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Immunosuppression increases the risk of nosocomial infection in patients with

chronic critical illness. This exploratory study aimed to determine the

immunometabolic signature associated with nosocomial infection during

chronic critical illness. We prospectively recruited patients who were admitted

to the respiratory care center and who had received mechanical ventilator

support for more than 10 days in the intensive care unit. The study subjects

were followed for the occurrence of nosocomial infection until 6 weeks after

admission, hospital discharge, or death. The cytokine levels in the plasma

samples were measured. Single-cell immunometabolic regulome profiling by

mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets,

was performed to identify immunometabolic features associated with the risk of

nosocomial infection. During the study period, 37 patients were enrolled, and 16

patients (43.2%) developed nosocomial infection. Unsupervised immunologic

clustering using multidimensional scaling and logistic regression analyses

revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine

palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and

fatty acid transport, respectively, in natural killer (NK) cells was significantly

associated with nosocomial infection. Downregulated NRF1 and upregulated

CPT1a were found in all subsets of NK cells from patients who developed a
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nosocomial infection. The risk of nosocomial infection is significantly correlated

with the predictive score developed by selecting NK cell-specific features using

an elastic net algorithm. Findings were further examined in an independent

cohort of COVID-19-infected patients, and the results confirm that COVID-19-

related mortality is significantly associated with mitochondria biogenesis and

fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that

NK cell-specific immunometabolic features are significantly associated with the

occurrence and fatal outcomes of infection in critically ill population, and

provides mechanistic insights into NK cell-specific immunity against microbial

invasion in critical illness.
KEYWORDS

chronic critical illness, nosocomial infection, natural killer cells, metabolism,
NRF1, CPT1a
Introduction

Advances in critical care have decreased the mortality caused by

acute critical illness, however, patients who survive the early stages

of critical illness may fail to recover and can develop chronic critical

illness (CCI) (1). Epidemiological studies have demonstrated that

the transition from acute to chronic critical illness occurs after 10

days in intensive care units (2) and revealed an association of CCI

with high mortality and a massive economic burden on the medical

care system (3, 4). Immune dysfunction in CCI is associated with an

increased risk of nosocomial infection (5), which leads to increased

healthcare costs and mortality (6, 7). Although sepsis, which is an

important risk factor for CCI (2, 3, 8, 9), may contribute to immune

dysfunction in CCI, characterized by elevated levels of pro-

inflammatory and anti-inflammatory cytokines and altered levels

of circulating immune cell populations (10–16), the exact nature of

the immune dysfunction associated with CCI is not fully

understood. Restoring immune dysfunction in CCI may prevent

nosocomial infection and promote recovery from CCI.

Immunometabolism is the intricate relationship between cellular

metabolism and immune cell function. Metabolic pathways, such as

glycolysis, oxidative phosphorylation, fatty acid oxidation, and amino

acid metabolism, play critical roles in shaping immune cell activation,

differentiation, and effector functions (17). Dysregulation of

immunometabolism has been implicated in various immune-

related diseases including autoimmune disorders, cancer, infectious

diseases, and chronic inflammation (18). A recent study

demonstrated that sepsis-related intrinsic metabolic defects

in monocytes cause immunosuppression and increased mortality

in a murine model (19). However, it is unclear whether

immunometabolic dysregulation leads to immune dysfunction and

increased susceptibility to nosocomial infection in patients with CCI.

Furthermore, although immune dysfunction associated with
02
nosocomial infection has been explored in several studies by

analyzing the abundance and function of immune cells in

peripheral blood mononuclear cells (PBMCs) (20–22), the

metabolic activities in immune cells had only been assessed in bulk

by techniques such as extracellular flux analyses (23, 24).

Studying immunometabolism at the single-cell level is crucial

for unraveling the complex mechanisms underlying immune cell

function. It is difficult to assess metabolic activities in various

immune cell types simultaneously using platforms such as

extracellular flux analyses (24). Mass cytometry, also known as

cytometry by time-of-flight (CyTOF), offers a powerful approach

for high-dimensional single-cell analysis, enabling simultaneous

measurement of multiple markers and elucidation of cellular

heterogeneity. Single-cell immunometabolic regulomic profiling

(scMEP), which employs mass cytometry, has been used to

characterize cell identities and metabolic features at single-cell

resolution (23, 25), enabling exploration of the immunometabolic

alternations associated with various diseases.

In this prospective exploratory study, we applied scMEP to

characterize the metabolic regulators of various immune cells in

PBMCs to identify the immunometabolic features associated with

the risk of nosocomial infection in patients with CCI. The findings

highlight the significant association between natural killer (NK)

cell-specific immunometabolic features involving mitochondrial

biogenesis and fatty acid b-oxidation and the risk of nosocomial

infection in CCI. Through exploratory analyses using single-cell

RNA sequencing (scRNA-seq) datasets from COVID-19-infected

subjects, we found the identified NK cell-specific immunometabolic

features are significantly correlated with host survival in COVID-19

infection. Our study thus reveals the clinical outcomes related to

infection in critical ill population are significantly associated with

NK cell-specific immunometabolism, and sheds light on NK cell-

specific immunity protective against infection in critical illness.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1334882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chung et al. 10.3389/fimmu.2024.1334882
Materials and methods

Study population

This prospective observational study was conducted at the

respiratory care center (RCC) at the National Taiwan University

Hospital (NTUH), a specialized step-down protocol-driven

weaning facility, and included patients with CCI who received

mechanical ventilator support for more than 10 days (26). The

Institutional Review Board of NTUH approved the study protocol

(201303047RINC). The study subjects, enrolled from August 2013

through March 2015, included adult patients (≥ 20 years) who were

transferred from intensive care units (ICUs) to the RCC for weaning

and who did not have evidence of active infection, did not receive

antibiotics or did not receive antibiotics for more than 3 days prior

to admission to the RCC, and did not have fever or hypothermia for

more than 24 h prior to admission to the RCC. Patients who had

systemic autoimmune diseases, hematological malignancies,

advanced malignancy with inevitable short-term mortality,

human immunodeficiency virus infection, patients receiving

immunosuppressive treatment, or patients who refused to consent

were excluded from the study.
Clinical data and outcomes

Data on the demographics, comorbidities, and laboratory

examination results at admission to the RCC were collected. The

occurrence of sepsis, septic shock, and acute respiratory distress

syndrome (ARDS) at ICU admission (27, 28), nosocomial infection

during ICU stay, and ventilator-dependent days before admission

to RCC were recorded. Nosocomial infection was defined according

to the 2014 surveillance criteria of the Centers for Disease Control

and Prevention’s National Healthcare Safety Network. All study

subjects were followed for the occurrence of nosocomial infection

for 6 weeks after RCC admission, hospital discharge, or death,

whichever occurred earlier. Nosocomial infection was determined

by attending physicians and was independently reviewed and

confirmed by L.T.K. and K.P.C. Adverse clinical outcomes were

assessed in the study subjects who died during their stay at the RCC

and in those who were readmitted to ICUs due to deterioration in

clinical condition.
Sample collection and processing

We collected 10mL of whole blood in an ethylenediaminetetraacetic

acid-coated tube from participants who gave informed consent upon

admission to the RCC. Whole blood samples were centrifuged at 800 g

for 10 minutes at 4°C, and the plasma was transferred to a 15-mL

polypropylene tube. The buffy coat was used to isolate PBMCs. The

plasma was further centrifuged at 2000 g for 10 minutes at 4°C, and was

aliquoted and stored at -80°C before cytokine measurements. PBMCs

were isolated using the Ficoll-paque gradient (GE Healthcare) and were

subsequently aliquoted into fetal bovine serum (FBS; Biological

Industries)-enriched freezing medium containing 10% dimethyl
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sulfoxide, and stored in liquid nitrogen. Each cryotube contained

2~4 x 106 PBMCs.
Cytokine measurements

The plasma levels of cytokines, including tumor necrosis factor

(TNF)-a, interleukin (IL)-6, IL-8, IL-10, and IL-15, were measured

using a multiplex cytokine kit (MILLIPLEX MAP Human

Cytokine/Chemokine Panel, Millipore Corporation) according to

manufacturer’s instructions. The cytokine level was designated as

0 pg/mL when the concentration was below the detection limit.
Mass cytometry analysis

PBMCs were washed once using serum-free Roswell Park

Memorial Institute (RPMI) 1640 medium. Cells were then stained

with cisplatin (Sigma-Aldrich) at a final concentration of 25 mM for

1 min at room temperature to label dead cells and then quenched by

equal volume of RPMI1640 medium with 10% FBS for viability

staining. Next, the cells were fixed with 1.6% paraformaldehyde

(Electron Microscopy Sciences) in serum-free RPMI1640 at room

temperature for 10 min. PBMCs from different donors were

barcoded with Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm),

pooled and stained for 26 lineage markers and 16 metabolic

regulators (Table 1). For surface marker staining, cells were

incubated with a cell-surface antibody cocktail prepared in cell

staining media (CSM), containing 1x phosphate-buffered saline

(PBS), 0.5% protease-free bovine serum albumin, and 0.02%

NaN3, in a final volume of 100 mL for 1 hour at room

temperature. After washing once with CSM, cells were

permeabilized with 100% ice-cold methanol for 10 minutes. For

intracellular marker staining, cells were washed twice with CSM and

stained with an intracellular antibody cocktail prepared in CSM in a

final volume 100 mL for 1 hour at room temperature. After staining,

cells were washed twice with CSM, and then stained with Cell-ID

Intercalator-Ir (191Ir and 193Ir; Fluidigm) at a final concentration

of 125 nM in 1000 mL 1.5% fresh paraformaldehyde (diluted in

1xPBS) overnight at 4°C for DNA staining. Finally, cells were

resuspended in MilliQ water containing EQ™ Four Element

Calibration Beads (Fluidigm) for normalization. Data were

acquired using a CyTOF2 mass cytometer (Fluidigm). Data in

raw flow cytometry standard files were normalized and

debarcoded using the Premessa R package (http://github.com/

ParkerICI/premessa). To eliminate batch variation, data were

aligned and corrected using the Spectre package (https://

github.com/ImmuneDynamics/Spectre). The data were uploaded

and gated in Cytobank, and marker intensities were arcsinh-

transformed with a cofactor of 5 before analyses.
Statistical analyses

Data are presented as medians [interquartile ranges], mean ±

standard deviation or number (percentage). For continuous
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TABLE 1 Antibodies used for mass cytometry analysis.

Target Metal Element Clone Vendor

Lineage markers

CD1c 172 Yb L161 Biolegend

CD3 113 In UCHT1 Invitrogen

CD4 145 Nd RPA-T4 Fluidigm

CD8 146 Nd RPA-T8 Fluidigm

CD11c 140 Ce Bu15 Biolegend

CD14 160 Gd M5E2 Biolegend

CD16 165 Ho 3G8 Fluidigm

CD19 142 Nd HIB19 Fluidigm

CD38 163 Dy HIT2 Biolegend

CD39 147 Sm A1 Biolegend

CD45 89 Y HI30 Fluidigm

CD45RA 153 Eu HI100 Fluidigm

CD56 176 Yb NCAM16.2 BD Bioscience

CD57 139 La HCD57 Biolegend

CD66b 141 Pr G10F5 Biolegend

CD86 156 Gd IT2.2 Fluidigm

CD123 144 Nd 6H6 Biolegend

CD141 149 Sm 1A4 BD

CD161 158 Gd HP-3G10 Biolegend

CD197/CCR7 159 Tb G043H7 Fluidigm

CCR2 170 Er 48607 R&D

FoxP3 162 Dy PCH101 Fluidigm

HLA-DR 174 Yb L243 Fluidigm

PD1 175 Lu EH12.2H7 Fluidigm

TCRVa7.2 166 Er 3C10 Biolegend

TCRgd 173 Yb 331202 Biolegend

Metabolic regulators

ATP5a 115 In 7H10BD4F9 Abcam

ACADM 171 Yb 3B7BH7 Abcam

CPT1 154 Sm 8F6AE9 Abcam

CS 152 Sm EPR8067 Abcam

Cytc 150 Nd 6H2.B4 Biolegend

DRP1 148 Nd EPR19274 Abcam

GAPDH 155 Gd 6C5 Invitrogen

GLUT1 209 Bi EPR3915 Abcam

HADHA 143 Nd EPR17940 Abcam

HK2 168 Er 3D3 Abcam

LDH 167 Er EP1566Y Abcam

(Continued)
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variables, the Mann-Whitney U test was used to compare

differences between the two groups. Discrete variables were

compared using Pearson’s c2 test or Fisher’s exact test as

appropriate. For mass cytometric data, immune features,

including cell abundance and expression levels of specific

markers, were calculated for each immune subset. Uniform

manifold approximation and projection (UMAP) was performed

using Cytobank with 23 immune cell lineage markers (CCR2,

CD11c CD123, CD14, CD141, CD16, CD161, CD197, CD1c,

CD3, CD38, CD39, CD4, CD45RA, CD56, CD57, CD8, CD86,

Foxp3, HLA-DR, PD-1 TCRgd, TCRVa7.2). The parameters were

equal events numbers, number of neighbors = 15, and minimum

distance = 0.01. NK population was determined by high CD56

cluster according to UMAP results. Secondary UMAP was

performed with 16 metabolic regulators (Table 1). The

parameters were equal events numbers, number of neighbors =

30, and minimum distance = 0.01. FlowSOM analyses were

performed by Cytobank with 10 metaclusters. Unsupervised

clustering of patient data was performed using multidimensional

scaling (MDS) based on the distance matrix of pairwise squared

ranking differences between immunological features including mass

cytometric data and plasma cytokine levels (29). The raw data were

first normalized by Z transformation with means and standard

deviations of the respective variables. To determine the appropriate

dimensionality of MDS, we used the “elbow”method by plotting the

number of dimensions versus the values of a loss function. The loss

function is called “stress” and is given by:

Stress =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o   dij − d̂ ij

� �2

o   d2ij

vuuut ,

where d̂ ij and dij are the predicted distance by MDS and the

estimated distance from the distance matrix between patient i and j.

Area under the receiver operating characteristic curve (AUROC)

was utilized to assess the performance of classification regarding

nosocomial infection for each coordinate of MDS and was

calculated using the R package “precrec” (30). The 95%

confidence interval (CI) of AUROC was obtained using

bootstrapping with 1,000 replications. The Spearman correlation

coefficient was calculated to evaluate the importance of each feature

for each MDS coordinate, and the p values for testing correlation
Frontiers in Immunology 05
coefficients were adjusted for multiplicity using the R package

“qvalue” (31). The elastic net logistic regression was employed to

conduct variable selection among the significant immunologic

features using the R package “glmnet” to identify the key

attributes associated with nosocomial infection (32). Based on the

variables selected by the elastic net algorithm, a predicted score was

derived using the equation below:

Predicted   score =
e a+ok

  bkVkð Þ
1 + e a+ok

  bkVkð Þ� � ,

wherea is the intercept and bk is the estimated regression coefficient

from the elastic net regression for the featureVk. Mann–Whitney U tests

were used to evaluate the differences of the predicted scores between

subgroups dichotomized based on nosocomial infection occurrence after

RCC admission. The performances of the model were evaluated by

calculating AUROC, as mentioned above. Logistic regression analyses

were used to calculate the unadjusted and adjusted odds ratios

of nosocomial infection for the predicted score based on

immunometabolic features. The arcsinh mean value of metabolic

regulator expression in each immune subset was assessed and

visualized through a heatmap. The heatmap plot was generated using

the pheatmap R package (https://github.com/raivokolde/pheatmap).

Regarding scRNA-seq analysis, The datasets, GSE145926 (33)

and GSE157344 (34) were downloaded from Gene Expression

Omnibus and were utilized to examine bronchoalveolar fluid cell

samples obtained from moderate (patients requiring oxygen

without respiratory support), severe (patients requiring admission

to ICU and/or non-invasive/mechanical ventilation), and deceased

COVID-19-infected patients. In order to comprehensively cover the

entire spectrum of disease severity, we opted to merge two cohorts

and employ computational integration techniques to mitigate

potential batch effects. The rationale behind our sample selection

aims to achieve a balance in age-matched samples from both

cohorts, aligning with established practices in meta-analysis

studies (35). The selected dataset composition was as follows:

three datasets for the moderate group, six datasets for the severe

group, and five datasets for the deceased group. Independent

validation for the results from the two datasets above (GSE145926

and GSE157344) was done through analyzing GSE161918 dataset,

which contains CITE sequencing-based cell annotation (36). For

analyzing GSE145926 and GSE157344 datasets, the Seurat package
TABLE 1 Continued

Target Metal Element Clone Vendor

NRF1 157 Gd EPR5554 Abcam

OGDH 164 Dy poly-clone Invitrogen

OPA1 169 Tm 1E81D9 Abcam

PGC1a 151 Eu 4A8 Abcam

VDAC 161 Dy 20B12AF2 Abcam
CD, cluster of differentiation; CCR, CC chemokine receptor; FoxP3, forkhead box P3; HLA-DR, human leukocyte antigen-DR; PD1, programmed death-1; TCRVa7.2, T cell receptor Va7.2;
TCRgd, T cell receptor g/d; ATP5a, ATP synthase F1 subunit alpha; ACADM, acyl-CoA dehydrogenase medium chain; CPT1, carnitine pamitoyltransferase 1; CS, citrate synthase; CytC,
cytochrome C; DRP1, dynamin-related protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; HADHA, hydroxyacyl-CoA dehydrogenase trifunctional
multi-enzyme complex subunit a; HK2, hexokinase 2; LDH, lactate dehydrogenase; NRF1, nuclear respiratory factor 1; OGDH, oxoglutarate dehydrogenase; OPA1, optic atrophy type 1; PGC1a,
peroxisome proliferator-activated receptor g coactivator 1a; VDAC, voltage-dependent anion channel.
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(version 4.0.4, https://github.com/satijalab/seurat) in R (version

4.0.5) was employed. Cells with RNA feature counts ranging from

200 to 7500 and mitochondrial content less than 5% were retained

for further analysis. Data scaling and transformation were

performed by applying the ‘NormalizeData’ function, which

scaled the data by a factor of 10,000 and transformed it into

natural-log transformed values, where each cell’s value was

divided by the total counts for that cell and multiplied by the

scale factor. For batch corrections, ‘FindIntegrationAnchors’ and

‘IntegrateData’ functions were used for anchor-based integration,

relying on matched biological states or ‘anchors’ to identify cells

across different datasets. Dimensionality reduction was achieved by

applying the ‘RunPCA’ function to the integrated Seurat object,

using the first 30 principal components. The high-dimensional

cellular data were visualized using the t-distributed stochastic

neighbor embedding (tSNE) method. A shared nearest-neighbor

graph was constructed using the first 30 principal components with

the ‘FindNeighbors’ function, and a graph-based modularity-

optimization algorithm, specifically the Louvain method, was

employed for community detection via ‘FindClusters ’ .

Differentially expressed genes were identified using the default

‘FindMarkers’ function in Seurat, which relies on Mann-Whitney

U tests. The cell identity of each cluster was automatically defined

using the SingleR package (https://github.com/dviraran/SingleR)

within the R environment. For analysis using GSE161918 dataset,

normalized seurat object generated by original Author was used.

Dimensionality reduction was achieved by applying the ‘RunPCA’

function to the normalized Seurat object, using the first 30 principal

components. The high-dimensional cellular data were visualized

using the tSNE method. A shared nearest-neighbor graph was

constructed using the first 15 principal components with the

‘FindNeighbors’ function, and a graph-based modularity-

optimization algorithm, specifically the Louvain method, was

employed for community detection via ‘FindClusters’. T cells

clusters were anchored to CITE-sequencing-based cell id provided

in metadata to preserve the cell type annotation similar the original

paper. Lastly, gene signatures related to mitochondrial fatty acid

oxidation (GO:0031998) and mitochondrial biogenesis (R-HSA-

1592230) were incorporated into the Seurat object using the

‘addmodule score’ function to assess NK cells in each clinical

condition. Kruskal-Wallis tests were applied for multiple group

comparison of the scores, and the p values were adjusted using the

Dunn’s method.

Statistical significance was defined as a two-sided p-value of

< 0.05. Statistical analyses and figure plotting were performed using

SPSS (version 17.0; IBM Corporation), GraphPad Prism (version

9.4.0; GraphPad Software), or R 4.2.0.
Results

Clinical features of the study population

During the study period, 37 patients with CCI who were

admitted to the RCC were recruited; their clinical characteristics

are described in Table 2. Sixteen patients (43.2%) developed
Frontiers in Immunology 06
nosocomial infection after admission to the RCC, and pneumonia

(11 of 16, 68.8%) was the most common diagnosis. Demographic

features, co-morbidities other than congestive heart failure, and

laboratory examination results were not significantly associated

with the occurrence of nosocomial infection in CCI. Patients who

developed nosocomial infection had significantly increased risk of

worse clinical outcomes compared to those who did not (p = 0.012

by Fisher’s exact test).
Unsupervised immunometabolic clustering
reveals the link between NK cell-specific
features and nosocomial infection risk

To uncover the immunometabolic features associated with

nosocomial infection in CCI, we used scMEP to quantify proteins

that regulate metabolic pathway activity across different immune

subsets in samples collected from subjects upon admission to RCC

(Figure 1). Using immunophenotypic markers, 21 major immune

subsets were manually gated (Figure 2). The abundance and the

metabolic protein expression profiles of each immune subset were

quantified, resulting in 357 immune features for each patient in the

study cohort. In addition, the circulating levels of five cytokines,

IL-10, IL-15, IL-6, IL-8, and TNF alpha, were measured for each

patient, and the results showed that patients with nosocomial

infection had significantly increased IL-10 levels at RCC

admission (Supplementary Figure 1A). To identify the specific

immune features associated with nosocomial infection, we first

performed MDS analysis to assess the degree of similarity among

patients. In MDS analysis, stress is a quantitative measure of the

dissimilarity between the reduced-dimensional representation and

the original data. This measure guides determination of the number

of dimensions that will retaining as much information as possible.

Based on the relationship between stress and the number of

dimensions (Figure 3A), we found that study subjects could be

appropriately categorized using a three-dimensional MDS plot.

In order to determine their effectiveness in distinguishing

between patients with nosocomial infection and those without, we

assessed the performance of each coordinate using AUROC.

Notably, only coordinate 3 exhibited statistically significant

correlations, with AUROC value of 0.80 (95% CI of 0.63-0.93).

The AUROC value for coordinate 1 was 0.58 (95% CI of 0.38-0.76)

and that for coordinate 2 was 0.61 (95% CI of 0.41-0.79)

(Figure 3B). Patients belonging to the nosocomial infection and

non-nosocomial infection groups were visually separated from each

other based on coordinate 3 (Figure 3C), indicating that the risk of

nosocomial infection is significantly associated with the

immunological features that correlated with coordinate 3 of the

MDS plot. Twenty-seven immunological features were significantly

correlation with coordinate 3 (Table 3). The correlations between

these identified immunological features and the risk of nosocomial

infection were evaluated by both AUROC (Figure 3D) and

univariate logistic regression analyses (Figure 3E). To show the

complete picture for the correlation between the immunometabolic

features and the risk of nosocomial infection, we calculated and

presented the extent of differential expression for all metabolic
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regulator in each immune subset, comparing patient subgroup with

and without nosocomial infection (Supplementary Figure 1B). The

findings consistently showed that the risk of nosocomial infection is

associated with increased CPT1a in all NK cell subsets, NKT cells,

and some T lymphocyte subsets. Collectively, our results revealed

that NK cells were the predominant immune cell type, and CPT1a

and NRF1 were the principal metabolic regulators associated with

the risk of nosocomial infection.
Altered expression of NRF1 and CPT1a in
NK cells is associated with an increased
risk of nosocomial infection

Based on the results from MDS analyses, we focused the

analyses evaluating the association between nosocomial infection

occurrence and NK cell-specific CPT1a and NRF1 expression.
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Notably, downregulation of intracellular NRF1 in the NK cell

population and subpopulations was significantly associated with

an increased risk of nosocomial infection, whereas CPT1a was

upregulated in all NK cell subpopulations from patients who

developed nosocomial infection (Figures 4A–D; Supplementary

Figure 2). Although the transcriptional regulation activity of

NRF1 is regulated by PGC1a, the levels of PGC1a in NK cells

are not correlated with the risk of nosocomial infection

(Supplementary Figure 3). To further investigate whether NK

subsets with specific metabolic features are correlated with the

risk of nosocomial infection, we applied uniform manifold

approximation and projection (UMAP) analysis to compare the

metabolic differences between patients with or without

nosocomial infection (Supplementary Figures 4A, B). Compared

to subjects without nosocomial infection, those with nosocomial

infection exhibited an increased abundance of a specific cluster

(Supplementary Figures 4C, D) which is characterized by elevated
TABLE 2 Clinical characteristics of patients upon admission to the respiratory care center (RCC).

Parameters Entire population
Nosocomial infection after RCC admission

No Yesa p valueb

Number 37 21 16

Age 79.0 [14.0] 82.0 [8.0] 77.0 [23.0] 0.094

Gender 0.368

Male 20 (54.1) 10 (47.6) 10 (62.5)

Female 17 (45.9) 11 (52.4) 6 (37.5)

Co-morbidities

CHF 6 (16.2) 6 (28.6) 0 (0.0) 0.027

CAD 11 (29.7) 6 (28.6) 5 (31.3) 1.000

DM 14 (37.8) 7 (33.3) 7 (43.8) 0.517

Hypertension 24 (64.9) 14 (66.7) 10 (62.5) 0.793

CKD 17 (45.9) 10 (47.6) 7 (43.8) 0.815

Neurologic diseases 17 (45.9) 12 (57.1) 5 (31.3) 0.117

Malignancy 14 (37.8) 7 (33.3) 7 (43.8) 0.517

Laboratory results

Leukocyte (x103/mL) 8.4 [4.3] 7.6 [4.4] 10.3 [7.6] 0.158

Platelet (103/mL) 190.0 [119.0] 186.0 [168.0] 210.0 [112.5] 0.724

Hemoglobin (g/dL) 9.2 [1.6] 9.7 [1.2] 8.9 [1.5] 0.133

Total bilirubin (mg/dL) 0.6 [0.5] 0.5 [0.3] 0.6 [0.5] 0.434

Creatinine (mg/dL) 1.0 [1.9] 0.9 [1.9] 1.3 [2.6] 0.713

Worse outcomes 8 (21.6) 1 (4.8) 7 (43.8) 0.012

ICU readmission 7 0 (0.0) 7 (43.8)

Death 1 1 (4.8) 0 (0.0)
Data are presented as medians [interquartile ranges] or numbers (percentages). CHF, congestive heart failure; CAD, coronary arterial disease; DM, diabetes mellitus; CKD, chronic kidney
disease; ICU, intensive care unit.
aIncluding pneumonia (n=11), intra-abdominal infection (n=3), primary bloodstream infection (n=1), and brain abscess (n=1).
bDiscrete variables were compared using Pearson’s c2 test or Fisher’s exact test, as appropriate, while continuous variables were compared using Mann-Whitney U test.
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CPT1a expression and reduced NRF1 expression (Supplementary

Figures 4E, 5). Collectively, the findings indicate that the expression

NRF1 and CPT1 in NK cells is a key immunometabolic feature

significantly associated with the risk of nosocomial infection

in patients with CCI, and suggest that NK cell-specific

immunometabolic features may be applied for assessing the risk

of nosocomial infection development.

Since the data is inherently high dimensional with the number

of features much greater than the number of patients, we performed

elastic net logistic regression to identify NK cell-specific

immunometabolic features that have potential as biomarkers to

predict the risk of nosocomial infection. This analysis indicated that

CPT1a and NRF1 expression levels in NK cell subsets and plasma

IL-15 levels are strongly associated with nosocomial infection risk

(Figures 5A, B). The AUROC for distinguishing those subjects likely

to develop nosocomial infection using these three features was 0.79

(95% CI of 0.62-0.92, Figure 5C).
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Mitochondrial fatty acid oxidation and
biogenesis in NK cells are associated with
the severity and clinical outcomes of
critical COVID-19 infection

Our results above suggest that the risk of nosocomial infection

in CCI is significantly correlated with the expression of CPT1a and

NRF1 in NK cells, and the findings suggest that NK cell-specific

mitochondrial fatty acid oxidation and biogenesis might be crucial

in host immunity against invading pathogens (37–39). Several

recent studies reported increased risk of secondary infection in

critical ill patients with COVID-19 infection, and the occurrence of

secondary infection remarkably raises the mortality rate of COVID-

19-infected critically ill patients (40–45). On the basis of our

findings, we surmised that the severity and outcome of critical

COVID-19 infection may be correlated with NK cell-specific

metabolic features, in particular mitochondrial biogenesis and
FIGURE 1

Overview of study and the single-cell immunometabolic regulomic profiling (scMEP) process. Patients with chronic critical illness, defined as
intensive care unit (ICU) hospitalization with mechanical ventilation support for more than 10 days, are followed to determine the clinical outcome,
the occurrence of nosocomial infection. Samples are analyzed through scMEP, which employs cytometry by time of flight (CyTOF), automated data
processing, and manual gating to determine immune cell abundances and to evaluate the immunometabolic regulome. (TEMRA CD4/CD8,
terminally differentiated effector memory CD4+/CD8+ T lymphocyte; Treg, regulatory T lymphocyte; gdT, gdT lymphocyte; MAIT, mucosal-
associated invariant T lymphocyte; NKT, natural killer T lymphocyte; NK, natural killer cells; GLUT1, glucose transporter 1; HK2, hexokinase 2;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LDH, lactate dehydrogenase; HADHA, hydroxyacyl-CoA dehydrogenase trifunctional multi-
enzyme complex subunit a; ACADM, acyl-CoA dehydrogenase medium chain; CPT1a, carnitine pamitoyltransferase 1a; DRP1, dynamin-related
protein 1; OPA1, optic atrophy type 1; PGC1a, peroxisome proliferator-activated receptor g coactivator 1a; NRF1, nuclear respiratory factor 1; CS,
citrate synthase; OGDH, oxoglutarate dehydrogenase; OXPHOS, oxidative phosphorylation; CytC, cytochrome C; ATP5a, ATP synthase F1 subunit
alpha; VDAC, voltage-dependent anion channel).
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fatty acid oxidation. To further investigate our assumption, we

integrated and clustered scRNA-seq data from two publicly available

datasets to assess whether the immunometabolic patterns in NK cells

in bronchoalveolar lavage fluid correlate with disease severity and the

survival in COVID-19 patients (Figure 6A) (33, 34). We identified

seven transcriptional clusters (Figures 6B, C). Among these clusters,

theNKcellpopulationwasdistinguishedby the enrichmentofNKcell-

specific markers including NKG7 and GNLY. To investigate the

involvement of the NRF1-associated mitochondria biogenesis

pathway and the CPT1a-related fatty acid oxidation pathway in NK

cells, we employed established gene sets for these pathways to calculate

the expression levels of genes in these pathways in each single cell.

Notably, the fatty acid oxidation signature scores were highest in NK
Frontiers in Immunology 09
cells of patients who succumbed to infection (Figure 6D). Conversely,

the mitochondria biogenesis scores were significantly higher in NK

cells of patients with moderate or severe COVID-19 infection

compared to those who did not survive infection (Figure 6E). To

affirm that our observedfindings are not a consequence of batch effects

or sampling bias, we conducted a validation analysis on another

independent cohort (36) (Supplementary Figures 6A, B). Similarly,

the results showed the signature of upregulated mitochondrial fatty

acid oxidation and downregulated mitochondrial biogenesis in

circulating NK cells is associated with mortality of critical COVID-

19 infection (Supplementary Figures 6C, D). The results from the

above scRNA-seq analyses together reveal that immunometabolic

features, particularly mitochondrial fatty acid oxidation and
FIGURE 2

Manual gating algorithm to identify various immune cell subsets by mass cytometric analyses.
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biogenesis, in NK cells are correlated with disease severity and clinical

outcomes in criticalCOVID-19 illness. Furthermore, thefindings from

our cohort and the analyses of scRNA-seq datasets suggest the

immunometabolic regulation in NK cells may be a crucial aspect of

host immunity in critical infectious illness.
Discussion

The role of NK cells in host defense against microbial infection

during critical illness remains unclear. Here, through unbiased

exploration, we uncovered the association between NK cell-specific

immunometabolism, in particular the altered expression of NRF1

and CPT1a, and nosocomial infection in patients with CCI. The

findings are strongly supported by scRNA-seq analysis results in

COVID-19-infected population, and bring forward the tenet about

NK cell-specific immunometabolic dysregulation in host immunity

against microbial invasion in critical illness. Characterizing NK cell-

specific immunometabolic features may be applied for assessing the

risk of nosocomial infection to select susceptible critically ill subjects

for infection preventive interventions.

Several previous studies have explored features of

immunosuppression in critically ill patients, and have demonstrated

a reduction in T lymphocytes, along with an increased expression of

inhibitory receptors, such as PD-1 and CTLA-4 in T lymphocytes and
Frontiers in Immunology 10
the presence of ligands like PD-L1 in monocytes and dendritic

cells. Furthermore, patients post sepsis or septic shock often exhibit

diminished monocytic expression of HLA-DR and other

immunosuppressive features (46–48). The association between these

immunosuppressive features and the risk of nosocomial infection is

not fully explored, although some studies revealed that monocytic

expression of PD-1 and HLA-DR may be associated with the risk of

nosocomial infection after sepsis (21, 49). However, in our study, the

abundance and the surface marker expression of immune cells are not

correlated with the risk of nosocomial infection. We attribute the

disparities in findings between studies to the inherent heterogeneity

within the critically ill population, coupled with the dynamic nature of

these patients and the challenge posed by small sample sizes.

Additionally, most of previous studies mainly focused on patients

with sepsis. Through extensive mass cytometric profiling, we found

that NK cell-specific immunometabolic alterations were significantly

associated with the risk of nosocomial infection. Two subsets of NK

cells, those that express high levels of CD56 and those that express low

levels of CD56, exist in the human blood; the latter subset constitutes

90% of the NK cell population (50). NK cells that express low levels of

CD56 aremainly cytotoxic, whereasNKcells that expresshigh levels of

CD56 produce cytokines, such as interferon (IFN) g and IL-10, after

activation (51). In a murine model, clearance of secondary

Pseudomonas infection is hampered after sepsis induction by cecal

ligation and puncture due to impaired IFNg production fromNK cells
A B

D E

C

FIGURE 3

Unsupervised immunologic clustering of the study population. (A) Stress versus dimension plot is generated to evaluate the ideal number of the
dimensions for multidimensional scaling (MDS) analysis. (B) Area under receiver operating characteristics curve (AUROC) and associated 95%
confidence interval are calculated for assessing the performance of MDS coordinate 3 in predicting the risk of nosocomial infection. (C) Three-
dimensional MDS plot is generated to visualize the clustering of the study population based on the development of nosocomial infection.
(D, E) Twenty-seven immunometabolic features are significantly correlated with coordinate 3 of the MDS plot (also see Table 3). AUROC (D) and
odds ratio (E) of nosocomial infection are calculated for these 23 features. The odds ratio and the p value are determined by logistic
regression analyses.
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(52). In addition, a recent study revealed that impaired IFNg
production of NK cells in is associated with nosocomial infection in

critically ill patients following a systemic inflammatory response (22).

Therefore, our findings, together with the supporting evidence from

previous studies, suggest the critical role of NK cell-mediated

immunity in protection against invading pathogens and nosocomial

infection in critically ill patients and further indicate that predictive

scores characterizing altered NK cell immunity may enable

stratification for riskofnosocomial infection in critically ill population.

The proper function of NK cells relies on metabolic control

(53–55). Glycolysis and oxidative phosphorylation are required to

support NK cell function after activation (53, 54). A previous study

demonstrated that PGC1a loss in NK cells would suppress

mitochondrial oxidative phosphorylation, leading to compromised

cytotoxic potential and cytokine production (37). Although our data

revealed that PGC1a expression in NK cells is not associated with the

risk of nosocomial infection in CCI, the activity of NRF1 is regulated

by PGC1a, and NRF1 regulates the nuclear genomic transcription of

genes related to respiratory complexes, mitochondrial protein

transport, mitochondrial genomic transcription, and protein

translation (38). Decreased NRF1 expression in NK cells may thus

impair mitochondrial bioenergetics and alter the effector function of

NK cells. In addition, depleting NRF1 has been shown to upregulate

lipid metabolism (39), and, in line with this regulatory axis, our data

implicate CPT1a, which regulates mitochondrial import and b
oxidation of long-chain fatty acids, as an immunometabolic

regulator associated with the risk of nosocomial infection in critical

illness. Although our data also revealed elevated CPT1a expression

not only in NK cells but also in NKT cells and some T lymphocyte

subsets among patients with nosocomial infection, it remains unclear

whether CPT1a is essential for T lymphocyte function, based on the

results from transgenic murine model with T lymphocyte-specific

deletion of CPT1a (56). Likewise, the impact of mitochondrial fatty

acid oxidation on the effector function of NK cells is heavily

contingent on context. Several studies have indicated that the

augmentation of NK cell activation and effector function through

IL-10 or IL-15 stimulation is reliant on the upregulation of

mitochondrial fatty acid oxidation (57, 58). Conversely, another

study demonstrated that increased lipid metabolism and lipid

transport into the mitochondria result in NK cell dysfunction (55).

A recent study by Liu C et al. applied scRNA-seq to explore the

transcriptomic features of circulating immune cells in critical

COVID-19 infection, and uncovered that mortality is associated

with a metabolic signature of increased fatty acid metabolism in

NK cells (36). Our data and the findings from the study by Liu C et al.

(36) together suggest that lipid metabolism in NK cells may be a

prognostic biomarker in critical infectious illness. However, studies

are required to fully resolve whether the metabolic reprogramming

associated with NK cell activation is essential to NK cell immunity,

and to elucidate the roles of NK cell-specific NRF1 and CPT1a in host

immunity against infection.

In the context of an immune response, immune cells

dynamically interact with their milieu, utilizing surface receptors

to interpret extracellular prompts and recalibrate intracellular

homeostasis to effectively neutralize pathogenic threats. One
TABLE 3 Correlation of immunometabolic features with coordinate 3 of
the multidimensional scaling for unsupervised clusteringa.

Immunometabolic
features

Spearman correlation
coefficient r

p
value

NK cell related

CPT1a_NK(CD56dim) -0.7624 <0.001

CPT1a_NK -0.7596 <0.001

CPT1a_NK
(CD56dimCD57-)

-0.7525 <0.001

CPT1a_NK
(CD56dimCD57+)

-0.7499 <0.001

CPT1a_NK(CD56bright) -0.5446 <0.001

IL-15 -0.5294 0.001

NRF1_NK(CD56dimCD57-) 0.5439 0.001

NRF1_NK(CD56dim) 0.5503 <0.001

NRF1_NK(CD56bright) 0.5548 <0.001

NRF1_NK 0.5552 <0.001

NRF1_NK
(CD56dimCD57+)

0.5690 <0.001

Others

CPT1a_non-
classic monocytes

-0.6854 <0.001

CPT1a_TEMRA CD8T -0.6769 <0.001

CPT1a_Treg -0.6399 <0.001

CPT1a_effecotr
memory CD4T

-0.6375 <0.001

CPT1a_NKT -0.6332 <0.001

CPT1a_central
memory CD8T

-0.5907 <0.001

CPT1a_gdT -0.5631 <0.001

CPT1a_CD4T -0.5545 <0.001

CPT1a_effector
memory CD8T

-0.5493 <0.001

CPT1a_MAIT -0.5230 0.001

CPT1a_central
memory CD4T

-0.4957 0.002

CPT1a_intermediate
monocyte

-0.4780 0.003

NRF1_plasmacytoid
dendritic cell

0.4749 0.003

NRF1_naïve CD4T 0.4908 0.002

CD8T (abundance) 0.4945 0.002

TEMRA CD8T (abundance) 0.5202 0.001
CD4T, CD4+ T lymphocytes; CD8T, CD8+ T lymphocytes; Treg, regulatory T lymphocytes;
gdT, gd T lymphocytes; TEMRA, terminally differentiated effector memory; NKT, natural
killer T lymphocyte; NK, natural killer cells; MAIT, mucosal associated invariant T
lymphocytes; CPT1a, carnitine pamitoyltransferase 1a; GLUT1, glucose transporter 1;
NRF1, nuclear respiratory factor 1.
aPlease refer to Figure 3B for the multidimensional scaling plot.
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critical facet of this internal recalibration is the adaptation of

cellular metabolism, tailored to meet the immediate energy

requisites and strategic objectives of the immune response (59).

For example, in the acute phase, T cells undergo rapid proliferation

and synthesize pivotal effector molecules, necessitating a surge in

bioenergetic and biosynthetic pathways (60). Conversely, upon

pathogen clearance, these activated immune components

transition, necessitating metabolic reprogramming to support

roles such as memory cell formation or tissue repair functions

(61). This metabolic versatility encompasses a shift from glycolysis

during the acute phase—an energy-lavish pathway suitable for

immediate cellular demands—to a more energy-conservative fatty

acid oxidation process post-threat, aligning with the cells’ long-term

functional commitments.
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Similarly, the activation mechanics of NK cells are governed by

a sophisticated network of checks and balances involving both

activating and inhibitory receptors, nuanced by additional layers

of control from cytokines and available nutrients (62–64).

Intriguingly, metabolic reprogramming in NK cells is not uniform

but stimulus-specific (65, 66). For instance, IFNg production, when
induced through activation receptors, mandates a glucose-intensive

oxidative phosphorylation pathway, contrasting with cytokine-

stimulated IFNg production (e.g., in the presence of IL-12 and IL-

18) that proceeds independently of glycolytic pathways (67). Our

research underscores the clinical ramifications of these metabolic

nuances, linking basal metabolic profiles of NK cells with clinical

outcomes such as the prevalence of nosocomial infection in patients

with critical care illnesses and the efficacy of infection management
A

B

DC

FIGURE 4

Levels of NRF1 and CPT1a expression in NK cells are correlated with occurrence of nosocomial infection (NI). (A, B) Plots of NRF1 (A), and CPT1a
(B) levels in indicated NK cell populations. The lines indicated mean ± standard deviation, and the p values are determined by Mann-Whitney U tests
(** p< 0.01, * p< 0.05). (C, D) Uniform manifold approximation and projection (UMAP) plots visualizing indicated marker expression in all cells from
patients with and those without NI. The major cell groups are annotated (C), and the expression levels of (D) CPT1a and NRF1 in different immune
cell subsets are demonstrated.
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in SARS-Co-V2 cases. These insights accentuate the need for a

holistic exploration of NK cell metabolic landscapes to fully

comprehend their immunological comportments.

Extending beyond metabolic perspectives, the NK cell receptor

repertoire—crucial for defining the host’s immunological

countermeasures—is demonstrably sculpted by a spectrum of viral

pathogens, including but not limited to HIV, human cytomegalovirus,

and SARS-Co-V2 (68–81). Concurrently, it has been reported that a

troubling association between chronic viral infection, particularly HIV,

and the perturbation of NK cell mitochondrial integrity, manifesting as

compromised oxidative phosphorylation, escalated mitochondrial

depolarization, and conspicuous mitochondrial fragmentation (82).

These phenomena suggest a dual impact of viral pathogens on NK

cells, implicating concurrent modulations in receptor architecture and

metabolic comportment. Therefore, prospective research endeavors

dissecting the interdependencies between metabolic processes

and receptor configurations in NK cells hold promise for

innovative immunological interventions aimed at optimizing viral

control mechanisms.

The mechanisms leading to NK cell dysfunction after systemic

inflammation are not fully understood and may be related to both

intrinsic defects, such as decreased expression of IL-12 receptor, and

extrinsic regulation, such as growth and differentiation factor
Frontiers in Immunology 13
GDF-15 (22). Meanwhile, while activation of NK cells is associated

with upregulated mitochondrial fatty acid oxidation and oxidative

phosphorylation, continuous stimulation is found to hamper

mitochondrial bioenergetics and causes NK cell exhaust (58, 65). In

this study, the data suggest that occurrence of nosocomial infection in

CCI is associated with increased IL-10 and IL-15 levels in the

circulation. The altered cytokine profile and upregulated CPT1a

expression in NK cells may thus suggest prolonged activation of NK

cells, resulting in impaired NK cell immunity (58). Besides, evidence

suggests that myeloid-derived suppressor cells (MDSCs) may be crucial

for immune dysfunction and nosocomial infection in CCI (83). A

persistent increase in circulatoryMDSCs is found after sepsis and septic

shock and is significantly associated with an increased risk of

nosocomial infection in CCI (16). MDSCs, including granulocytic

and monocytic subsets, can suppress T cell function through

arginine deprivation in the microenvironment by upregulation of

arginase 1 and nitric oxide synthase, and the production of nitrogen

oxide, reactive oxygen species, and peroxynitrite (84). Furthermore,

MDSCs were found to suppress the development, cytotoxicity, and

IFNg production of NK cells in murine models (85, 86). Although

further studies will be required to confirm the immunoregulatory

interactions between MDSCs and NK cells in human subjects, the

murine studies suggest a potential causal link between the emergence of
A

B C

FIGURE 5

Elastic net logistic regression is applied to identify NK cell-specific features predictive of nosocomial infection risk. (A) Three of 11 NK cell-related
features, which are significantly associated with coordinate 3 of the multidimensional scaling plot, are selected using elastic net algorithm, and are
included to generate the predictive score for assessing the risk of nosocomial infection. (B) Predictive scores based on elastic net models for
patients who develop nosocomial infection and those who do not. Horizontal line indicates median, boxes indicate interquartile range, and the
upper and lower whiskers extended to the largest and the smallest value at most 1.5 interquartile range from the upper and the lower hinges,
respectively. Outliers beyond the ends of the whiskers are plotted individually. The p value is calculated by the Mann-Whitney U test. (C) Area under
receiver operating characteristics curve (AUROC) is calculated for assessing the performance of the predictive score in evaluating the risk of
nosocomial infection.
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MDSCs in patients with CCI and altered immunometabolism in NK

cells. The detailed trajectory of immunometabolic alterations in NK

cells after septic shock and the exact mechanisms that results in

metabolic rewiring of NK cells in the CCI population are unclear,

and warrant future studies to clarify.

This study has some limitations. First, this is a prospective study

with an exploratory aim to identify immunometabolic features

associated with nosocomial infection in CCI. Although our analyses

using mass cytometry data were comprehensive and were confirmed

in an independent cohort, the sample size of our study population is

small. In addition, immunometabolic characterization at different

time points will further provide valuable trajectory insights into the
Frontiers in Immunology 14
immunometabolic signature associated with nosocomial infection in

critical illness. Further studies are needed to validate our findings, and

to uncover the dynamics of immunometabolism in critical illness.

Second, for exploratory purposes, we assessed the metabolic

regulators of various immune cells in blood samples. The

association between the risk of nosocomial infection in CCI and

several NK cell-specific features other than metabolic changes, such

as surface marker expression, regulatory cytokine release, and effector

functions, needs further investigation. Incorporation of additional

features may result in more accurate identification of critically ill

patients at a high risk of nosocomial infection. Third, the immunity of

patients with CCI is probably influenced by both the underlying
A

B D
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FIGURE 6

Correlation of NK cell-specific immunometabolic features with the disease severity and clinical outcome in critical COVID-19 infection. (A) Diagram
outlining the method for validation utilizing publicly available single-cell RNA sequencing (scRNA-seq) data from fourteen COVID-19 patients
including three from the moderate group, six from the severe group, and five from the deceased group. (B) t-distributed stochastic neighbor
embedding (tSNE) plots of scRNA-seq data showing the major cell types, each labeled with a distinct color. (C) The lineage specific marker genes for
each cell types are shown. The expression levels of indicated genes are color coded. (D, E) Relative expression of the mitochondrial fatty acid b-
oxidation pathway (D) and the mitochondrial biogenesis pathway (E) across patient groups are exhibited through violin plots of z-scores for genes
involved in specific pathways. The lines indicate median and interquartile range. The p values are calculated using Kruskal-Wallis test and adjusted for
multiple comparisons using the Dunn’s method. (**** p< 0.0001).
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comorbidities and clinical course of the critical illness. Furthermore,

dysfunction of NK cells can be observed in patients with major

trauma (22), and the findings suggest that changes in the NRF1 and

CPT1a regulatory axis may occur in patients with CCI patients

following non-septic systemic inflammation. Thus, the clinical

features predisposing to NK cell-specific immunometabolic changes

require further research.

In conclusion, our findings shed light on the role of perturbed

NK cell immunometabolism, including NRF1 downregulation and

CPT1a upregulation, in the risk of nosocomial infection in CCI.

Further studies are required to characterize NK cell-specific

immunity in critically ill patients and to explore the risk factors

leading to NK cell dysfunction in CCI.
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Unconventional Repertoire Profile Is Imprinted during Acute Chikungunya Infection
for Natural Killer Cells Polarization toward Cytotoxicity. PloS Pathog (2011) 7(9):
e1002268. doi: 10.1371/journal.ppat.1002268

74. McKechnie JL, Beltrán D, Ferreira A-MM, Vergara R, Saenz L, Vergara O, et al.
Mass cytometry analysis of the NK cell receptor–ligand repertoire reveals unique
differences between dengue-infected children and adults. ImmunoHorizons (2020) 4
(10):634–47. doi: 10.4049/immunohorizons.2000074

75. Pohlmeyer Christopher W, Gonzalez Veronica D, Irrinki A, Ramirez Ricardo N,
Li L, Mulato A, et al. Identification of NK cell subpopulations that differentiate HIV-
infected subject cohorts with diverse levels of virus control. J Virol (2019) 93(7):e01790-
18. doi: 10.1128/jvi.01790-18

76. Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, Planta MA, et al.
Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and
activating receptors and their functional correlates. Proc Natl Acad Sci USA (2003) 100
(25):15011–6. doi: 10.1073/pnas.2336091100

77. Vendrame E, Seiler C, Ranganath T, Zhao NQ, Vergara R, Alary M, et al. TIGIT is
upregulated byHIV-1 infection andmarks a highly functional adaptive andmature subset
of natural killer cells. AIDS (2020) 34(6):801–13. doi: 10.1097/QAD.0000000000002488

78. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK
cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science (1999) 285
(5428):727–9. doi: 10.1126/science.285.5428.727

79. Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat
Immunol (2023) 24(10):1628–38. doi: 10.1038/s41590-023-01560-8

80. Cifaldi L, Doria M, Cotugno N, Zicari S, Cancrini C, Palma P, et al. DNAM-1
activating receptor and its ligands: how do viruses affect the NK cell-mediated immune
surveillance during the various phases of infection? Int J Mol Sci (2019) 20(15):3715.
doi: 10.3390/ijms20153715

81. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol (2020) 17(5):533–5.
doi: 10.1038/s41423-020-0402-2

82. Cong J. Metabolism of natural killer cells and other innate lymphoid cells. Front
Immunol (2020) 11:1989. doi: 10.3389/fimmu.2020.01989

83. Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, et al.
Sepsis pathophysiology, chronic critical illness, and persistent inflammation-
immunosuppression and catabolism syndrome. Crit Care Med (2017) 45(2):253–62.
doi: 10.1097/CCM.0000000000002074

84. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the
immune system. Nat Rev Immunol (2009) 9(3):162–74. doi: 10.1038/nri2506

85. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte
RN, et al. IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs
NK cell development and function. Eur J Immunol (2010) 40(12):3347–57.
doi: 10.1002/eji.201041037

86. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived
suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1.
J Immunol (2009) 182(1):240–9. doi: 10.4049/jimmunol.182.1.240

COPYRIGHT

© 2024 Chung, Su, Wang, Budiarto, Yeh, Cheng, Keng, Chen, Lu, Juan,
Nakahira, Ruan, Chien, Chang, Jerng, Huang, Chen and Yu. This is an open-
access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright
owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.784130
https://doi.org/10.3389/fcimb.2022.784130
https://doi.org/10.1016/j.cmi.2020.10.021
https://doi.org/10.1186/cc9031
https://doi.org/10.1186/cc11404
https://doi.org/10.1001/jama.2011.1829
https://doi.org/10.1186/s13054-020-2830-x
https://doi.org/10.1186/s13054-020-2830-x
https://doi.org/10.1016/j.immuni.2017.10.008
https://doi.org/10.1016/j.immuni.2017.10.008
https://doi.org/10.1016/s1471-4906(01)02060-9
https://doi.org/10.1016/s1471-4906(01)02060-9
https://doi.org/10.1177/1753425913517274
https://doi.org/10.1177/1753425913517274
https://doi.org/10.4049/jimmunol.1402099
https://doi.org/10.1016/j.cmet.2018.06.021
https://doi.org/10.1038/s41590-018-0251-7
https://doi.org/10.1016/j.cmet.2018.06.002
https://doi.org/10.1016/j.cmet.2018.06.002
https://doi.org/10.3389/fimmu.2021.619195
https://doi.org/10.3389/fimmu.2021.619195
https://doi.org/10.1172/jci.insight.96219
https://doi.org/10.1038/nri.2016.70
https://doi.org/10.1111/imr.12858
https://doi.org/10.3389/fimmu.2022.840610
https://doi.org/10.1146/annurev-immunol-020711-075005
https://doi.org/10.1016/j.molimm.2004.07.034
https://doi.org/10.1016/j.molimm.2004.07.034
https://doi.org/10.1038/nri3799
https://doi.org/10.3389/fimmu.2023.1064101
https://doi.org/10.1038/s41577-019-0139-2
https://doi.org/10.4049/jimmunol.1402099
https://doi.org/10.1182/blood-2012-10-459545
https://doi.org/10.1002/eji.201141826
https://doi.org/10.1128/jvi.02382-13
https://doi.org/10.1126/scitranslmed.aac5722
https://doi.org/10.1126/scitranslmed.aac5722
https://doi.org/10.1172/JCI146408
https://doi.org/10.1371/journal.ppat.1002268
https://doi.org/10.4049/immunohorizons.2000074
https://doi.org/10.1128/jvi.01790-18
https://doi.org/10.1073/pnas.2336091100
https://doi.org/10.1097/QAD.0000000000002488
https://doi.org/10.1126/science.285.5428.727
https://doi.org/10.1038/s41590-023-01560-8
https://doi.org/10.3390/ijms20153715
https://doi.org/10.1038/s41423-020-0402-2
https://doi.org/10.3389/fimmu.2020.01989
https://doi.org/10.1097/CCM.0000000000002074
https://doi.org/10.1038/nri2506
https://doi.org/10.1002/eji.201041037
https://doi.org/10.4049/jimmunol.182.1.240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fimmu.2024.1334882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Immunometabolic features of natural killer cells are associated with infection outcomes in critical illness
	Introduction
	Materials and methods
	Study population
	Clinical data and outcomes
	Sample collection and processing
	Cytokine measurements
	Mass cytometry analysis
	Statistical analyses

	Results
	Clinical features of the study population
	Unsupervised immunometabolic clustering reveals the link between NK cell-specific features and nosocomial infection risk
	Altered expression of NRF1 and CPT1a in NK cells is associated with an increased risk of nosocomial infection
	Mitochondrial fatty acid oxidation and biogenesis in NK cells are associated with the severity and clinical outcomes of critical COVID-19 infection

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


