. These groups encompassed 131

genera, 35 families, 20 orders, 16 classes, 9 phyla, and 122,110

related single nucleotide polymorphisms (SNPs) (25). The

microbial composition was subtly profiled by targeting three

different variable regions of the 16S rRNA gene. IVs of GM taxa

were extracted at distinct 5 levels from this large-scale GWAS.

Notably, the identification of these SNPs was limited to the

European population, achieving a significance level (p<1e-05).

As for diabetic nephropathy, the statistics were extracted

primarily from worldwide study in Europe (FinnGen (26), https://

r8.finngen.fi/accessed on 12 January 2023) including 3676 DN cases

and 283456 age/gender-matched healthy controls. We also acquired

GWAS summary statistics from the FinnGen database (accessed on

12 January 2023), encompassing four outcomes: T1DM (8026

T1DM cases and 283320 healthy controls), T2DM (33043 T2DM

cases and 284971 healthy controls), T1DN (1441 T1DN cases and

283224 healthy controls), and T2DN (2394 T2DN cases and 283224

healthy controls). According to ICD-10 standard (code: N08.3 *),

when patients with diabetes mellitus has glomerular disorders,

diabetes nephropathy could be defined as outcome. T1DM and

T2DM can be classified based on the presence of insulin

dependence in patients with DM, using the ICD-9/10 criteria

(code: E10/E11*,250/250.A*). According to ICD-9/10 standard

(code: N08.3 *), T1DN and T2DN were defined as outcome

whether there was insulin dependence in the patients with

diabetic nephropathy.
FIGURE 1

The flowchart of MR analysis. MR, Mendelian randomization n; GWAS, genome-wide association study; SNP, Single Nucleotide Polymorphism.
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Quality control of instrumental variables

Firstly, the SNPs that attained a p-value below the locus-wide

significance threshold (p<1e-05) were chosen for ensuring the

inclusion of appropriate IVs (27, 28). Secondly, we performed a

linkage disequilibrium (LD) analysis (r²<0.001, clumping

distance=10000kb) to assess the independence of these variables

and the presence of LD effect. The palindromic and incompatible

SNPs were further removed from the IVs. Additionally, we have

excluded IVs with F-statistics below 10. The F-statistic is calculated

using the formula F = beta2/se2, where beta represents the effect of

SNP on the exposure, and se denotes the standard error of beta (29).

Moreover, those instrumental variables that were not bound up

with outcome were excluded if the p-value of the outcome variables

was less than 0.05. Proxy SNP whose LD score was higher than 0.8

was utilized when there were SNPs that are missing in the outcome.

R²(formula: 2 × EAF × (1-EAF) × beta2, where EAF represents the

effect allele frequency of the SNP) was calculated to make sure the

magnitude of the correlation of exposure and IVs (30).

Phenoscanner V2 (31) was utilized to identify the possible

confounders (BMI, blood pressure, blood lipids, heart disease,

hypertension, etc.) that may be associated with the IVs. SNPs

related to any of these potential confounders were excluded at the

genome-wide significance level to prevent their interference with

the effect of exposures on the outcome. Ensuring the rigor and

reliability of our research findings necessitates the implementation

of quality control measures for instrumental variables.
Mendelian randomization analyses

The inverse variance weighted (IVW) analysis was employed as

the primary statistical method for GM taxa that encompassed

multiple SNPs. The Wald ratio (WR) method was employed to

analyze GM taxa that consisted of a single SNP. Additionally, in order

to provide further confirmation of the IVW result, we employed

additional statistical methods such as MR-Egger regression and

weighted median (WM) analysis as complementary approaches.

The IVW method has the capability to integrate the Wald

estimation of individual gene variants within a meta-analysis

framework. When the horizontal pleiotropy is appropriately

balanced, this method can yield unbiased results (32). IVW is

commonly favored due to its ability to provide unbiased estimates

of the status, while mitigating the impact of horizontal pleiotropy.

The representation of the effect size can be achieved by utilizing the

odds ratio in conjunction with a 95% confidence interval (CI). The

effectiveness of MR Egger’s results was observed when the proportion

of SNPs with pleiotropy exceeded 50% (33).The results from WM

were regarded as the significant causal effect values if the number of

SNPs with heterogeneity was over 50% (34). In cases where there was

a discrepancy between the results obtained from different methods,

the IVW method was chosen as the primary outcome.

Furthermore, we conducted a variety of sensitivity analyses to

assess the robustness of the identified causal relationships. These

analyses included the MR-Egger intercept test, as well as mendelian

randomization pleiotropy residual sum and outlier (MR-PRESSO)
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analysis. Cochrane’s Q test was conducted to assess the

heterogeneity among different associated with IVs. When the p-

value of heterogeneity is less than 0.05, the random-effects IVW test

was conducted to provide a more conservative yet robust estimate.

When the p-value exceeded 0.05, it indicated that the observed

outcome did not exhibit significant horizontal pleiotropy. MR-

PRESSO (35) as the capability to assess and eliminate outliers

exhibiting horizontal pleiotropy (p<0.05), thereby providing a

refined causal estimate. We performed a leave-one-out analysis to

determine whether the significant outcome was influenced by a

single SNP and to assess the presence of outliers, as well as the

stability of the results.
Ethics statement

The GWAS statistics utilized in this study were readily

accessible to the public for download. Approval from the relevant

institutions had been obtained for all GWAS included in this study,

indicating that ethical protocols had been adhered to. Therefore, no

additional ethical approvals were necessary for this study.
Statistical analysis

We performed a comprehensive analysis using MR analysis and

various sensitivity analyses to assess the causal impact of gut

microbiota on the development of diabetic nephropathy. All of the

aforementioned analyses were conducted using the open-source

packages TwoSampleMR (version 0.5.6) (36) as well as MR-

PRESSO (version 1.0) in R (version 4.2.1, https://www.rproject.org/,

accessed on 15 July 2022). The statistical significance of the estimates

for the MR effect was assessed by applying a false discovery rate

(FDR) threshold of less than 5%. This threshold was employed to

correct for multiple testing. In addition, we employed the Bonferroni

correction method to obtain a more stringent validation of the

significantly causal relationship, taking into account the number of

genera, families, orders, classes, and phyla under each level. The

significance threshold was adjusted as follows: for genera, the

adjusted p-value was 0.05 divided by 131 (3.81e-4); for families, it

was 0.05 divided by 35 (1.4e-3); for orders, it was 0.05 divided by 20

(2.5e-3); for classes, it was 0.05 divided by 16 (3.1e-3); and for phyla, it

was 0.05 divided by 9 (5.5e-3). Additionally, any p-value falling

between 0.05 and the Bonferroni-corrected p-value was considered

nominally significant. The project of our study (37) was guided by

referencing the STROBE-MR guideline.
Reverse Mendelian randomization analysis

To examine the potential causal effect of DN on the significant

GM, a reverse Mendelian randomization analysis was performed.

This analysis utilized single SNPs associated with DN as

instrumental variables, with DN as the exposure and the

identified causal GM as the outcome. The instrumental variable

weighted (IVW), MR-Egger regression, weighted median, along
frontiersin.org
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with MR-PRESSO test methods were implemented via utilizing the

TwoSampleMR package (version 0.5.6) as well as MR-PRESSO as a

supplement (version 1.0) in R (version 4.2.1, accessed on 15

July 2022).
Results

The selection of instrumental variables

A total of 14,587 instrumental variables based on the MiBioGen

consortium were initially found to achieve locus-wide significance

(p<1e-5), but after removing the effects of both linkage

disequilibrium and palindromic for specific flora, only 1043

instrumental variables remained. These taxa represented 9

phylum (87 SNPs), 16 class (132 SNPs),20 order (154 SNPs), 35

family (221 SNPs) and 125 genera (449 SNPs) with each SNP

showing adequate validity (all F>10) as evidenced in Table 1.

Additionally, we ultimately included 1025 instrumental variables

(Supplementary Table S1) which were selected from 211 flora in our

analysis after removing those that might have been related to

confounding factors of outcomes (n=18). The procedure for

screening SNPs for the remaining four outcomes, which are

T1DM, T2DM, T1DN, and T2DN, remains unchanged from the

above-mentioned process. For detailed information, kindly consult

the Supplementary Materials Table S5-S8 with each SNP showing

adequate validity (all F>10).
Class Verrucomicrobiae, order
Verrucomicrobiales, and family
Verrucomicrobiaceae are strongly
associated with an increased risk of DN

Nineteen causal relationships were identified through IVW results

based on MR analysis. Figure 2 depicts the association between

potential causally linked bacterial taxa and diabetic nephropathy.

Genus Butyricicoccus, Genus Howardella, Genus Lachnoclostridium,

Genus Oxalobacter, GenusTyzzerella3, Genus unknowngenus, Family

Oxalobacteraceae, Family Verrucomicrobiaceae, Order Rhodospirillales,

Order Verrucomicrobiales, Class Verrucomicrobiae and Phylum
Frontiers in Immunology 05
Bacteroidetes were associated with a higher risk of DN. While Genus

Eubacerium, Genus RuminococcaceaeUCG002, Genus unknowngenus,

Class Actinobacteria, Class Gammaproteobacteria and Phylum

Proteobacteria were found to be linked with a decreased likelihood of

developing DN. Sensitivity analyses were conducted using Cochrane’s

Q test, MR-Egger as well as MR-PRESSO Global tests (Supplementary

Table S3) to assess the presence of significant heterogeneity and

pleiotropy. The results of these analyses confirmed that no significant

heterogeneity or level of pleiotropy was observed.

More importantly, results from the FDR (Table 2) unveiled that a

higher level of Class Verrucomicrobiae[odds ratio(OR)=1.5651,95%

CI:1.1810-2.0742, PFDR=0.0018], Order Verrucomicrobiales

(OR=1.5651,95%CI:1.1810-2.0742, PFDR=0.0018) and Family

Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844,

PFDR=0.0296) retain a strong causal relationship with DN, which

were also supported by the weighted median method (Supplementary

Table S4). Figure 3 (based on Bonferroni-corrected test) shows

significant and nominally significant links between gut microbiota

and diabetic nephropathy. Results from MR-Egger as well as MR-

PRESSO tests (Supplementary Table S3) exhibited no indications of

horizontal pleiotropy or outlier effects (p > 0.05). Additionally,

findings derived from Cochrane’s Q test (Supplementary Table S3)

did not show significant heterogeneity (p > 0.05). Furthermore, the

leave one-out analysis revealed no significant difference in causal

estimations of Class Verrucomicrobiae, Order Verrucomicrobiales

and Family Verrucomicrobiaceae on diabetic nephropathy, unveiling

that all of the causal associations which were distinguished by our

study were not driven by specific single IV (Supplementary

Figure S3).
Class Verrucomimicrobiae, order
Verrucomimicrobiae, Rhodospirillales and
family Verrucomicroniaceae are highly
correlated with risk of T2DN, while the
genus Eubacterium might exhibit a
protective effect against T1DN

Besides, to investigate the potential correlation between the

distribution of intestinal flora in DN and the specific type of diabetic

nephropathy, particularly T2DN, we performedMR analysis (Figure 4)

and applied FDR correction to 19 types of GM that were preliminarily

identified as being associated with DN in the MR analysis. The results

(Table 3) revealed that ClassVerrucomimicrobiae (OR=1.8227, 95%CI:

1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae

(OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales

(OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family

Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763,

PFDR=0.0083) were negatively associated with T2DN.Conversely,

the Eubacterium protogenes group (OR=0.4076, 95% CI: 0.2415-

0.6882, PFDR=0.0021) exhibited a protective effect against

T1DN.Clearly, the MR analysis outcomes for T2DN and DN exhibit

a higher level of consistency.

Based on this discovery, we proceeded to perform MR analysis

on the aforementioned 19 types of GM and T2DM to investigate the

variation in GM distribution across different stages of diabetic
TABLE 1 Selection of IVs after quality control.

Taxonomies Taxa NSNP
Palind-
romic

IVs

Genus 125 524 75 449

Family 35 261 40 221

Order 20 184 30 154

Class 16 157 25 132

Phylum 9 99 12 87

Total 205 1225 182 1043
IV, Instrumental Variable; SNP, Single Nucleotide Polymorphism; NSNP is the number of
SNPs being used as IVs.
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nephropathy. Additionally, we conducted an analysis on T1DM to

aid in the verification process. However, based on the current

results, we have not identified any significant findings in relation

to T2DM (Figure 5) and T1DM.Sensitivity analyses of T1DN and

T2DN were conducted using Cochrane’s Q test, MR-Egger, together
Frontiers in Immunology 06
with MR-PRESSO Global tests (Table 4), which collectively

confirmed the absence of significant heterogeneity and pleiotropy.

The Supplementary Materials contain the MR analysis

(Supplementary Tables S9-12) and sensitivity analysis results

(Supplementary Tables S13-16) for the remaining gut microbiota.
TABLE 2 Casual effects of MR Analysis between GM and DN (P value corrected by FDR).

Outcome Level Exposure Method NO.SNP P PFDR

DN genus Oxalobacter IVW 4 0.01570509 0.026529

MR Egger 0.97126844 0.20911

WM 0.12379308 1.640656

Lachnoclostridium IVW 4 0.02465297 0.048915

MR Egger 0.90397821 1.793608

WM 0.32419244 0.643239

Tyzzerella3 IVW 7 0.03985293 0.044479

MR Egger 0.98491188 1.099232

WM 0.12705784 0.141806

family Verrucomicrobiaceae IVW 8 0.02958387 0.029584

MR Egger 0.56294025 0.56294

WM 0.04102681 0.041027

order Verrucomicrobiales IVW 9 0.001822646 0.001823

MR Egger 0.498500366 0.4985

WM 0.039104132 0.039104

class Verrucomicrobiae IVW 9 0.001822646 0.001823

MR Egger 0.498500366 0.4985

WM 0.030097269 0.030097

phylum Proteobacteria IVW 10 0.0202873 0.026084

MR Egger 0.99720158 1.282116

WM 0.09815853 0.126204
The bold values refer to the P-values still less than 0.05 after FDR correction.
FIGURE 2

Results of MR Analysis between 19 potential casually microbiotas and DN. MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IV,
instrumental variable; IVW, inverse-variance weighted; WR,wald ratio; OR, odds ratio; CI, confidence interval. SNP, single nucleotide polymorphism;
DN, diabetic nephropathy.
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DN results in an increased occurrence of
order Rhodospirillales and phylum
Proteobacteria based on reverse analysis

Ulteriorly, we performed a reverse MR analysis, which show no

clear evidence of reverse causality from DN to Class Verrucomicrobiae,

Order Verrucomicrobiales and Family Verrucomicrobiaceae

(Supplementary Table S5). Moreover, the reverse MR analysis

revealed that DN may result in an increased occurrence of Order

Rhodospirillales (b=0.0578, 95%CI:0.0129-0.1027 p=0.01161) and

Phylum Proteobacteria (b=0.0402, 95%CI:0.0085-0.0719, p=0.01286)
based on IVW results (Supplementary Table S17). The sensitivity

analyses of the Cochrane’s Q test, MR-Egger as well as MR-PRESSO

Global tests (Supplementary Table S18) indicated that there was no

significant heterogeneity (p>0.05) or level of pleiotropy (p>0.05). No

clear association was found for other gut microbiotas identified

(p>0.05) except for the two. More detailed information on the

reverse MR analyses was display in Supplementary Table S17.
Discussion

The progress of research on the “gut-kidney” axis has faced

obstacles due to several confounding factors, such as dietary habits.

These factors have presented challenges in investigating the causality of

GM and DN in a cross-sectional approach. To overcome these

challenges, we utilized MR analysis and evaluated the causality
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between microflora and DN from point of host genetics. Our

findings confirmed that GM taxa can modify susceptibility to DN,

demonstrating the significant impact of gut microbiota on this

condition. Total of 19 microflora that are associated with DN were

identified in our research. We used two correction methods to correct

the P-value to identify a stronger causal relationship among them. Class

Verrucomicrobiae [odds ratio (OR)=1.5651, 95%CI: 1.1810-2.0742,

PFDR=0.0018], Order Verrucomicrobiales(OR=1.5651, 95%CI:1.1810-

2.0742, PFDR=0.0018) along with Family Verrucomicrobiaceae

(OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) still exert a higher

risk on DN. Furthermore, the stricter Bonferroni-corrected test also

provided the proof thatVerrucomicrobiae andVerrucomicrobialeswere

strongly causally correlated with DN. The opposite causality analysis

unlocked that DN support the augment of Order Rhodospirillales and

Phylum Proteobacteria, suggesting that GM and DN may exist

interaction. Collectively, our findings present innovative ideas that

targeting regulation of dysbiosis in specific GM taxa could be a

promising approach for DN prevention and therapy.

It is worth adding that to examine the potential relationship

between the distribution of intestinal flora in DN and the specific

type of diabetic nephropathy, specifically T2DN, we conducted MR

analysis and employed FDR correction on 19 types of gut microbiota

that were initially identified as being linked to DN in the

aforementioned MR analysis. The results revealed that Class

Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763,

PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI:

1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI:
FIGURE 3

Significant and nominally significant links between GM and DN (P value corrected by the Bonferroni-corrected test). DN, diabetic nephropathy;
Significant P was marked in bold.
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1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae

(OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083) were negatively

related to T2DN. Conversely, the Eubacterium protogenes group

(OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) showed a

protective effect on T1DN. It is evident that the MR analysis results

for T2DN and DN demonstrate a higher degree of agreement. Building

on this finding, we subsequently conducted MR analysis on the total of
Frontiers in Immunology 08
19 microflora and T2DM to quest the variations in gut microbiota

distribution across different stages of diabetic nephropathy.

Furthermore, we carried out an analysis on T1DM to facilitate the

verification process. However, based on the current findings, we have

not discovered any significant results concerning T2DM and T1DM.

The gut microbiome in the digestive tract is often regarded as

the “second genome of human” because of its significant role in
TABLE 3 Casual effects of MR Analysis between GM and T1DN/T2DN (P value corrected by FDR).

Outcome Level Exposure Method NO.SNP P PFDR

T1DN genus Eubacteriumcoprostanoligenesgroup IVW 13 0.000783 0.002125763

MR Egger 0.120655 0.327492218

WM 0.002616 0.007100466

T2DN family Verrucomicrobiaceae IVW 11 0.002196 0.008343025

MR Egger 0.709418 2.695786857

WM 0.084151 0.319773891

order Verrucomicrobiales IVW 11 0.002187 0.002444585

MR Egger 0.706851 0.790009472

WM 0.090536 0.101187786

Rhodospirillales IVW 11 0.002196 0.002607195

MR Egger 0.082865 0.842433393

WM 0.709418 0.098402182

class Verrucomicrobiae IVW 11 0.002187 0.013852647

MR Egger 0.706851 4.47672034

WM 0.075537 0.478403913

phylum Proteobacteria IVW 12 0.002858 0.002857644

MR Egger 0.697337 0.697336558

WM 0.047523 0.047522824
No. SNP is the number of SNPs being used as IVs; Significant P was marked in bold; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IV, instrumental variable; IVW,
inverse-variance weighted; WM, weighted median; OR, odds ratio; CI, confidence interval; PFDR, P value corrected by false discovery rate (FDR). SNP: single nucleotide polymorphism; T2DN,
type 2 diabetic nephropathy; T1DN, type 1 diabetic nephropathy. The bold values refer to the P-values still less than 0.05 after FDR correction.
FIGURE 4

Results of MR Analysis between 19 potential casually microbiotas and T2DN. MR, Mendelian randomization; SNP, single-nucleotide polymorphism;
IV, instrumental variable; IVW, inverse-variance weighted; WR,wald ratio; OR, odds ratio; CI, confidence interval; T2DN, type 2 diabetic nephropathy.
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regulating human health (38). It influences metabolic and

immune functions through its metabolic activity, genes, and

intermediaries. The gut microbiota is primarily made up of six

major phyla: Actinobacteria, Bacteroidetes, Fusobacteria, Firmicutes,

Proteobacteria, and Verrucomicrobia. The most commonly seen

bacteria in the gut microbiota are Bacteroidetes as well as Firmicutes,

constituting approximately 90% of the GM (39, 40). By studying the

interaction between the gut microbiome and plasma metabolomics

in an experimental model of DN in mice, evidence supporting the

existence of the gut-kidney axis has been found. This study

confirmed the involvement of gut microbiota and circulating

metabolites in the progression of DN (41, 42). It is noteworthy

that imbalanced gut microbiota is found in DN patients’ fecal

samples where there is an increased presence of Proteobacteria,

Verrucomicrobia and Fusobacteria (43). Furthermore, one previous

study (44) has indicated a significant decrease in Butyrate-

producing microflora (such as Clostridium, Eubacterium, along

with Roseburia intestinalis) and probiotics in the GM of

individuals with type 2 diabetes and DN. In addition, several

studies have demonstrated that specific metabolites originating

from the GM play extremely important part of DN, such as

lipopolysaccharide (LPS) (45), short-chain fatty acids (SCFAs)

(46), and bile acids (BAs) (47). Interventions targeting the gut

microbiota, such as supplementation with probiotics (48, 49) and

administration of antibiotics (50), have been proven to partially

improve both pathology and renal function of DN. Patients with

DN exhibited dysbiosis in the composition, richness, and diversity

of gut microbiota (19, 51, 52). However, the clear and solid

mechanisms through which gut microbiota influences DN is still

not completely clarified.

The findings indicate a significant causal correlation between

the Order Verrucomicrobiae and Class Verrucomicrobiales with DN,

both of which are categorized under the Phylum Verrucomicrobia.

Verrucomicrobia is a recently identified bacterial phylum,

encompassing a limited number of documented species,

predominantly found in aquatic and terrestrial ecosystems, as well

as in human fecal matter (53). Wu et al. (42) observed a

downregulation of Akkermansia, a genus within the phylum

Verrucomicrobia, in the colon of db/db mice compared to non-

diabetic controls. While Wang et al. discovered that the mice with

DN exhibited a significant increase in Verrucomicrobiota compared

to the control mice and Akkermansia was found to be enriched in

the DN mice (54). Akkermansia has been considered to be a

beneficial microflora (55) capable of improving gut barrier

function along with mitigating metabolic disorders like insulin

resistance, obesity, as well as glucose intolerance (56). Whether

the controversial result due to the different types of the diabetes

need to be further investigated. Given that most renal complications

associated with diabetes stem from type 2 diabetes, our initial focus

was on conducting MR analysis involving above-mentioned 19

specific types of GM and T2DN. Surprisingly, after adjusting the

P value, we stumbled upon a remarkable alignment between the

results of T2DN and DN. This discovery underscores the

importance of including patients with T2DM or animal models of

T2DM in future studies investigating the correlation between DN

and GM, as it has the potential to generate substantial insights.
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Furthermore, a clinical study utilizing 16sRNA fecal analysis of

patients with DN revealed an enrichment of Verrucomicrobia in

comparison to healthy individuals (42, 43), suggesting its

susceptibility to the progression of DN. Nevertheless, multiple

researches have demonstrated that no discernible difference existed

in the proportions ofVerrucomicrobia between patients with DN and

those with diabetes (19, 57–59). Interestingly, In the pre-diabetes

(Pre-DM) cohort, Zhang et al. observed a notable reduction in the

relative abundance of Verrucomicrobia and Verrucomicrobiae. This

suggests the potential for Verrucomicrobiae to function as a signaling

molecule or a diagnostic biomarker for the advancement of glucose

intolerance, or serve as a beneficial microorganism to protect against

type 2 diabetes (60). Consequently, it is evident that Verrucomicrobia

experiences down-regulation in the initial phases of diabetes, and up-

regulation in the nephrotic stage of diabetes. Nevertheless, there is a

lack of research examining the dynamic changes of this

microorganism across the early, middle, and late stages of diabetes.

Therefore, our study delves further into genetic explanations.

Nineteen types of GM related to DN were analyzed as the

exposure, with diabetic mellitus as the outcome. The study aimed

to ascertain whether there were any changes in the distribution of

GMduring different stages of diabetes. Neither the patients diagnosed

with T1DM nor those diagnosed with T2DM exhibit significant

alterations in the 19 types of microflorae. Nevertheless, it is important

to note that these results do not necessarily imply the absence of

significant variations in GM among DN during different time

periods. However, our MR results also offer valuable insights and

support. It was found that specific gut microbes demonstrate an

elevated risk or a protective influence in T2DN and T1DN, whereas

no alterations in these microbes were noted in the initial phases of

T2DM and T1DM. This suggests that certain gut microbiota may not

exert an influence during the initial phase of diabetes, but they may

have a substantial effect in the later stages of diabetes, especially when

combined with renal complications. Consequently, additional

research is required to ascertain the potential impact of various

disease stages on alterations in gut microbiota.
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Although age, gender, dietary preferences, geographical location,

and the use of antibiotics and probiotics are all known to have a

significant impact on the GM in the composition (20, 61),

reproducing the diversity and abundance of gut microbiota

composition in different hosts with DN may present a considerable

challenge. Our findings align with previous observational and

functional studies, suggesting that Verrucomicrobia may be

associated with an increased risk of DN. The existing mechanism

may encompass various factors, such as the generation of metabolites

by intestinal flora that can affect renal function, the control of

inflammation and immune reactions, and the adjustment of

intestinal barrier function. In a previous study, Salguero et al. (43)

demonstrated a significantly higher abundance of Verrucomicrobia in

DN mice compared to the controls, which was linked to increased

levels of LPS. This can lead to systemic inflammation (62), activation,

and overproduction of pro-inflammatory cytokines, including tumor

necrosis factor-a (TNFa) and interleukin-6 (IL-6) (63). The

Verrucomicrobiaceae family, a constituent of the Verrucomicrobia

phylum, has exhibited a notable increase and was related to elevated

levels of TNFa and interferon g in the plasma of individuals

diagnosed with Parkinson’s disease (64). Furthermore, the

accumulation of urinary toxins and metabolic waste in patients

with DN and severe renal impairment worsens the condition (65).

Overall, through integrating evidence from MR analysis, functional

studies, observational studies, and clinical trials, we have put forward

the hypothesis that the impact of Verrucomicrobia on DN may vary

depending on the specific species and strains involved. Despite this,

the precise molecular mechanisms through which the GM

contributes to the pathogenesis of DN remain incompletely

understood. More investigation is needed to statement an

association between Verrucomicrobia and DN. This research should

aim to clarify the specific molecular mechanisms operating within the

gut-kidney axis in DN, and to pinpoint potential therapeutic targets

for the prevention and treatment of this disease.

Remarkably, a protective gut microbiota known as Eubacterium

has been discovered in T1DN. The study findings indicate that
FIGURE 5

Results of MR Analysis between 19 potential casually microbiotas and T2DM MR, Mendelian randomization; SNP, single-nucleotide polymorphism;
IV, instrumental variable; IVW, inverse-variance weighted; WR,wald ratio; OR, odds ratio; CI, confidence interval; T2DM, type 2 diabetic mellitus.
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children diagnosed with type 1 diabetes mellitus (T1DM) exhibit

reduced levels of the Blautiacoccoides-Eubacterium rectal group,

which is associated with butyrate production and the preservation

of gut integrity, in comparison to their healthy counterparts (66).

On the other hand, children who are in good health demonstrate

elevated levels of butyrate-producing species like Clostridium IV

and XIVa (66). Moreover, studies have shown that transplanting

the gut microbiota of lean individuals to patients who have

metabolic syndrome can induce substantial alterations in the gut

microbiota. This leads to a heightened abundance of butyrate-

producing intestinal flora, including Eubacterium hallii, which

subsequently contributes to a notable enhancement in peripheral

pancreatic insulin sensitivity six weeks post-transplantation (67).

Additionally, in diseases like coronary artery disease, there is a

notable decrease in butyrate-carrying intestinal flora, such as

Faecalibacterium, Roseburia, and Eubacterium rectum (68). These

findings are consistent with our conclusion in T1DN and call for

further experimental research to validate it.

This study offers several advantages. Firstly, most of the current

researches on the relationship between diabetes and gut microbes

are derived from observational studies and it is vulnerable to

interference from confounding factors. This is the first study

utilizing MR analysis to offer a potential genetic mechanism.

Therefore, our results are more robust and less prone to

interference, resulting in increased stability. Secondly, the

utilization of the most recent large Genome-Wide Association

Studies (GWAS) enables the acquisition of genetic data from

diverse sample populations and facilitates comprehensive analysis,

thereby enhancing the robustness of results in comparison to

smaller randomized controlled studies. Thirdly, previous meta-

analysis studies have predominantly concentrated on examining

the association between GM and DN at the phylum classification

level. In contrast, our analysis advances this research by offering a

more detailed comprehension of GM taxa and assessing the causal

impact of each taxon on DN at the genus to phylum level. To the

best of our knowledge, most of articles available solely focus on the

outcomes of the disease itself. However, our research goes beyond

the confines of diabetic nephropathy alone. We delve into a

comprehensive analysis of various types of diabetes nephropathy

as well as different forms of diabetes, thereby offering a wealth of

genetic evidence.

It is crucial to give diplomatic recognition to the constraints of the

research. Firstly, the microbiome represents an exposure phenotype

that is only partially accounted for by genotype. This implies that

precise calculation of the statistical powers in Mendelian

randomization may not be entirely applicable. Secondly, given that

the MR analysis is stemmed from three assumptions, additional

experimental together with clinical verification studies are required to

ascertain the clinical relevance of multiple microbial species. Thirdly,

it is important to recognize that the use of FDR and the Bonferroni-

corrected test could potentially lead to a false negative outcome.

Following P-value correction, numerous correlations no longer

demonstrated statistical significance, potentially attributable to the

complex interaction between the intestinal and renal axes, which are

commonly affected by virous distinct factors. Furthermore, even
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though two authors conducted independent bias checks, there

remains the potential for subjective influences when utilizing

Phenoscanner to eliminate confounding gene variables.

Consequently, it is important to exercise prudence when

interpreting the findings of the research.

In summary, our research utilized Mendelian randomization

method to analyze and evaluate the causal relationship between

intestinal microflora and diabetic nephropathy. The research

findings revealed 19 nominal causalities and 2 robust causal

associations. Notably, the Class Verrucomicrobiae, Order

Verrucomicrobiales and Family Verrucomicrobiaceae were found

to causally relate with a higher risk of DN in total and T2DN

specifically. Furthermore, we have also unexpectedly discovered

that Genus Eubacterium provides a protective effect specifically for

T1DN, which was not observed in the T2DN. Our study has

pinpointed specific microbiota using genetic prediction, which

could serve as promising biomarkers for potential therapeutic

targets of DN. Naturally, further experimental research is

required in the future to substantiate and investigate potential gut

microbiota targets and novel treatment possibilities for DN.
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