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Backgroud: Although recent studies have reported the regulation of the immune

response in hepatocellular carcinoma (HCC) through DNA methylation, the

comprehensive impact methylation modifications on tumor microenvironment

characteristics and immunotherapy efficacy has not been fully elucidated.

Methods: In this research,weconductedacomprehensive assessmentof thepatterns

ofDNAmethylation regulators and theprofiles of the tumormicroenvironment (TME)

in HCC, focusing on 21 specific DNA methylation regulators. We subsequently

developed a unique scoring system, a DNA methylation score (DMscore), to assess

the individual DNA methylation modifications among the three distinct methylation

patterns for differentially expressed genes (DEGs).

Results: Three distinct methylation modification patterns were identified with

distinct TME infiltration characteristics. We demonstrated that the DMscore

could predict patient subtype, TME infiltration, and patient prognosis. A low

DMscore, characterized by an elevated tumor mutation burden (TMB), hepatitis B

virus (HBV)/hepatitis C virus (HCV) infection, and immune activation, indicates an

inflamed tumor microenvironment phenotype with a 5-year survival rate of 7.8%.

Moreover, a low DMscore appeared to increase the efficacy of immunotherapy in

the anti-CTLA-4/PD-1/PD-L1 cohort.

Conclusions: In brief, this research has enhanced our understanding of the

correlation betweenmodifications in DNAmethylation patterns and the profile of

the tumor microenvironment in individuals diagnosed with HCC. The DMscore

may serve as an alternative biomarker for survival and efficacy of immunotherapy

in patients with HCC.
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Background

DNA methylation is known to involve in multiple biological

processes, including cancer progression (1), through the modification

of chromosomal proteins, which alter the 3-dimensional

conformation of the genome and/or protein-DNA interactions (2).

DNA methylation is a type of dynamic reversible process in

mammalian cells and is regulated by transmethylases, demethylases

and recognizing proteins, which are defined as “writers”, “erasers”

and “readers”, respectively (3). A recent study suggested that DNA

methylation is a dynamic marker correlated with tumor immune

escape and T-cell exhaustion (4).

Hepatocellular carcinoma (HCC) has a high incidence of

malignant tumors and is the third leading cause of death among

all types of cancers throughout the world (5). Approximately 80% of

HCC cases are linked to persistent infections caused by either

hepatitis B virus (HBV) or hepatitis C virus (HCV) (6). In

addition, viral infection represents an important contributor to

the epigenetic and tumor immune changes observed in HCC (7).

Immune checkpoint inhibitors (ICIs) have been demonstrated to

improve survival but only in a limited fraction of multiple tumor

types, including HCC (8–10). There is growing evidence implying a

link between DNA methylation and tumor immunity/

immunotherapy. The innate immune response, which serves as a

tumor suppressor, can be suppressed by the DNA methyltransferase

1 (DNMT1), which maintains the silencing of retrotransposable

elements (11, 12). In addition to PD-1/PD-L1 expression and tumor

mutational burden (TMB), several methylation regulators, such as

ubiquitin-like with plant homeodomain (PHD) and ring finger

domains 1 (UHRF1) and Ten-eleven translocation 1 (TET1), have

been reported to be potential biomarkers for ICIs therapy (13, 14).

Xu et al. found that the IFN-g/JAK/STAT/TET2 signaling pathway

is involved in influencing tumor immunity, and that stimulating

TET2 activity increases the efficacy of anti-PD-L1 drugs in solid

tumors (15).

However, these previous studies have been limited by technical

constraints and have focused only on a small number of methylation

regulators and cell types. Nevertheless, because the antitumor effect of

these agents involves multiple tumor suppressors working together in a

well-coordinated manner. It is essential to gain a comprehensive

understanding of how different DNA methylation regulators impact

the tumor microenvironment (TME) to optimize the efficacy of

immunotherapy for HCC. In this research, we utilized an

unsupervised clustering technique to analyze gene expression data

from 21 DNA methylation regulators in various cohorts to detect

distinct patterns of modifications in DNA methylation regulators. We
Abbreviations: HCC, hepatocellular carcinoma; HBV, Hhepatitis B virus; HCV,

hepatitis C virus; TCGA, The Cancer Genome Atlas; ICGC, International Cancer

Genome Consortium; CNV, copy number variation; TMB, tumor mutation

burden; DEGs, differentially expressed genes; OS, overall survival; KEGG,

Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set

enrichment analysis; PCA, principal component analysis; HR, hazard ratio; TGF-

b, transforming growth factor beta; TME, tumor microenvironment; Tfh, T

follicular helper cell; MDSC, myeloid-derived suppressor cell; ICIs, immune

checkpoint inhibitors; ORRs, objective response rate.
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then evaluated the TME profiles represented by three distinct

methylation regulator patterns. Finally, a DNA methylation score

(DMscore) model was established to quantify the methylation status

of the individuals. We validated the potential predictive value of the

DMscore as an alternative biomarker for survival and

immunotherapy efficacy.
Materials and methods

Data mining

The workflow of this study is shown in Supplementary Figure 1A.

We analyzed 33 histologically confirmed HCC tissues and matched

noncancerous liver tissue as normal controls. We named this cohort

the “discovery cohort”, after which the preparation of mRNA

libraries was performed followed by sequencing, and the gene

expression profiles were analyzed as previously described (16, 17).

The study received approval from the Research Ethics Committee at

the First Affiliated Hospital of Zhejiang University, and written

informed consent was acquired from all participating patients.

Among the 33 patiens with HCC, 1 case was alcohol-induced

cirrhosis and progressed to HCC, and the remaining 32 cases were

HBV-related HCC. There were 27 males, compared with only six

female patients. The lowest positive rate of eight serum markers was

alkaline phosphatase (ALP), which was higher than the normal range

in only two patients, and the positive rate was only 6% (2/33). The

positive rate of alpha fetal protein (AFP) was the highest, which was

60% (20/33). All patients had grade A Child-Pugh scores. The clinical

data of these patients were summarized in Supplementary Table 7.

Other gene expression data and full clinical annotations were

downloaded from The Cancer Genome Atlas (TCGA),

International Cancer Genome Consortium (ICGC) and Gene

Expression Omnibus (GEO) databases. For the TCGA-LIHC

(liver hepatocellular carcinoma) cohort, RNA sequencing (FPKM)

of gene expression data were acquired using the R package

TCGAbiolinks (18) and subsequently transformed into the more

comparable transcripts per kilobase million (TPM) format. Somatic

mutation and methylation 450K data were downloaded from the

UCSE Xena browser. HBV/HCV infection was determined to

positive if the participant of interest met the following criteria:

HBV surface antigen; HBV DNA; HBV Core antibody; Hepatitis C

Antibody; Hepatitis C Viral RNA; HCV Genotype (19). According

to these criteria, 164 patients in the TCGA-LIHC cohort were HBV/

HCV positive. For the HCC datasets in ICGC, RNA-seq data (raw

counts), somatic mutation data and clinical information were

obtained from the ICGC portal (https://dcc.icgc.org/projects/LIRI-

JP). These specimens were predominantly obtained from a cohort

of individuals in Japan who had been diagnosed with either HBV or

HCV infection (20). The raw count format of the RNA-seq data was

also transformed into TPM values. Batch effects between the

TCGA-LIHC cohort and the LIRI-JP RNA-seq dataset were

corrected using the “ComBat” function of the sva package

(Supplementary Figures 1B, C). All the baseline information of

the patients in the eligible HCC datasets is summarized in

Supplementary Table 1.
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Tumor mutation burden analysis

To calculate the TMB of each patient, the total number of

nonsynonymous mutations counted was divided by the exome size

(38 Mb was utilized as the exome size). To calculate the TMB of

each sample in the TCGA-LIHC cohort, we selected somatic

mutation data processed by the VarScan platform and visualized

them using the R package “maftools”.

The details of the mutations in the LIRI-JP cohort were

visualized via a waterfall plot generated with the “GenVisR”

package in R Studio software.
GSVA analysis and functional annotation

To assess the level of activity in each biological pathway, the R

package GSVA was used to compute the ssGSEA score for every

sample (21). The gene set used to identify different immune cell

types within the TME was obtained from Charoentong’s study and

included 23 distinct subtypes of human immune cells such as

activated CD8+ T cells, dendritic cells in an activated state,

macrophages, natural killer T cells, and regulatory T cells, and so

on (Supplementary Table 2) (22). The relative abundance of each

immune cell type in TME was determined by an enrichment score

acquired from ssGSEA analysis.

To investigate the disparities in biological mechanisms

associated with DNA methylation, we conducted GSVA

enrichment analysis employing the GSVA package. The

“c2.cp.kegg.v7.4.symbols” gene sets were downloaded from the

MSigDB database for GSVA.
Unsupervised clustering of 21 DNA
methylation regulators

Unsupervised clustering methods were used to identify different

DNA methylation modification patterns and classify patients for

further analysis. A set of 21 regulators (Supplementary Table 3)

obtained from published literature was extracted from either the

discovery cohort or the data-mining cohort to detect distinct DNA

modification patterns facilitated by DNA methylation modifiers.

We employed the ConsensuClusterPlus package to execute the

aforementioned procedures, ensuring classification stability

through 1000 repetitions (23).
Identification of differentially expressed
genes and enrichment analysis

We utilized the R package limma to detect gene expression

related to DNA methylation modifications and identified pathways

that were enriched with relevant associations. We also conducted

KEGG analysis using the R package clusterProfiler, employing a

significance threshold of p < 0.05 and FDR < 0.05.
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Generation of the DNA methylation score

Univariate Cox model analysis was used to assess the association

between DEGs and overall survival. A total of 468 DEGs associated

with a significant prognosis (p-value < 0.05) were identified for further

analysis. Principal component analysis (PCA) was subsequently

preformed to generate a signature relevant to DNA methylation.

Both PC1 and PC2 were selected as signature scores. This approach

offered the benefit of emphasizing the score on the subset containing a

significant cluster of highly correlated (or anticorrelated) genes while

reducing the impact of genes that do not exhibit similar patterns as

other members within the subset. We defined the DMscore using a

method similar to that reported previously (24–26):

DMscore  =  o​ (PC1i + PC2i)

where ‘i’ represents the expression level of genes associated with

methylation regulation and their impact on prognosis.
Collection of genomic and clinical
information on immune-
checkpoint blockade

The present investigation employed five pretreatment tumor

expression profiles obtained from cohorts receiving immune

checkpoint blockade therapy to assess the agreement of the

immunotherapy response. Data on anti-PD-L1 therapy efficacy in

patients with metastatic urothelial tumors were obtained by the R

package IMvigor210CoreBiologies (27). The sequencing raw count

data were normalized and transformed into TPM values. We

investigated the immunotherapeutic features of TCGA-LIHC

patients by utilizing the publicly accessible Cancer Immunome

Database (TCIA), which comprises relevant clinical pathology data.
Statistical analysis

Statistical analyses were conducted using R software (version

4.0.3). The Wilcoxon test was used to compare differences between

two groups. One-way ANOVA and Kruskal-Wallis tests of variance

were used as parametric and nonparametric methods, respectively.

Principal component analysis (PCA) was also conducted to

investigate the distributions of the different groups using

“prcomp”. Correlation coefficients between the TME-infiltrating

immune cells and the expression of regulators were computed by

Spearman and distance correlation analyses. We conducted both

univariate and multivariate Cox regression analyses to identify

potential risk factors. Additionally, we assessed the statistical

significance of the differences insurvival rates across various risk

groups using Kaplan-Meier (K-M) analysis with log-rank p-values.

Venn diagrams, heatmapss, boxplots, forest plots, and alluvial

diagrams were drawn using R. The immune cell profiles in TME

of each sample in the data-mining cohort were analyzed using

CIBERSORT (28). Next, MethylMix was utilized to analyze DNA
frontiersin.org
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methylation data and paired gene expression data to detect

noteworthy DNA methylation occurrences that influence the

expression of corresponding genes, thereby revealing their

classification as genes driven by DNA methylation (29).
Results

Expression of DNA methylation regulators
in the discovery cohort

As shown in Figure 1A, 21 DNA methylation regulators were

included in this study. As shown in Figure 1B, the protein-protein

interaction (PPI) network revealed extensive protein interactions

among methylation modifiers, with the exception of QSER1, which

collaborates with TET1 to inhibit de novo DNA methylation

mediated by the enzyme DNMT3 (30). Next, we performed a

comparative analysis of the expression levels of DNA methylation

regulators in paracancerous and HCC tissues within the discovery

cohort (Figure 1C). Notably, HCC tissues presented significantly

increased expression of QSER1, MBD3, UNG, DNMT3B, DNMT3A,

SMUG1, MBD4, DNMT1, MBD2, TET1, TDG, MBD1, UHRF2,

MECP2, ZBTB38, ZBTB33, TET3 and UHRF1. Only NTHL1 was

expressed at significantly lower levels in HCC tumor tissue. Based on

the expression levels of 21 DNA methylation regulators, we could

distinguish HCC samples from normal liver samples (Figure 1D).
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The ssGSEA algorithm was used to explore the association

between the expression of these regulators and tumor immune cell

infiltration in the TME. The expression of MECP2, TET2, ZBTB4,

and DNMT1 was positively correlated with more than half of the

immune cells (Figure 1E). The immune cell profiles most strongly

associated with these marks are immature B cells, MDSCs,

Macrophages (Kupffer cells), Mast cells, T regulatory cells, Th17,

and T follicular cells. These cell types are largely immunosuppressive

and involved in immune evasion, and thus often associated with a

poor prognosis in patients with HCC (31). Poorly correlations were

found between most methylation regulators and key effectors of

anticancer immunity include CD8+ T cells, Eosinophils, Nature

killer cells (NK), and Dendritic cells (32–34).
Landscape of DNA methylation regulators
in data-mining cohort

By examining the expression patterns of DNA methylation

regulators and their correlation with TME cell infiltration in the

discovery cohort, we proceeded to investigate the genetic

modifications of these regulators in a data-mining cohort. Within

the HCC genome of the TCGA-LIHC cohort, the overall mutation

frequency among all the regulators was determined (Figure 2A).

Among these regulators, the eraser TET1 had the highest mutation

rate (2%), and its mutation rate is a favorable prognostic marker of
A B D

E

C

FIGURE 1

Landscape of DNA methylation regulators in HCC. (A) Summary of 21 DNA methylation regulators and their potential biological functions. (B) The
PPI network downloaded from the STRING database indicates the interactions among the regulators. (C) The expression of 21 m6A regulators in
normal and HCC tissues in the discovery cohort (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). (D) Principal component analysis (PCA) of
the expression profiles of 21 regulators to distinguish tumors from normal samples in the discovery cohort. (E) Spearman’s correlation heatmap
between 21 DNA methylation regulators and immune cells in the discovery cohort (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001).
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immunotherapy (14). Among the HCC patients, no mutations were

observed in twelve other regulators, namely DNMT3B, MBD3,

MBD4, ZBTB4, UHRF1, UHRF2, UNG, NTHL1, SMUG1, MBD2,

ZBTB33 andQSER1 (Figure 2A). Analysis of copy number variation

(CNV) alteration frequency revealed that regulators exhibited

amplification in terms of copy number. Notably, MDB1/2/3,

TET2, UHRF1, DNMT1, and ZBTB4 exhibited widespread CNV

deletion (Figure 2B). The chromosomal location of CNV among

these regulators are shown in Figure 2C.

In the LIRI-JP cohort, the mutation rate of these regulators was

similar to that in the TCGA-LIHC cohort (Supplementary Figure

2A). The reader ZBTB38, known as a tumor suppressor, had the

most mutations, followed by UHRF2. However, no mutation in the

eraser TET1 was found in these patients. The chromosomal

locations of these mutations are shown in Supplementary Figure 2B.

To ascertain whether the expression patterns of methylation

regulators found in the discovery cohort also occurred in the data-

mining cohort, we investigated the alterations in expression in the

data-mining cohort. The results showed that most of these

regulators were highly expressed in HCC tissues, while MBD4

and TET2 were expressed at significantly lower levels in HCC

tissues (Figure 2D, Supplementary Figure 2C). As a prognostic

risk factor and most mutated gene, TET1 strongly inversely

correlated with cytotoxic lymphocyte infiltration, which include

CD8+ T cells and CD56dim NK cells, and positively correlated with

Th2, which mostly related to tumor-promoting actives (35). In

summary, these analyses revealed that variations in the genetics and
Frontiers in Immunology 05
expression of these DNA methylation regulators might play pivotal

roles in the initiation, progression and heterogeneity of HCC.
Methylation modification patterns
mediated by 21 regulators

Gene expression and clinical information from 608 patients with

HCC from the TCGA-LIHC and LIRI-JP cohorts were collected for

analysis. Univariate Cox regression analysis revealed associations

between the expression of 21 DNA methylation regulators and

overall survival in patients with HCC (Supplementary Figure 3A).

The results revealed that TET1 and QSER1 had the highest hazard

ratios (HRs) of 1.431 and 1.209, respectively, while the absence of a

regulator was found to be a significant favorable factor (p-value <

0.05). We created a network of methylation regulators to provide a

comprehensive overview of the interactions and connections between

DNA methylation and prognosis in patients with HCC (Figure 3A,

Supplementary Table 4). We found that the expression of DNA

methylation regulators was correlated not only with in the same

functional category, but also among writers, erasers, and readers.

To explore additional insights into the potential patterns of DNA

methylation regulation, an analysis was conducted using the expression

profiles of the data-mining cohort. Three distinct expression patterns

were divided using unsupervised clustering (Supplementary Figures

3B-E) and were termed Clusters A, B, and C, respectively (Figure 3B).

Among these, 130 patients had pattern A, 320 had pattern B, and 158
A B

DC

FIGURE 2

Multiomics landscape of DNA methylation regulators in the TCGA-LIHC cohort. (A) The mutation frequency of regulators in the TCGA-LIHC cohort.
Each column represents the TMB. The number on the right shows the mutation frequency of each variant type. The lower bar represents the sample
annotations. (B) The CNV frequency of the regulators in the TCGA-LIHC cohort. (C) The chromosomal locations of the regulators. (D) Differences in
the gene expression levels of the regulators between normal and tumor patients in the TCGA-LIHC cohort. *p-value < 0.05, **p-value < 0.01, ***p-
value < 0.001.
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had pattern C. An analysis of prognostic factors indicated a strong

correlation between pattern A of DNA methylation regulators and

intermediate survival duration (Figure 3C).

Immune cell infiltration characteristics
associated with distinct methylation
modification patterns

We explored the differences in signaling pathways among the

three patterns by GSVA enrichment analysis. As shown in
Frontiers in Immunology 06
Figure 3D and Supplementary Table 5, pattern A was enriched in

nucleic acid biological processes, including RNA polymerase

activity, ate biosynthesis, and pyrimidine metabolism. Pattern B

was enriched for carcinogenic and immune fully activation,

included the TGF-beta signaling pathway, focal adhesion and

adheres junction, JAK-STAT signaling pathway, T cell receptor

signaling pathway and cytokine-cytokine receptor interaction

(Figures 3D, E). However, pattern C was strongly related to DNA

replication and repair mechanisms, which included nucleotide

excision repair, base excision repair, DNA replication, and
A B

D

E

C

FIGURE 3

DNA methylation modification pattern and relevant biological characterization. (A) Correlations and prognosis of DNA methylation regulators in HCC
patients. The red line represents a positive correlation with a p-value < 0.0001, and the blue line represents a negative correlation with a p-value <
0.0001. The size of the node represents the p-value value of the log-rank test. The right semicircle represents the prognostic factors for HCC: green
represents favorable factors for OS, and purple represents risk factors for OS. (B) Consensus clustering of 21 regulators in 608 data-mining cohort
samples. (C) Survival analysis of patients in the data-mining cohort according to distinct DNA methylation patterns. (D, E) GSVA enrichment analysis
showing the activation states of biological pathways associated with distinct methylation modification patterns. A heatmap was generated to
visualize these biological processes, in which red represents activated pathways and blue represented inhibited pathways. The data-mining cohort
was used for sample annotation. (D) Cluster A vs. Cluster B; (E) Cluster B vs. Cluster C.
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mismatch repair (Figure 3E). The results of this research indicate

that disruption of DNA methylation regulators can influence

overall survival by affecting methylation levels, thus contributing

to the significant variability observed in HCC.

We utilized the ssGSEA algorithm to perform an extensive

evaluation of the infiltration of TME cells. Consistent with favorable

survival outcomes, cluster A exhibited the lowest level of activated

CD4+ T cell infiltration and the highest level of activated CD8+ T

cell infiltration (Figure 4A; Supplementary Table 5), could be
Frontiers in Immunology 07
classified as immune-inflamed phenotype. Surprisingly, TME cell

infiltration analysis indicated that cluster B contained the most

infiltrating immune cells, including dendritic cell, natural killer cell,

eosinophils, B cell, MDSC, macrophage, mast cell, monocyte,

neutrophil, Tfh (follicular helper T) cell, and so on (Figure 4A,

Supplementary Table 5). However, patients in Pattern B did not

show a matching survival advantage (Figure 3C). Previous research

has indicated that tumors with an immune-excluded phenotype

exhibit a significant abundance of immune cells in the stromal
A

B

D E

C

FIGURE 4

TME characteristics and transcriptome traits associated with DNA methylation modification patterns. (A) Boxplot of the relative immune cell
abundances for the three DNA methylation patterns. (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). (B) Spearman’s correlation heatmap
between 21 DNA methylation regulators and immune cells in the data-mining cohort. Red indicates a positive correlation; blue indicates a negative
correlation. (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). (C) Functional annotation of DEGs among methylation clusters using KEGG
enrichment analysis. The color depth of the bar plots represents the q-value of the enrichment. (D) The proportions of patients with the three
modification patterns according to HBV/HCV viral infection status. (E) The difference in the number of infiltrating cells in each TME according to
HBV/HCV viral infection status. The asterisks represent the statistical p-value: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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compartment encircling tumor cells (36). Therefore, cluster B might

be identified as immune-excluded phenotype. Additionally, cluster

C was similar immune-desert phenotype, distinguished by

immunosuppression (Figures 3D, E, Figure 4A).

As DNA methylation regulators correlated with immune cell

infiltration in the TME in the discovery cohort (Figure 1E), we

further examined the correlation in the data-mining cohort. The

expression of two writers, DNMT3A and DNMT3B, and three

erasers, TET1/3 and QSER1, was negatively correlated with most

immune cells (Figure 4B). However, the expression of ZBTB4,

MBD2 and DNMT1 was positively correlated with that of most

immune cell types (Figure 4B), which was consistent with the

findings in the discovery cohort.

A total of 1105 DEGs among the three DNA methylation

patterns were identified, and KEGG pathway analysis revealed

that those DEGs were enriched in HBV infection events

(Figure 4C). The distinct etiological mechanisms of HCC, both

viral and non-viral, exhibit a significant association with a unique

TME (10). The level of immunosuppression observed in

microenvironments associated with viruses was found to be

considerably greater than that observed in unrelated

microenvironments (37). Uninfected HCC exhibited a relatively

reduced response to ICIs in comparison to infected patient with

HCC (38). Further investigation revealed that patients with viral-

infected HCC predominantly exhibited Pattern C methylation

modifications, whereas those without viral infection were

characterized by Pattern B modification patterns (Figure 4D). The

expression of DNMT1, DNMT3A, DNMT3B, MBD1, QSER1, TDG,

TET1, TET2, TET3, UHRF1, UHRF2, UNG and ZBTB33 was

significantly high in the virus-positive group (Supplementary

Figure 4A).

The above results suggest that viral infection has the potential to

impact the function of regulators responsible for DNA methylation,

and might result in alterations in patterns of DNA methylation

modifications. Additionally, we found the activated B cell, activated

CD8+ T cell, eosinophil, immature B cell, neutrophil and Th17 were

significantly down-infiltrated in viral-positive patients compared

with viral-negative patients, while activated dendritic cell, gamma

delta T cell and natural killer T cell was remarkably upregulated

(Figure 4E). These results hold promise for advancing our

understanding of the mechanisms underlying variations in

methylation modification patterns observed in tumors.

After the completion of the aforementioned analyses, notable

discrepancies were identified in the infiltration characteristics of

TME cells with regard to patterns of DNA methylation

modification. We subsequently employed the CIBERSORT

technique to compare variations in immune cell components

across the three patterns. The CIBERSORT analysis also showed

significant correlation among DNA methylation regulators and

immune infiltration (Supplementary Figure 4B). Conversely,

macrophages M2 exhibited a significant enrichment of cluster A,

while activated CD4+ memory T cells showed a notable enrichment

of cluster B (Supplementary Figure 4C). Besides the stronger

correlation to CD8+ T cell, and the differential expression of

QSER1 in virus infection status, we found the low expression of

QSER1 significantly prolonged OS (Supplementary Figure 4D).
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Taken together, these results indicated that DNA methylation

modification did changes TME infiltration.
Generation of DNA methylation gene
signatures and functional annotation

As mentioned above, we identified 1105 DEGs associated with

DNA methylation phenotypes using the limma package

(Supplementary Figure 5A). The DEGs were related to the cell

cycle, HBV infection, DNA replication and transcriptional events

according to KEGG analysis (Figure 4C), revealing that the

dissimilar clinical and transcriptomic features observed in the

DNA methylation regulatory patterns could arise from variations

in the distinct genes associated with the DNA methylation

signatures. We identified 468 prognostic genes (p-value < 0.05)

via univariate Cox model analysis (Supplementary Table 6).

According to the expression levels of 468 genes, an unsupervised

clustering analysis was conducted to categorize patients with HCC

into three distinct clusters. These clusters, namely, DNA

methylation geneCluster A/B/C, exhibit varying prognosis in

terms of surv iva l and immune- infi l t ra t ing fea tures .

(Supplementary Figures 5B-J). These findings provide additional

support for the proposition that each HCC subtype exhibits distinct

clinical and immune characteristics.

However, these studies were limited by their population size

and lacked the ability to accurately predict the methylation

modification patterns in individuals. To assess DNA methylation

status at the individual level, we developed a risk score system called

the DMscore, which is based on 468 signature genes associated with

DNA methylation. Kruskal-Wallis test revealed significant

discrepancy on DMscore between methylation regulator patterns.

From this point of view, the median DMscore for DNAmethylation

regulator pattern C was found to be the highest, whereas

methylation modification Pattern A exhibited the lowest median

DMscore (Figures 5A, C). Gene cluster A showed the highest

median DMscore (Figures 5B, C). An alluvial diagram was

generated to illustrate alterations in attributes among individual

patients (Figure 5C). Furthermore, we also tested the correlation

between the TME ssGSEA score and the DMscore. As shown in

Figure 5D, the DMscore was significantly correlated with the

infiltration of most of the 23 immune cell types.

Subsequently, we assessed the prognostic value of the DMscore

in patients with HCC. With the cutoff value of 10.87888 identified

by the survminer package, HCC patients were separated into high

and low DMscore groups. All the gene Cluster B samples belongs to

the low DMscore group (Figure 5C). Patients in the low DMscore

subgroup exhibited an extended duration of survival, with a 5-year

survival rate that was twice as high as that in the high DMscore

subgroup (7.8% compared to 3.0%) (Figure 5E). When TMB and

DMscore were combined, the patients in the group with a low

DMscore and high TMB exhibited superior overall survival

compared to that of the remaining groups (Figure 5F,

Supplementary Figure 8). These results suggested that the

DMscore is a prognostic biomarker that could effectively predict

survival of patient with HCC. In addition, we found that the
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DMscore was significantly correlated with viral infection status

(Figures 5G, H).

Additionally, we analyzed TCGA-LIHC methylation data.

Unsupervised clustering based on the methylation level of

methylation-driven genes classified patients into two groups

(Supplementary Figure 6A), which we called MethCluster C1 and

C2. Similarly, the infiltration of most of the TME immune cells was

significantly different between MethCluster C1 and C2

(Supplementary Figure 6B). In addition, MethCluster C1 had a

significantly greater DMscore (Supplementary Figure 6C).

The present study demonstrated that the DMscore could reflect

genomic methylation modifications, and effectively predict the

survival of patients with HCC.
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Predictive value of the DMscore
in immunotherapy

The individuals who will experience the most significant

advantages from immunotherapy have been identified, as

immnotherapy has improved clinical outcomes in the treatment

of diverse tumor types. Considering the correlation between

DMscore and immune infiltration, we further explored whether

the DMscore could be a prognostic factor for immunotherapy

efficacy by analyzing four ICI treatment cohorts.

In the TCIA-LIHC cohort (anti-CTLA-4/PD-1 therapy),

patients in the DMscore-Low group exhibited a significantly

higher response rate (Figures 6A–D), indicat ing the
A B

D E

F

G

H

C

FIGURE 5

Construction of the DMscore. (A) Differences in the DMscore among the three methylation clusters. (B) Differences in DMscore among three
geneClusters. (C) Alluvial diagram showing the changes in methylation clusters, geneCluster, DMscore, HBV/HCV viral infection status, disease stage
and survival status. (D) Correlations between the DMscore and TME infiltration in the data-mining cohort. The asterisks represent the statistical p-
value < 0.05 (E) Survival analysis of the high- and low-DMscore groups in the data-mining cohort. Log-rank test, p-value < 0.001. (F) Kaplan-Meier
curves for patients in the data-mining cohort stratified by both TMB and DMscore. Log-rank test, p-value < 0.001. (G) Stacked bar plot depicting
different proportions of patients with HBV/HCV infection in the high- and low-DMscore groups in the data-mining cohort. (H) Boxplot of the
DMscores for distinct HBV/HCV infection status groups in the data-mining cohort, p-value = 2.7e-06. The asterisks in A, B, and H represent the
statistical p-value: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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immunotherapeutic benefits of CTLA-4/PD-1 antibody therapy in

patients with a low DMscore.

Consistent with the above findings, a similar result was also

obtained in the IMvigor210 cohort (anti-PD-L1 therapy).

According to the K-M survival analysis of the anti-PD-L1 cohort

(IMvigor210), patients with a low DMscore exhibited significantly

improved overall survival (p-value < 0.001) (Figure 6E) and

significant immunotherapeutic benefit (Figures 6E-G). Additional

investigations into the measurement of TMB, a biomarker for

immunotherapy efficacy, demonstrated a significant association

be tween a decrea sed DMscore and increa sed TMB

(Supplementary Figure 7A). A significant negative correlation was

found between the DMscore and TMB (Figure 6H). Survival
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analysis revealed that patients with a combination of a high

DMscore and high TMB had a great survival advantage (Figure 6I).

The detection of immune phenotypes in the IMvigor210 cohort

was feasible because we could explore the variation in the DMscore

across different phenotypes. Our results suggest that there is a

notable association between decreased DMscore and immune

phenotypes prevalent in desert regions, which may hinder the

effectiveness of checkpoint inhibitors in combating tumors within

this specific phenotype (Supplementary Figure 7B).

In the studies suggested a notable association between DNA

methylation alterations and tumor immune characteristics as well

as the efficacy of ICI immunotherapy. The utilization of the

DMscore could aid in predicting the response to ICI
A B

D E
F

G IH

C

FIGURE 6

The effect of the DMscore in the immune checkpoint treatment cohorts. (A-D) Immunotherapeutic benefits of anti-CTLA-4/PD-1 therapy in the
TCGA-LIHC cohort. (E) Survival analyses for patients with low- (32 patients) or high- (202 patients) DMscore. (E) Patient groups in the anti-PD-L1
immunotherapy cohort were evaluated via Kaplan-Meier curves (IMvigor210 cohort). Log-rank test, p-value < 0.001. (F) The proportion of patients
who responded to PD-L1 antibody immunotherapy in the low- or high-DMscore groups. SD, stable disease; PD, progressive disease; CR, complete
response; PR, partial response. (G) Distribution of the DMscore in distinct anti-PD-L1 clinical response groups. Wilcoxon test, p-value = 0.00067. (H)
Correlations between the DMscore, TMB, and anti-PD-L1 immunotherapy response in the IMvigor210 cohort. (I) Survival analyses of patients
receiving anti-PD-L1 immunotherapy stratified by both the DMscore and TMB using Kaplan-Meier curves. Log-rank test, p-value = 0.003. *p-value <
0.05, **p-value < 0.01, ***p-value < 0.001.
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immunotherapy and potentially enhance its predictive accuracy

when used in combination with the TMB.
Discussion

Ongoing research has consistently confirmed the significant

role of abnormal DNA methylation in promoting genome

instability and its impact on regulating antitumor immune

responses and immunotherapy outcomes (14, 39, 40). However,

there is still a need for a comprehensive understanding of the overall

modulation of DNA methylation modification and the immune

microenvironment among patients with HCC.

The initial phase of the research involved identifying 21

enzymes responsible for regulating DNA methylation that

exhibited differential expression in both HCC carcinomas and

paracancerous tissues. Subsequently, we validated the changes in

methylation regulatory enzyme levels during HCC development by

analyzing the expression of these enzymes in two publicly available

datasets (TCGA-LIHC and LIRI-JP). In contrast to Sun et al.’s

findings of TET1 underexpression in HCC (41), our study

consistently demonstrated overexpression of TET1 in tumor

tissues across all three datasets. Although the differential

expression profiles of some genes were not entirely consistent

across the three datasets and some genes showed differential

expression in opposite directions, the 21 DNA methylation

regulatory enzymes overwhelmingly showed significant differences

in expression levels between cancer and paracancerous tissues in all

three datasets. The variation in the orientation of disparities in

expression could be attributed to the considerable diversity

observed in HCC (42). The distinct expression patterns of these

regulatory enzymes in HCC and adjacent noncancerous tissues

suggest the significant involvement of DNA methylation regulatory

enzymes in the progression of HCC.

In this research, we classified three unique patterns of DNA

methylation modification by analyzing the expression levels of 21

regulators involved in DNA 5-mc methylation. Cluster A exhibit

activated adaptive immunity, consistent with the immune-inflamed

phenotype; Cluster B featured activation of innate immunity and

stroma, corresponding to the immune-excluded phenotype; and

Cluster C had immunosuppressive characteristics, similar to the

immune-desert phenotype. The immune-excluded and immune-

desert types could be classified as noninflamed tumor, namely, “cold

tumors”. A “hot tumor”, characterized by significant infiltration of

immune cells in the TME, exhibits an immune-inflamed phenotype

(36, 43, 44). Consistently, patients with pattern A had the longest

overall survival. Although pattern B exhibited significantly

abundant immune cells, the activated TGF-b pathway resulted in

reduced infiltration of T cells into tumors and weakened their

ability to eliminate tumor cells. This leads to an immune-excluded

phenotype and a less favorable prognosis (27, 45). The presence of

immune-desert phenotypes featured with immune tolerance and

ignorance, due to a lack of activated and primed T cells. Therefore,

it is not surprising that patients in Cluster C had poorer survival

outcomes than patients in other clusters (46).
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In addition, it has been demonstrated that the variations in the

mRNA transcriptome among the three DNA modification patterns

are significantly linked to biological pathways associated with DNA

replication and viral immunity. Similarly, similar to the clustering

outcomes of the phenotypes resulting from DNA methylation

modifications, we identified three genomic subtypes based on the

expression levels of the DEGs in the mRNA. These subtypes also

exhibit distinct survival prognoses and are significantly correlated

with immune status. This once again highlighted the crucial role of

5-mc methylation modification in influencing diverse

immune environments.

Considering the heterogeneity of methylation modification

between individuals, we established a DNA methylation scoring

(DMscore) system to calculate the methylation modification

features of individuals with HCC. As expected, Cluster A was

associated with geneCluster A/B and was characterized by

immune activation and a lower DMscore, which corresponded to

longer survival time (Figures 3C, 4A, 5A-E). The objective response

rates (ORRs) observed in the CheckMate 040 trial indicated that

patients treated with nivolumab, a PD-1 inhibitor, exhibited lower

efficacy in patients infected with HBV/HCV than in those without

viral infections (47). Consistent with these findings, we found that

patients with HBV/HCV infection had relatively high DMscores

(Figures 5G-H), while patients who benefited from anti-CTLA-4/

PD-1 therapy tended to have relatively low DMscores (Figures 6A-

G). The presence of a virus-induced immune-suppressing tumor

microenvironment may explain the limited effectiveness of

immunotherapy in treating HCC. These findings also reinforce

the significance of using the DMscore as a predictive tool in guiding

immunotherapeutic approaches. Moreover, when combined with

the TMB, a well-established biomarker for assessing response to

immunotherapy (48), the DMscore demonstrated enhanced

accuracy in predicting both patient survival (Figure 5F)and

treatment outcomes (Figure 6I). Another interesting result is that

a low-DMscore intent to be higher response rate to atezolizumab

but presented a “desert” immunophenotype in IMvigor210 cohort.

One possible explanation for this result is that DMscore was

negatively correlated with immune cells infiltrating (Figure 5D).

The desert phenotype in IMvigor210 cohort was identified by

histologically CD8+ T cell, and demonstrated a low response to

atezolizumab. However, CD8+ T cell only explained 4% variance of

response to atezolizumab (27). In lung adenocarcinoma (49) and

acute myeloid leukemia (50), DNA methylation regulators defined

low-risk group was preferentially associated with TME and the

sensitivity to immune response. The inter-connectedness of

immune factors and the gaps in our understanding of the

mechanisms of response to immune-oncology agents means that

CD8+ T cell alone will be not sufficient to deliver precision

medicine across all the indications for ICIs. In this study,

DMscore could be an independent variable to predict the

response of ICIs. In brief, the DMscore could be an important

biomarker for evaluating methylation modification patterns and

predicting patient response to anti-CTLA-4/PD-1 immunotherapy.

Even though we analyzed multiple datasets, this study has a few

limitations. First, we included DNA 5-mc methylation-related
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regulators in this study; future research could integrate additional

m6A regulators to further advance the understanding of epigenetic

regulation in HCC. Second, there is no accessible transcriptome or

clinical data for ICI therapy patients with HCC. The predictive

value of the DMscore for immunotherapy efficacy in HCC needs to

be validated in further studies.
Conclusions

In summary, this work investigated the comprehensive

regulatory mechanisms of DNA 5-mc methylation modification

in the HCC microenvironment and constructed a comprehensive

scoring system for individual DNA methylation modification

patterns. The DMscore serves as a valuable tool for predicting

immune infiltration within the TME and refining the accuracy of

immunotherapy prognosis.
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