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Metabolism and immunity are crucial monitors of the whole-body

homeodynamics. All cells require energy to perform their basic functions. One

of the most important metabolic skills of the cell is the ability to optimally adapt

metabolism according to demand or availability, known as metabolic flexibility.

The immune cells, first line of host defense that circulate in the body and migrate

between tissues, need to function also in environments in which nutrients are not

always available. The resilience of immune cells consists precisely in their high

adaptive capacity, a challenge that arises especially in the framework of sustained

immune responses. Pubmed and Scopus databases were consulted to construct

the extensive background explored in this review, from the Kennedy and

Lehninger studies on mitochondrial biochemistry of the 1950s to the most

recent findings on immunometabolism. In detail, we first focus on how

metabolic reconfiguration influences the action steps of the immune system

andmodulates immune cell fate and function. Then, we highlighted the evidence

for considering mitochondria, besides conventional cellular energy suppliers, as

the powerhouses of immunometabolism. Finally, we explored the main

immunometabolic hubs in the organism emphasizing in them the reciprocal

impact between metabolic and immune components in both physiological and

pathological conditions.
KEYWORDS

immunometabolism, metabolic flexibility, mitochondrial function, mitochondrial
dynamics, metabolic reprogramming
Abbreviations: ATP, Adenosine triphosphate; PGC1, peroxisome proliferator-activated receptor gamma

coactivator 1 alpha; STAT6, signal transducer and activator of transcription 6; OXPHOS, oxidative
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regulatory binding element proteins; HIF-1a, hypoxia inducible factor-1a; FAO, fatty acid oxidation;

DAMPs, damage-associated molecular patterns; TFAM, mitochondrial transcription factor A; mtROS,

mitochondrial ROS; TNF-a, tumor necrosis factor-a; MAVS, mitochondrial antiviral signaling protein;

MFNs, mitofusins; OPA1, Optic-atrophy-1; Drp1, Dynamin-related protein-1; NET, neutrophil extracellular

traps; ETC, electron transport chain; FFAs, free fatty acids; LSECs, liver sinusoidal endothelial cells; IFN-I, I

interferon; PBMCs, Peripheral blood mononuclear cells; SCFAs, short chain fatty acids.
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GRAPHICAL ABSTRACT

Mitochondria are the scale needle of the immunometabolism. The metabolic flexibility, mitochondrial damage-associated moleuclar patterns
(DAMPs) release, and dynamics are the main processes that modulate the mitochondrial function in response to nutrients and immune signals. Their
dynamic balance ensures the body’s immune and metabolic homeostasis.
1 Introduction

The rules of human survival teach us that: i) we cannot be

unarmed against the pathogen attack and ii) nothing survives

without nourishment. The “immunometabolism” defines the

portal between immunology and metabolism, two trials which

our organism trusts to maintain a state of wellness. These

processes are inextricably linked and the interfaces between the

immune and metabolic systems mediate the whole-body

homeodynamics. The crosstalk between these two major

balancers of the body health has multiple facets (1). The immune

system continually perceives and reacts to pathogenic or

environmental dangers with secretion of cytokines, chemokines,

and inflammatory mediators by the innate immune cells, and with

the proliferation of adaptive immune cells. These processes are

bioenergetically expensive and need an accurate control of cellular

metabolic pathways (2). The immune response requires the

reallocation of nutrients within immune cells in order to: provide

the substrates for ATP production serving to sustain the functions

of activated immune cells; and build blocks for the production of

necessary macromolecules for the proliferation of immune cells.

The cellular metabolic reprogramming, that help to regulate specific

immune cell functions, is an aspect of immunometabolic research

which has already been to some extent explored (3). Indeed, the

concept that metabolism influences cellular functions and fate may

seem obvious, but taking this step backwards is the appropriate

approach for a detailed understanding of the immunometabolic

mechanisms, consequently useful to design effective strategies to

ensure the health of the organism. The feature of this review is the

establishment of a thread which examines the several facets of the

immunometabolism, starting from the intersection mechanisms of
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the mitochondrial metabolism with the functionality of the immune

cells. Then, we highlighted the mitochondrial dynamics processes in

the activation phases of immune cells, and the immunometabolic

regulation in different organs and tissue in both physiological and

pathological conditions.
2 Metabolic adaptations of
immune cells

The cells of the immune system are arguably the most dynamic

components of our organism, they need to function in different

contexts, including those where the availability of nutrients is

restricted or compromised (4). Immune cells possess a broad set

of skills ranging from being sleeping sentinels to inducing clonal

expansion, modulating surface receptor expression and secreting

large amounts of effector molecules (5, 6). The performance of these

distinct functional activities is tightly dependent by the metabolic

flexibility of these cells (7). Indeed, recent findings have

demonstrated that peripheral immune cells can adapt to

environmental shifts by metabolizing alternative non- glucose

substrates, such as amino acids or fatty acids (8–15). A system in

which nutritional and energy inputs are properly processed and

substrate utilization is properly regulated is defined as a

metabolically sensitive and flexible system. The mitochondrial

machinery is responsible for switches in the oxidation of

substrates, and the choices are orchestrated by an intricate

network of cell signaling events. This metabolic flexibility enables

peripheral immune cells to perform a multitude of functions in

disrupted environments where the availability of carbon sources

varies (16).
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In the 20th century, Warburg was the first to launch the

immunometabolic research describing the metabolic changes and

aerobic glycolysis in cancer cells (17). Recent research has

highlighted that each subset of immune cells has a different

metabolic control and nutrient utilization. Vats et al. highlighted

the molecular pathway that directly links mitochondrial oxidative

metabolism to the anti-inflammatory program of macrophage

activation, identifying peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PGC1a) and signal transducer and

activator of transcription 6 (STAT6) as metabolic regulators that

can control macrophage activation (18). To date, increasingly

detailed experiments have shown that naïve T and B cells

dynamically switch their metabolic programs upon activation.

Several studies highlighted signaling and transcriptional networks

that regulate metabolic state to tune the management of T cells fate

(19). The results converge on the increase of the mitochondrial

metabolism and oxidative phosphorylation (OXPHOS) (20–22) and

on the induction of anabolic metabolism in T cells, specifically,

evidencing that this occurs during the period of quiescence exit in

parallel with higher glucose uptake and lactate production (23).

Glutaminolysis is an important pathway in these cells, given that

glutamine replenishes tricarboxylic acid (TCA) cycle intermediates

as they are picked up for biosynthesis (15). These events are

mediated by the mechanistic target of rapamycin (mTOR)-

associated signaling, in part, by upregulating transcriptional

programs mediated by MYC (24), sterol regulatory binding

element proteins (SREBPs) (25), and hypoxia inducible factor-1a
(HIF-1a) (26–28). Treg cells and memory T cells have a dissimilar

metabolism from their activated effector T cells counterparts,

indeed, for their development and persistence depend on

mitochondrial fatty acid oxidation (FAO) rather than aerobic

glycolysis (29).

The interaction between nutrients, metabolic programs and

signaling pathways has recently well described also in naïve B cell

activation, differentiation and fueling of the antibody secretion

machinery. Several studies have found that glucose uptake is

increased upon B cells activation (30–33). It was also

demonstrated that the initial B cell activation induces metabolic

reprogramming, with increased glucose uptake without

accumulation of glycolytic metabolites, suggesting that glucose is

fluxing through the glycolytic pathway and is probably directed to

alternative metabolic pathways in activated B cells. Indeed,

stimulated B cells increase programs for OXPHOS, the TCA

cycle, and nucleotide biosynthesis (34). The signaling and

nutrient sensitive mechanisms that mediate B cell activation and

differentiation and the function of energetic and biosynthetic

pathways were widely reviewed (35). Several experiments have

shown that the functional destination (tolerance, effector or

regulatory activities) of B lymphocytes dictates the choice of their

metabolic programming, also depending on the receptors and the

co-activation molecules stimulated (36). Indeed, glucose restriction

did not affect B cell functions, whereas OXPHOS inhibition or

glutamine restriction significantly impaired B cell growth and

differentiation (34). Metabolic restrictions (such as low ATP

reserve and mitochondrial mass, or transcriptional repression of

glucose transport and limited activity of the pentose phosphate
Frontiers in Immunology 03
pathway) provide a safeguard against autoreactive or premalignant

B cells (37). This may happen through hyperactivation-induced

metabolic stress, such as ATP deprivation and oxidative damage.

Meanwhile, prolonged exposure to nutrient oversupply subverts B

cell gatekeeper functions, promotes malignant B cell transformation

and progression of autoimmune disease (38).

Notable, the metabolic availability influences immune cell fate

decisions also through its impact on the epigenome (39, 40). Indeed,

several metabolic checkpoints exist to limit epigenetic instability

and restrain B cell development (7). Compelling evidence

demonstrated that metabolic intermediates are ideal signaling

mediators. Their levels are in dynamic equilibrium with systemic,

microenvironmental and cell-intrinsic cues, whereby fluctuations

inform cell fate decisions (41). They can both inform the fitness of

extracellular conditions and integrate this sensing into the

epigenome, serving as cofactors for chromatin remodeling

enzymes (42). Metabolic-dependent epigenetic reprogramming

might explain why changes in cellular metabolism are crucial for

multi-stage B cell specification. Lastly, the metabolic state influences

immune cell function not only through epigenetic remodeling but

also through a restructuration of intracellular architecture, this will

be discussed in more detail below in a dedicated section.
3 Immunometabolic skills of
the mitochondria

In recent years, the scientific research has produced new

striking knowledge of mitochondrial function in metabolism,

leading to consider the mitochondria as targets for the

development of new therapeutic approaches. Alongside the

paradigm widely described in biochemistry textbooks, which

defines these organelles as ‘energy powerhouses’ of the cell, a new

image has emerged of the mitochondria as a ‘Pandora’s box’, an

intracellular ‘container’ crucial not only for the life but also for the

cell death (43, 44). For this reason, it is essential to consider their

expertise in immunometabolic management.

Mitochondria represent the most ancient endomembrane system

in eukaryotic cells. They arose around two thousand million years ago

and, over the years, mitochondria have continuously demonstrated

their autonomy and ability (45). In 1907, they were defined as cellular

organelles responsible for the functions of respiration and energy

production (46). Around the 1950s, Kennedy and Lehninger

discovered that the TCA, FAO and OXPHOS take place in the

mitochondria (47). In 1967, Margulis revived the long-forgotten

endosymbiont theory on the origin of organelles (48). Since the

1970s, the mechanism of mitochondrial biogenesis has been

elucidated and it is recognized that mitochondria are semi-

autonomous organelles, capable of synthesizing 5% of the proteins

they require and importing the rest from cytoplasmic synthesis (49).

Morphologically, like their bacterial ancestor, mitochondria consist of

two separate and functionally distinct outer and inner membranes

that enclose the intermembrane space andmatrix compartments. The

architecture of mitochondria is essential for their proper functioning

and also for the containment of immunogenic molecules derived

from mitochondria (50, 51). They also contain the mitochondrial
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DNA (mtDNA), a circular genome, which has been reduced in the

course of evolution through gene transfer to the nucleus.

The bacterial-like characteristics of mitochondria also reinforce the

idea that they are hubs of immunity (52). The proteins present in

mitochondria are structurally similar to those in bacteria and allow

them to be recognized by the same receptors as the immune system

(53). To date, as already hypothesized by Altmann in 1890, the main

role of mitochondria is to provide metabolic energy in all eukaryotic

cells (54). However, these organelles orchestrate mechanisms which

directly impact cell fate and fitness, so to consider them trivially

‘powerhouses of cells’ would be limiting, to say the least. Indeed, it is

well known that the metabolic functions of mitochondria reach far

beyond bioenergetics. Additionally to their exclusive ability to carry

out the OXPHOS, these organelles participate in intermediary

metabolism, regulate programmed cell death, calcium homeostasis,

and control the production of reactive oxygen species (ROS) (55–57).

A proper mitochondrial functionality is fundamental for the

cellular homeostasis. In this regard, several molecules extruded

from mitochondria alert neighboring cells, the immune system

(58), and the producing cell itself about mitochondrial

dysfunction (59). Several studies demonstrated that mitochondrial

ROS also contribute to adaptive stress signaling pathways, such as

hypoxia and control cell proliferation and differentiation (60, 61).

Likewise, the levels of nitric oxide (NO), another by-products of

mitochondrial respiratory activity, act as initiators through which

mitochondria modulate signal transduction pathways implicated in

the induction of cellular defense mechanisms and adaptive

responses (62). Mitochondria are also the source of molecules,

including proteins, lipids, metabolites and mtDNA, collectively

named damage-associated molecular patterns (DAMPs). These

DAMPs are endogenous danger molecules that are released from

damaged or dying cells and activate the innate immune system by

interacting with pattern recognition receptors. The DAMPs, when

imbalanced, employ immunogenic capacity in immune and non-

immune cells (63). ATP, succinate, cardiolipin, N-formyl peptides

(NFPs), mtDNA and mitochondrial transcription factor A (TFAM),

are examples of DAMPs that serve as danger flags for

immunological signaling (63). The secretion of succinate triggers

pro-inflammatory differentiation of T-lymphocytes (64) and have

synergic effects with Toll-like receptors ligands in dendritic cells for

the production of cytokines. The succinate is a regulator of

inflammation, in M1 macrophages due to a break point of Krebs

cycle it was observed its accumulation, and demonstrated a

prominent proinflammatory activity and roles in immunity (65).

High levels of extracellular ATP signals induces release of pro-

inflammatory cytokines, inflammasome activation (66), neutrophils

degranulation, apoptosis and ROS release through P2X receptors

(67, 68). The exposition of cardiolipin to the extracellular media is

associated with increased apoptosis and autophagy: the cardiolipin

can bind directly to Nod-like receptor 3 (NLRP3) and activate

inflammasome-mediated immune response (69). Moreover,

cardiolipin externalization to the outer mitochondrial membrane

acts as an elimination signal for mitophagy in mammalian cells

(70), this process is facilitated by the activated Gasdermin D

permeabilization of mitochondrial membranes that cause rapid,

cardiolipin-dependent mitochondrial destruction (71). N-formyl
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peptides are extruded by the mitochondria of damaged or dying

cells, they act as chemoattractant of neutrophils via formyl-peptides

receptors (72). Extra mitochondrial mtDNA has been widely shown

to induce a proinflammatory state (73, 74), its binding to TLR9

induces proinflammatory cytokines production, chemotaxis and

phagocytic activation via a MyD88-dependent signaling cascade

(75). TFAM enhances the immunogenicity of mtDNA (76), TFAM

is recognized by the receptor for advanced glycation end products,

which guides TFAM-mtDNA complexes to the endosomal

pathway, also, TFAM enhances cytokine secretion in combination

with NFPs (77). mtDNA may also amplify the activation of NLRP3

by mitochondrial ROS (mtROS) (78). ROS are a consequence of

mitochondrial disruption in both M1 macrophages (40) and

effector T cells and control adaptive immune-cell activation. It is

noteworthy that ROS are also guiding signals in the production of

inflammatory cytokines. T and B cells require ROS production to

trigger an adequate immune response. T cell activation induces a

spike in mtROS production, and blockade this process neutralizes

IL-2 production by T cells (79). B cell activation is also managed by

mtROS. The activation of B cell-surface receptors stimulates in turn

the calcium release into the cytoplasm, which promotes ROS

production, this cooperative interaction acts in a feedback

manner to amplify the early signal generated (80). An interesting

research showed that isolated human monocytes exposure to

mtDAMPs generated significantly less interleukins IL-1b, IL-6,
IL-12-p70 and tumor necrosis factor-a (TNF-a) upon

lipopolysaccharide challenge when compared to their untreated

counterparts, leading to speculate to the induction of a transient

state in which these cells are refractory to further endotoxin

stimulation (81). Further studies will be crucial to understanding

the role of this phenomenon, that could be the root of the onset of

noncommunicable chronic diseases, typified by mitochondrial

dysfunction and disruption of the immune system. Recently, the

intermediate role of mitochondria in toll-like receptor-mediated

innate immune responses and in the activation of the NLRP3

inflammasome complex has highlighted, supporting the striking

functions of mitochondria in innate immunity (82). Indeed, besides

being DAMPs producers, mitochondria are also linked to immunity

through their role as innate immune platforms that host the

mitochondrial antiviral signaling protein (MAVS) as a viral RNA

sensor and the inflammasome NLRP3 as a multiple immunogenic

receptor (63).

Understanding how non-immune cells respond to DAMPs

released following mitochondrial harm and the mechanisms

implicated in these responses are among the main targets of recent

researches (63). Understanding the conditions under which damage

to non-immune cells leads to chronic and systemic inflammatory

responses is relevant. This is discussed in a later section.
4 Mitochondrial dynamics drive the
immunometabolic pathways

The multifaceted contributions of mitochondria to cell

metabolism as bioenergetic powerhouses, biosynthetic centers,

ROS production managers and waste management hubs is
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undisputed (83). Unequivocally, mitochondria perform a plethora

of cellular functions besides energy production (84). It is equally

clear that the fate and function of innate and adaptive immune cells

depends crucially on mitochondrial bioenergetics (58). Exciting

evidence demonstrated that mitochondria constantly change their

morphology depending on the cell’s metabolic requirements,

highlighting reciprocal crosstalk between mitochondrial dynamics

and metabolism (85, 86).

Mitochondrial dynamics refers to the formation of a dynamic

network involving a continuous alternation of fusion and fission/

division processes in order to maintain their cellular abundance,

morphology, quality and function control (87). Mitochondrial fusion

and division typically counterbalance each other. Three proteins that

control mitochondrial fusion and division have identified: i)

mitofusins (MFNs) (outer mitochondrial membrane fusion), ii)

Optic-atrophy-1 (OPA1)/mitochondria genome maintenance 1

(inner mitochondrial membrane fusion), and iii) Dynamin-related

protein-1 (DRP1)/Dynamin-1 (division of outer and inner

mitochondrial membranes) (88). Mitochondrial fusion is the

physical merging of the mitochondrial membranes of two

originally distinct mitochondria. Mitochondrial division is the

separation of a single organelle into two or more independent

structures. These two active and combined effects originate the

mitochondrial networks. Several studies performed in metabolic

tissues, such as the liver, the skeletal muscle and the central

nervous system demonstrated that the unbalance in mitochondrial

fusion/fission dynamics cause cell and tissue dysfunction and altered

metabolic homeodynamics (89–92). A decade ago, it was already

proven that deletion of any of the dynamics machinery perturbs

OXPHOS and glycolytic rates at baseline (93). Tissue-specific

deletion of mitofusin-2 (Mfn2) in muscles of mice disrupts glucose

homeostasis (94), and Drp1 ablation in the liver results in reduced

adiposity and elevated whole-body energy expenditure, protecting

mice from diet-induced obesity (95). The evidence that the alterations

in fusion/fission machinery alter the mitochondrial function and with

it the cell function holds true across various tissues, including the

immune system. Indeed, mitochondrial dynamics are a critical

control point also for immune cell function (96).

In several immune cells, including neutrophils, macrophages,

mast cells, and T- and B-cells, mitochondria adapt specific

mitochondrial morphologies according to the cellular activation

state (78, 97, 98). In LPS-activated macrophages the inhibition of

mitochondrial fission, through the Drp1 inhibitor Mdivi-1, reduce

glycolytic reprogramming that these cells implement to achieve

polarization into a proinflammatory M1 state (97). The

mitochondrial dynamics impact also on the role of the

mitochondrial membrane as a signaling platform. Indeed, the

depletion of Mfn1/2 or Opa1 reduced MAVS-driven innate

antiviral signaling in a mitochondrial membrane potential-

dependent manner (99, 100). In neutrophils, the mitochondrial

fusion is implicated in the formation of neutrophil extracellular

traps (NET), the deletion of OPA lead to a decrease of ATP levels

which is fundamental for microtubule network assembly and NET

formation (101). Also in human mast cell immune response was

investigated the role of mitochondrial dynamics revealing that

degranulation processes and secretion of preformed TNF are
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regulated by Drp1 activation (98). The different roles of T-

lymphocytes as T effectors (Te) and T memory (Tm) cells impose

them large changes in ATP demand and nutrient utilization. Te cells

promote aerobic glycolysis to sustain anabolic pathways of

metabolism, while Tm cells engage catabolic pathways, like FAO,

and these metabolic differences are reflected in mitochondrial

morphology (96). Memory T cells have more fused mitochondrial

networks suggesting a requirement for mitochondrial fusion in

memory T cell metabolism and homeostasis. Indeed, the fusion

protein OPA1 is required for tight cristae organization in Tm cells,

facilitating efficient electron transport chain (ETC) activity and

favorable redox balance, its deletion caused defects in Tm survival

(97). While, more fragmented mitochondria (fission process, with

low expression of the fusion proteins MFN2 and OPA1 and high

levels of active DRP1) were observed in Te cells, leading to punctate

mitochondria, cristae expansion and reduced ETC efficiency which

promote aerobic glycolysis (97, 102). In T cells the processes of IL-2

production and immune synapse formation are dependent on

mitochondrial fission (103, 104). Indeed, activated T cells show

an increase in the production of mtROS, required in the activation

of the transcription factor NF-kB, which transcribes IL-2. Inhibition

of DRP1 by Mdivi-1 reduced IL-2 mRNA levels and T-cell

proliferation (96).

Mitochondrial fission also occurs during B-cell activation, while

naïve B cells have predominantly elongated mitochondria.

Activated B cells increase glucose uptake, TCA cycle and

OXPHOS and have fragmented mitochondria, while naϊve B cells

maintain a predominance of elongated mitochondria (30, 34).

These findings are similar to those noted in T cells; however, it

was found that naϊve B cells have significantly fewer mitochondria

in comparison to naϊve T cells (96, 105). It seems that B cells use the

mitochondrial remodeling as a key mechanism to control the

optimal function of these few mitochondria to compensate this

restriction in the number and volume of mitochondria and ATP

reserves (106). B cells predominantly favor mitochondria fission

and thus house smaller, less functional mitochondria with limited

capacity for oxygen consumption and ATP production (34, 107).

However, a recent study demonstrated that T cell–dependent

activation of murine B cells not only temporarily increased

metabolic activity (e.g., glucose uptake and glutamine

consumption) but also increased mitochondria number through

fission in the absence of mtDNA replication (34).

These exciting evidence highlight that mitochondria are tightly

interlaced with metabolic and immune cell homeostasis, it follows

that the proper function of mitochondria is crucial to ensuring the

health of the organism. From now on, talking about mitochondrial-

driven immunometabolic homeostasis would not be a hazard.

5 Immunometabolism in health and
disease: the main immunometabolic
hubs in the organism

Metabolic homeostasis and immune function are pivotal

requirements at the root of systemic health monitoring. The

crosstalk between immune and metabolic processes is coordinated
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by communication circuits between specialized tissue-resident cells

and organs that include messenger molecules such as hormones,

neurotrophic peptides, cytokines, and metabolites (108–112). The

intervention of these components of systemic immunometabolism

underlie the impact of the metabolism on systemic inflammation

and vice versa, both in health and in disease (Figure 1).

Nutritional habits are key determinants of body composition

and systemic metabolism (113). Meantime, it is well known that

malnutrition leads to inflammation and influences systemic

immune responses (114, 115). The unbalance between the body

energetic management (metabolism) and the ability to defend itself

against pathogens (immune response) has critical implications for

the occurrence of a wide range of chronic noncommunicable

diseases, including obesity, diabetes, cardiovascular pathologies

and cancer (108). Indeed, it has been well established that chronic

inflammation is the trigger of the above-mentioned diseases (108)

and, recently, the immunological adaptations in response to

nutritional status have been highlighted. Undernutrition impairs

immunity, causing inefficient responses to infections and

vaccinations. Conversely, the metabolic overload in obesity can

affect immunometabolism favoring chronic activation of both
Frontiers in Immunology 06
innate and adaptive immune cells, with subsequent low-grade

systemic inflammation and altered susceptibility to autoimmune

diseases (116). A thorough understanding of the intracellular

network and interce l lu lar corre lat ions that regulate

immunometabolism systemically is quite complex. For this

reason, below we attempt to trace the main immunometabolic

hubs of the organism.
5.1 Adipose tissue

The adipose tissue was identified as an important immune cell

niche during homeostasis and an important immune-metabolic

communication hub in metabolic syndrome (108, 117–121).

Indeed, a wide range of immune cells are accumulated in the

adipose tissue in the course of diet induced-obesity influencing

the systemic metabolism (122, 123). The macrophages accumulate

within adipose tissue produce the inflammatory cytokines IL-6 and

TNF-a (124, 125). Locally, IL-6 can induce lipolysis in neighboring

adipocytes and impair lipoprotein lipase, decreasing adipocyte lipid

depot. The high circulating levels of IL-6 and free fatty acids (FFAs)
FIGURE 1

The immunometabolic control has significant clinical relevance for the health status of the organism. The reciprocal impact between metabolic and
immune components unveils in the main body’s immunometabolic hubs in both physiological and pathological conditions.
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promote insulin resistance and immune cell function alterations

affecting both local and distal tissue microenvironments. Moreover,

the accumulation of FFAs promotes ROS production in

macrophages, which in turn augments activation of the NLRP3-

ASC inflammasome (126), and peripheral insulin resistance,

mediated by the secretion of the IL-1b. When inflammation

persists, like in obesity and in non-communicable diseases,

prolonged disruption of metabolic homeostasis could lead to

immune cell dysfunction and dysregulated systemic metabolism.

In this context, we are faced with ‘sterile metabolic inflammation’

that consists of persistent inflammation in the absence of infection

(127). Here, the bilateral crosstalk between aberrant metabolism

and immune regulation is disrupted and results not only in disease

progression but leads also to immune senescence (128). Buck et al.

have extensively reviewed the metabolic instruction of immunity

and attempted to shed light on how feeding behaviors can also affect

host immune fitness, but the relationship between the variety of

factors that influence the systemic metabolism and immune cell

activity is only beginning to be explored (7).

Recently, several lines of evidence on why the metabolic

overload from obesity blunt the immune system and increases the

vulnerability to infectious and autoimmune diseases have been

reported (116, 129). Firstly, a functional impairment of both the

innate and adaptive immune system is attributable to chronic low-

grade inflammation that lead to impaired chemotaxis, dysregulated

production of pro- and anti-inflammatory factors and altered

macrophages differentiation (130). This disrupts the delicate

balance of adipose tissue between its function of immunologically

active adipocytokines-producing organ, and the action of the latter

on affecting adipocyte homeostasis and metabolism (131, 132).

Moreover, the altered immunometabolism in obesity could lead

to autoimmunity. The immune cell differentiation may be impaired

in obese people due to excessive stimulation of nutrient- and

energy-sensing pathways (such as increased mTOR activity) in

immune cells, with consequent increase of proinflammatory TH1

and TH17 cells and decreases Tregs, which increase the risk of self-

tolerance lack (116). Lastly, exciting research demonstrated that the

increased adiposity observed in obese people increase also the bone

marrow adiposity (133), resulting quickly in a profound

hematopoietic insult with reduction of lymphocyte population

and compromised immune function (134–136).
5.2 Gut

The gut can be considered the main immunometabolic interface

of the organism representing a barrier surface, where a single layer

of epithelial cells is the main mediator of crosstalk between gut

microbes in the lumen and host cells, including immune cells in the

lamina propria (DCs, macrophages, innate lymphoid cells, and T

cells). Peyer’s patches are scattered along the epithelium which

house germinal centers that maturate IgA-secreting B cells with the

help of follicular helper T-cell help. B cells augment glycolysis upon

activation and depend on pyruvate import for longevity as long-

lived plasma cells (7). The epithelial cells and intraepithelial
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lymphocytes in the gut coordinate the tightly regulated immune

responses, implemented for both avoiding detrimental responses to

commensals or food antigens and adequately respond to pathogens

(137). It is noteworthy the role played by the short-chain fatty acids

(SCFAs), metabolites produced by commensal bacteria able to

influence B cell metabolism and boost antibody responses in both

mouse and human B cells, promoting Ig A secretion (138). The

presence of SCFAs and vitamins support the maintenance of barrier

function by promoting the development and survival of Tregs and

innate lymphoid cells. Noteworthy, homeostatic immune-driven

signals secreted by gut resident immune cells (e.g., IL-10) may also

mediate their effects through metabolic modulation (7). Indeed, it

was demonstrated that the deficiency of the pleotropic anti-

inflammatory cytokine IL-10 in macrophages is sufficient to

recapitulate the onset of severe colitis in mice (139). Possibly, the

metabolic shift towards to aerobic glycolysis during innate immune

cell activation is the explanation of the anti-inflammatory activity of

the IL-10.
5.3 Liver

The liver can be defined as the immunometabolic controller of

the organism. The central role played by the liver in the immune-

metabolic homeostasis being well recognized (140). The function of

the liver as the main metabolic organ inevitably exposes it to newly

produced neo-antigens, enhancing the risk of overactivation of

components of the immune system with potentially harmful

consequences for hepatic cell homeostasis (141). Several evidence

point out the importance of the liver as “regulatory system” where

different immune and non-immune cell populations work together

in order to protect the host from antigenic overload of dietary

components and drugs derived from the gut, facilitating tolerance

rather than immunoreactivity (141, 142). Indeed, the immune cells

coexist in a close symbiotic manner to support the hepatic

metabolic functions (143). In the liver, naïve T cells recirculating

within the sinusoids make direct contact with sinusoidal cells, such

as liver sinusoidal endothelial cells (LSECs) or Kupffer cells (144).

Gut-derived food antigens are picked up by Kupffer cells, LSECs,

and liver dendritic cells and presented to naïve T cells, leading to

immune tolerance of both CD8+ T cells and CD4+ T cells (145). In

addition, compelling evidence demonstrated that virus-induced

innate immune responses in hepatocytes are mediated by the

antiviral cytokine type I interferon (IFN-I) that apart from

inducing an antiviral state, rewires cellular metabolism of innate

immune cells to boost the production of immune-modulatory

metabolites (146–148) and modulates cellular redox homeostasis

and central metabolic pathways in hepatocytes (113, 149–151).

Moreover, the portal blood delivers to the liver numerous factors

derived from gut and visceral adipose tissue (e.g. pro-inflammatory

cytokines, lipids and bacteria-derived factors, such as endotoxins)

(152) that seem to be critical in the systemic and central

inflammation (153). These endocrine and immune mediators, in

turn, can modulate the hepatic metabolism by influencing the

bioenergetic regulation of hepatic mitochondria. Conversely,
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inflammation-induced metabolic reprogramming of hepatocytes

can influence systemic energy metabolism (154). These data

highlight the important role of the liver as central modulator of

systemic immunometabolism and strengthen the bidirectional

cause-effect relationship between mitochondrial metabolic stress

and immune regulation.
5.4 Peripheral blood mononuclear cells

PBMCs are immunometabolic sentinels of the organism.

PBMCs are circulating cells able to sense and respond to systemic

metabolic and inflammatory stressors. They circulate continuously

throughout the body in the bloodstream, and are subject to changes

in blood composition, including those related to fluctuations in

nutrients, substrates and hormones (155, 156). PBMCs can be

defined sentinel cells able to respond either to internal signals

(such as hormones) or external ones (such as nutrients) and to

reflect energy metabolism of internal tissues with which they

interact, as well as their gene expression profile. In addition, these

cells contain respiring mitochondria and, therefore, are a functional

biomarker in translational bioenergetics (157). For this reason,

PBMCs represent a suitable system to study changes in cell

metabolism and to control the management of immune

surveillance (156). Moreover, since several researches in animal

models demonstrated that PBMCs can reflect the metabolic

framework that cannot or can hardly be sampled in humans,

such as liver and brain (158–160). These cells can be used as a

surrogate tissue to monitor nutritional responses and provide

predictive disease risk markers (161).
6 Discussion and conclusions

This review has highlighted that immunometabolic control has

significant clinical relevance to the health status of the organism.

Furthermore, it has left no doubt that mitochondria are the main

players in this fine-tuning between metabolism and immune

function, finding the metabolic flexibility of immune cells and the

mitochondrial dynamics processes to be the secrets of appropriate

immunometabolic homeostasis (see also graphical abstract). In

particular, we underlined the importance of the metabolic

flexibility of immune cells, exploring the role of their metabolic

pathways and how this regulates the outcome of the immune

response. On the one hand, it is well established that initial T and

B cells activation, during the period of quiescence exit, lead to

increased glucose uptake and promote aerobic glycolysis (23). Then,

effector T and B cell subsets display differences in metabolic

activities on the basis of their subsequent functional specialization

(23). Treg cells and memory T cells revert to a catabolic state and rely

mainly on mitochondrial fatty acid oxidation (162). Also metabolic

programs of activated B lymphocytes change depending on their

functional destination (tolerance, effector or regulatory activities)

and on the receptors and co-activation molecules stimulated (36).

In addition, we explored the ability of mitochondrial DAMPs to
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employ the immunogenic capacity in immune and non-immune

cells, and the significant relevance of mitochondrial ROS

production in the trigger of an adequate immune response (163,

164). We traced the thread that leads from malnutrition to

metabolic inflexibility in immune and non-immune cells, with

consequent systemic meta-inflammation and disruption of the

immune system. At once, a proper metabolic regulation supports

immune cell activities in physiological contexts, while dysregulated

immunometabolism contributes to pathophysiology. In the last

chapter of the review, we explored and discussed the intricate

intracellular networks and intercellular correlations in the main

immunometabolic hubs of the organism. We highlighted as the

interference of mitochondrial dysfunction (unbalanced DAMPs

and ROS production and metabolic inflexibility) influence

also non-immune components and lead to chronic and

systemic inflammatory responses, typical features of non-

communicable diseases.

For this reason, it is advisable to pursue a constant and in-depth

exploration of immunometabolism, both in the detailed molecular

pathways involved and with an interdisciplinary approach. The aim

is to identify mitochondrial targets useful for the development of

new intervention therapies that could help reduce the global burden

of metabolic, inflammatory and autoimmune diseases.
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