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Background: Non-alcoholic fatty liver disease (NAFLD) is the most common

chronic liver disease globally, with the potential to progress to non-alcoholic

steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the

absence of effective treatments to halt its progression, novel molecular

approaches to the NAFLD diagnosis and treatment are of paramount importance.

Methods: Firstly, we downloaded oxidative stress-related genes from the

GeneCards database and retrieved NAFLD-related datasets from the GEO

database. Using the Limma R package and WGCNA, we identified differentially

expressed genes closely associated with NAFLD. In our study, we identified 31

intersection genes by analyzing the intersection among oxidative stress-related

genes, NAFLD-related genes, and genes closely associated with NAFLD as

identified through Weighted Gene Co-expression Network Analysis (WGCNA).

In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we

identified three hub genes using three machine learning algorithms: Least

Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector

Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest.

Subsequently, a nomogram was utilized to predict the incidence of NAFLD.

The CIBERSORT algorithm was employed for immune infiltration analysis, single

sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment

analysis, and Protein-Protein Interaction (PPI) networks to explore the

relationships between the three hub genes and other intersecting genes of

NAFLD and OS. The distribution of these three hub genes across six cell

clusters was determined using single-cell RNA sequencing. Finally, utilizing

relevant data from the Attie Lab Diabetes Database, and liver tissues from

NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative

Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further

validated the significant roles of CDKN1B and TFAM in NAFLD.
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Results: In the course of this research, we identified 31 genes with a strong

association with oxidative stress in NAFLD. Subsequent machine learning analysis

and external validation pinpointed two genes: CDKN1B and TFAM, as

demonstrating the closest correlation to oxidative stress in NAFLD.

Conclusion: This investigation found two hub genes that hold potential as novel

targets for the diagnosis and treatment of NAFLD, thereby offering innovative

perspectives for its clinical management.
KEYWORDS

non-alcoholic fatty liver disease, bioinformatic analysis, machine learning, WGCNA,
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Introduction

Approximately 25% of the global population is afflicted with

Non-alcoholic fatty liver disease (NAFLD), although the prevalence

varies due to regional disparities. The Middle East (32%) and South

America (30%) exhibit the highest rates, while the prevalence is 24%

in North America and Europe, 27% in Asia, and the lowest in Africa

at 13% (1). The American Association for the Study of Liver

Diseases (AASLD) has defined NAFLD in its practice guidelines

as: (a) the presence of hepatic steatosis, either by imaging or

histology, and (b) no causes for secondary hepatic fat

accumulation, such as significant alcohol consumption, use of

steatogenic medication, or hereditary disorders (2).

NAFLD can be further subdivided into Non-alcoholic fatty liver

(NAFL) and Non-alcoholic steatohepatitis (NASH) (3). NAFL is

defined by hepatic steatosis without evidence of hepatocellular

injury in the form of hepatocyte ballooning. Conversely, NASH is

characterized by hepatic steatosis and inflammation with

hepatocyte injury, with or without fibrosis (4). NAFL can

transform into NASH, which is characterized by hepatocellular

ballooning and lobular inflammation as well as steatosis.

Perisinusoidal fibrosis is typically not considered a prerequisite

for diagnosing NASH (5). NAFLD may evolve into cirrhosis and

hepatocellular carcinoma (HCC) (6), with HCC representing the

fourth leading cause of cancer-related deaths worldwide (7). In the

United States, NASH is the second most common indication for

liver transplantation (8). Among U.S. HCC patients requiring liver

transplantation, those with NAFLD represent the fastest-growing

group (9), highlighting the substantial disease burden posed

by NAFLD.

Oxidative stress (OS) means an imbalance between oxidative

and antioxidative processes within an organism. Under these

conditions, the quantity of Reactive Oxygen Species (ROS) and

Reactive Nitrogen Species (RNS) produced by the organism

surpasses its antioxidative capabilities, thereby inducing oxidative

damage. ROS and RNS are small molecules with robust oxidative

characteristics, encompassing both free radicals and non-free
02
radicals, such as superoxide anions, hydroxyl free radicals,

hydrogen peroxide, and nitric oxide. When tissues, cells, and

biological macromolecules are exposed to these excessive oxidants

over an extended period, a series of biochemical reactions are

triggered, causing oxidative damage and consequently, impairing

normal cellular functions. Prolonged oxidative stress is regarded as

a pivotal factor in instigating various diseases such as cardiovascular

diseases (10), cancer (11), neurodegenerative diseases (12), diabetes

(13), and aging (14). To prevent oxidative damage, an antioxidative

system exists within the organism, consisting of antioxidative

enzymes (such as superoxide dismutase and catalase) and non-

enzymatic antioxidants (such as vitamin C, vitamin E, and

glutathione). This system can neutralize ROS and RNS, shielding

cells from their detrimental effects.

In animal experiments, we found that carbon tetrachloride can

lead to hepatic fat accumulation and damage. After reviewing the

literature, we learned from several studies by Slater et al. that free

radicals play a key role in causing liver damage (15). This implies that

free radicals play a pathogenic role in initiating liver diseases, while

antioxidants have therapeutic effects on free radical-mediated

NAFLD (16). Furthermore, epidemiological, clinical, and

experimental research targeting the liver reveals that NAFLD is

closely associated with alterations in redox status and subsequent

increased metabolic risk (17). According to the “second hit” and

“multiple hit” theories, oxidative stress appears to be one of the most

critical mechanisms causing NAFLD liver injury and plays a vital role

in the progression from NAFL to NASH (18). Studies have

demonstrated that the liver is a principal organ attacked by ROS

(19), where an increase in ROS can induce lipid peroxidation by

activating Hepatic Stellate Cells (HSC), thereby resulting in

inflammation and fibrosis formation. Moreover, ROS can inhibit

hepatic VLDL secretion, inducing hepatic fat accumulation, and also

promote hepatic insulin resistance and necrotizing inflammation,

activating several cell pathways leading to hepatocyte apoptosis (20).

Several interrelated pro-oxidative factors, along with mitochondrial

dysfunction, might also contribute to the occurrence of OS. Targeted

research on OS represents a promising direction in treating NASH.
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Inspired by these pioneering studies, we decided to explore the

relationship between NAFLD and OS through bioinformatics

analysis, hoping to offer new insights and guidance for the clinical

diagnosis and treatment of NAFLD.

In this research, based on the results of the Limma package and

Weighted Gene Co-expression Network Analysis (WGCNA), we

identified 31 genes related to NAFLD and OS. Furthermore, we

employed three machine learning algorithms—Least Absolute

Shrinkage and Selection Operator (LASSO), Support Vector

Machine-Recursive Feature Elimination (SVM-RFE), and

RandomForest to examine these genes. The results suggested that

CDKN1B, NDUFA4, and TFAM are intimately related to oxidative

stress in NAFLD, providing new insights for the diagnosis and

treatment of NAFLD.
Materials and methods

Data collection and processing

Figure 1 was created to show the flowchart of our data analysis

process. The datasets GSE33814 (GPL570) and GSE48452 (GPL11532)

were retrieved and downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE33814
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consists of 44 samples: 13 control, 19 NAFL, and 12 NASH.

GSE48452 consists of 46 samples: 14 control, 14 NAFL, and 18

NASH, serving as a dataset for validation. It is imperative to note

that many studies on NAFLD that undergo bioinformatic analysis

selectively utilize samples from the more severe NAFLD stage, NASH,

for analysis. For the sake of academic rigor in this study, NAFL samples

have been included in addition to NASH samples. The “Limma”

package (21) was utilized for normalizing sample data, conducting

conversion between probe ID and gene symbols through coding,

eliminating probes without gene symbols, and calculating the average

expression value under the same symbol.

Genes related to OS were retrieved and downloaded from the

Genecard database (https://www.genecards.org/), using a relevance

score greater than 7 as a selection criterion (22), resulting in the

extraction of 1065 genes associated with oxidative stress.
Implementation of WGCNA and
identification of key module genes

WGCNA is a robust systems biology method, designed for

identifying coexpressed gene modules and exploring associations

between gene networks and notable phenotypes, along with

deciphering key genes within the networks. WGCNA enables the
FIGURE 1

Flowchart 3 hub genes (CDKN1B,NDUFA4,TFAM) identified by three machine learning algorithms.
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discovery of highly correlated gene clusters, which typically share

common functionalities within biological processes. Significantly,

WGCNA constructs a weighted network, indicating that connections

within the network not only represent a binary existence but also

mirror the correlation strength among genes, an essential feature to

accurately represent intricate relationships between genes.

In our research, WGCNA, implemented through the R package

“WGCNA” (23), was utilized to identify modules with the highest

relevance to NAFLD. WGCNA encompasses five primary steps:

gene clustering, assessing whether the soft-thresholding power

approximates a scale-free network, merging similar modules (with

the cut height for merging modules set at 0.25 and MEDissThres =

0.25, implying the merging of modules with a similarity greater than

0.75), associating modules with traits, and identifying genes with

the highest correlation. To determine whether two gene modules

possess similar expression patterns, a threshold is typically set to sift

through and merge gene modules that are deemed similar when

exceeding this threshold.
Preprocessing of data and selection of
differentially expressed genes

Utilizing the “Limma” R package, with |log2Fold change(FC)| >

0.3 and p < 0.05 as the selection criteria, 592 DEGs were identified

within the GSE33814 dataset. Heatmaps and volcano plots for

DEGs were generated using the “pheatmap” (24) and “ggplot2”

(25) packages.
Establishment of Venn diagram

The Venn diagram were constructed using the Evenn website

(http://www.ehbio.com/test/venn/).
Conducting functional enrichment analysis

In this research, the “ClusterProfiler” R package (26) was

employed for Gene Ontology (GO) enrichment analysis,

encompassing Biological Process (BP), Molecular Function (MF),

and Cellular Component (CC), as well as Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Disease Ontology (DO)

functional enrichment analysis. A p-value of <0.05 was

considered statistically significant.
Application of machine learning for
screening hub genes

LASSO regression is a regression analysis method that enhances

the predictive accuracy of models by conducting variable selection

and adjusting complexity through the compression of regression

coefficients. A notable advantage of LASSO regression is its ability
Frontiers in Immunology 04
to simultaneously retain valuable features while compressing

coefficients of irrelevant or less important features to zero, thus

serving not only predictive purposes but also facilitating variable

selection and model interpretation. Specifically, LASSO regression

is achieved by introducing a regularization term, Lambda, to the

foundation of Ordinary Least Squares (OLS) regression. The

regularization term, constituting the sum of the absolute values of

all regression coefficients, allows control over the magnitude of the

regression coefficients. When the coefficient of the regularization

term is adequately large, certain regression coefficients will be

reduced to zero, thereby enabling feature selection.

SVM-RFE is a technique employed for feature selection, utilizing

SVM to recursively eliminate the least important features. SVM-RFE

operates through an iterative process, wherein the least crucial feature

is removed at each step based on the coefficients of the SVM model,

then an SVM model is rebuilt using the remaining features. This

process persists until the desired number of features is attained. The

technique offers the advantage of selecting a highly informative set of

features within high-dimensional data, thus enhancing the model’s

generalization capability.

RandomForest is an ensemble learning method that enhances

predictive accuracy and robustness by aggregating the predictive

results of multiple decision trees. The RandomForest algorithm can

be applied to both classification and regression problems. The

algorithm derives its name from its working principle: during the

training process, the RandomForest randomly selects features from

the feature set and constructs numerous decision trees. Each tree is

trained on an independent subset of samples, obtained through

bootstrap sampling. The predictive process of the RandomForest is

as follows: in classification problems, a new input sample is

predicted individually by all the decision trees, and the final

prediction is determined by majority voting; in regression

problems, the final prediction is the average of the predictions

made by all the decision trees.

LASSO regression is executed using the “glmnet” package (27).

SVM-RFE is realized utilizing the “e1071” (28) and “caret” packages

(29). RandomForest is implemented using the “randomForest”

package (30).
Establishment of protein-protein
interaction network

We utilized the “STRINGdb” package (31) to construct a PPI

network and used the “igraph” package (32) to visualize the PPI of

hub genes, based on betweenness values. Simultaneously, we used

the GeneMANIA website (http://genemania.org/) to build a

protein-protein interaction network.
Analysis of immune infiltration

CIBERSORT is a computational biology tool that employs a

deconvolution algorithm to estimate the proportions of 22 immune
frontiersin.org
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cell types in both NAFLD and control groups, based on gene

expression data. It is capable of quantitatively estimating the

presence of immune cells in tissue samples without direct

measurement of immune cell infiltration.
Construction of nomogram and analysis of
ROC curve

A nomogram is a graphical tool widely used to predict the

probability of a particular outcome based on a series of variables. In

this study, the nomogram was constructed using the “rms”

package (33).

The ROC curve is a graphical tool utilized to evaluate the

predictive performance of hub genes. It illustrates the performance

of hub genes across all possible classification thresholds by plotting

the relationship between the True Positive Rate (TPR) and False

Positive Rate (FPR) at various thresholds. In this research, the ROC

curve was developed using the “pROC” package (34).
Conducting gene set enrichment analysis
of hub genes and single sample gene set
enrichment analysis of hallmark gene sets

We conducted a single-gene GSEA to investigate the potential

roles of hub genes. ssGSEA is employed to extract the enrichment

score of specific gene sets from the gene expression data of a single

sample. ssGSEA considers the rankings of all genes, not just those

that are significantly differentially expressed. The ssGSEA scores

can be interpreted as the rank of gene expression relative to

background gene expression within a given gene set. The

Hallmark gene sets, created by the Molecular Signatures Database

(MSigDB) project at the Broad Institute, aim to condense and

reorganize the broader C2 Canonical pathways gene sets.

Encompassing 50 distinct sets, each represents a specific

biological process. The design of Hallmark gene sets seeks to

clarify the relationship between gene function and biological

processes. Each Hallmark gene set captures a specific biological

state or process by summarizing multiple similar gene sets and

extracting their common variation through Principal Component

Analysis (PCA). This approach benefits from reduced redundancy

and noise, enhancing the biological significance of the gene set.

Combining ssGSEA with Hallmark gene sets aids in understanding

the activity levels of various biological processes and pathways

within a single sample.
Processing of single-cell sequencing data

The single-cell RNA sequencing (scRNA-seq) dataset

GSE189600 was downloaded from the GEO database, comprising

three NASH samples and three healthy samples serving as control

(35). The analytical process unfolded as follows: Post-Quality

Control (QC), the 10x scRNA-seq data was converted into Seurat
Frontiers in Immunology 05
objects, followed by a reduction in feature dimensions utilizing PCA

and Uniform Manifold Approximation and Projection (UMAP) to

identify distinct cellular subgroups. Subsequently, marker genes

within different clusters were detected, and various cell types were

annotated, followed by functional enrichment analysis. The

“Linnorm” (36), “scater” (37), “Seurat” (38) and “SingleR” (39)

packages were utilized throughout this process.
TF-miRNA-mRNA regulatory network

The NetworkAnalyst website (https://www.networkanalyst.ca/

NetworkAnalyst/) encompasses numerous databases to predict

potential Transcription Factors (TFs) and microRNAs (miRNAs).

In the present study, Transcription factor targets were derived from

the JASPAR database, and Comprehensive experimentally validated

miRNA-gene interaction data were collected from the miRTarBase

v8.0 database.
Attie lab diabetes database

The BTBR ob/ob mouse model is extensively used in the study

of Type 2 Diabetes (T2D) and obesity in laboratory settings. This

model combines the characteristics of the BTBR strain with

mutations in the leptin gene (ob/ob), which are key factors in the

onset of obesity and diabetic symptoms. The database allows for the

querying of gene expression in six critical tissues, including the

islets, liver, adipose tissue, hypothalamus, gastrocnemius muscle,

and soleus muscle, based on variables such as genetic obesity status

(lean vs ob/ob), mouse strain (B6 vs BTBR), and different age stages

(4 weeks old vs 10 weeks old). This study employs the mlratio as a

metric to assess changes in gene expression, where mlratio refers to

the base-10 logarithm of the ratio of gene expression in an

experimental sample (individual mice) relative to a specific strain

reference pool (B6 strain or BTBR strain). The reference pool data is

derived from 20 mice per strain, including lean and ob/ob mice at

ages of 4 weeks and 10 weeks, with five mice from each age group.

Our research focuses on the liver tissue of 10-week-old lean and ob/

ob mice from both B6 and BTBR strains, with statistical analysis

and graphical representation conducted using GraphPad Prism 9.
NASH mouse model

In this study, we utilized female C57BL/6 mice, aged between 6 to

8 weeks, and subjected them to a high-fat, high-cholesterol (HFHC)

diet while administering intraperitoneal injections of CCl4. This

regimen was maintained for a total duration of 17 weeks to

establish a NASH mouse model. The CCl4 injections were given

once weekly at a dosage of 0.32 µg/g. The HFHC diet, acquired from

Dyets Inc, under the product code D18061501, is characterized as a

Modified Western Diet with 41% sucrose and 1.25% cholesterol. The

caloric content of the diet was distributed as follows: 17% from

protein, 43% from carbohydrates, and 40% from fats.
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RT-qPCR

Liver tissues from wild-type (wt) mice and NASH models were

thoroughly homogenized, and RNA was extracted using the TRIzol

method. Subsequent reverse transcription and PCR processes were

conducted using Vazyme’s reverse transcription kit (catalog number

R323) and PCR kit (catalog number Q341), respectively. The reverse

transcription was performed on the GeneAmp PCR System 9700 from

Applied Biosystems, while PCR amplification was carried out on the

LightCycler 480 II system from Roche. All primers were purchased

from Sangon Biotech. The primer sequences for RT-PCR are as

follows: GAPDH: forward AGGTCGGTGTGAACGGATTTG,

reverse TGTAGACCATGTAGTTGAGGTCA;CDKN1B: forward

AGCAGTGTCCAGGGATGAGGAA, reverse TTCTTGGGCGTCT

GCTCCACAG;TFAM: forward GAGCAGCTAACTCCAAGTCAG,

reverse GAGCCGAATCATCCTTTGCCT. All experiments were

performed in triplicate. Melting curve analysis confirmed the

specificity of the PCR amplification as single peaks. The Ct values

obtained were analyzed using the 2-DDCt method, with GAPDH

serving as the standard, to calculate the relative RNA expression levels.
Western blot

Liver tissues from wild-type (wt) and NASH model mice were

finely minced and then subjected to protein extraction via the RIPA

method. The expression levels of b-actin and tubulin were

normalized using their grayscale values measured by ImageJ.

Polyacrylamide gels were prepared using the One-Step PAGE Gel

Fast Preparation Kit (15%) from Vazyme (catalog number E305),

with the 180 kDa Prestained Protein Marker from Vazyme (catalog

number MP102) used for molecular weight estimation.

Electrophoresis and membrane transfer were conducted using the

PowerPac Basic Power Supply from BIO-RAD. Blocking was

performed with 5% BSA. Primary antibodies were diluted as

follows: b-actin at 1:1000 from Servicebio (catalog number

GB15001-100), tubulin at 1:5000 from Affinity Biosciences

(catalog number T0023), CDKN1B at 1:1000 from BIOSS (catalog

number bs-0742R), and TFAM at 1:1000 from Proteintech (catalog

number 22586-1-AP). Imaging was done using the Tanon 4800

system. Grayscale values for all bands were acquired with ImageJ,

and the relative protein expression levels were determined using b-
actin and tubulin as standards. Statistical analysis and graphical

representation were performed using GraphPad Prism 9.
Statistical analysis

R software (version 4.2.2; https://www.r-project.org/) and

GraphPad Prism 9 were employed for all statistical analyses and

graph generation. The Wilcoxon test and Student’s t-test were

utilized to compare intergroup differences. ROC (Receiver

Operating Characteristic) curves were used to evaluate the

predictive performance of candidate genes used to construct

predictive models. A P-value <0.05 was considered to indicate

statistical significance.
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Results

Implementation of WGCNA and
identification of key module genes

WGCNA was used to identify modules most significantly

correlated within the GSE33814 dataset. A soft-thresholding power

(b) was set at 15, ensuring a scale-free R2 = 0.9, to accommodate gene

expression relevant to a scale-free network (Figure 2A). The clustering

of module eigengenes is employed to display the results of hierarchical

clustering. In the diagram, ‘Height’ denotes the dissimilarity between

clusters. When two clusters join at a lower height, it indicates greater

similarity between them; conversely, a higher joining point suggests

greater dissimilarity. Color labels represent different modules, each

typically comprising a group of genes with similar expression

patterns. This allows for the identification of gene modules with

similar expression patterns (Figure 2B). The Cluster Dendrogram is

also utilized to demonstrate the outcomes of hierarchical clustering

analysis. The top of the dendrogram features a black line, with each

bifurcation representing a split or merge in the clustering process.

Colored bands denote different clusters obtained through the

Dynamic Tree Cut method, with each color representing a cluster

and the horizontal length indicating the number of objects within

each cluster (Figure 2C). Module-trait relationships illustrate the

associations between different gene modules (indicated by colors)

and NAFLD, with each grid representing the correlation between a

specific gene module and NAFLD (Figure 2D). A total of 13 gene co-

expression modules were identified in the Module-trait relationships

between the NAFLD group and the control group (Figure 2D).

Notably, the black module (cor=-0.65, p=2e-6), darkred module

(cor=-0.58, p=4e-05), and blue module (cor=0.5, p=5e-04)

demonstrated the most significant correlations. The scatterplot for

the black module displays the relationship between module

membership and Gene Significance, with a correlation coefficient

(cor) of 0.79 (p<1e-200). This indicates that as a gene’s membership

in the black module increases—denoting higher similarity in

expression patterns with other genes in the module—its association

with NAFLD and its importance in the studied traits also increases

(Figure 2E). Similar conclusions can be drawn from the scatterplots

for the darkred and blue modules, which have correlation coefficients

of 0.80 (p<1e-200) and 0.62 (p=3.1e-139), respectively (Figures 2F,

G). Within these three modules, a total of 5361 genes were screened.
Preprocessing of data and selection
of DEGs

Utilizing |log2 fold change (FC)| > 0.3 and p < 0.05 as selection

criteria, 592 DEGs were identified within GSE33814. Volcano plots were

crafted using the “ggplot2” R package (Figure 3A), the vertical lines

represent |log2 fold change (FC)| > 0.3, and the horizontal line represents

p < 0.05.Heatmaps were generated with the “pheatmap” R package

(Figure 3B). Employing a Relevance score greater than 7 as a selection

criterion in the Genecard database, 1065 genes related to oxidative stress

were identified. The intersection of genes derived from the three

methods yielded 31 intersection genes of NAFLD and OS (Figure 3C).
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Conducting functional enrichment analysis
of 31 intersection genes of NAFLD and OS

In the DO enrichment analysis, kidney failure and

cerebrovascular disease were significantly enriched (Figure 4A). In

the GO enrichment analysis (Figure 4B), BP categories were

enriched in cellular response to oxidative stress, cellular response

to chemical stress, response to oxidative stress, and response to

nutrient levels. CC categories were enriched in mitochondrial
Frontiers in Immunology 07
matrix and mitochondrial protein-containing complex, and MF

categories were enriched in heat shock protein binding,

oxidoreductase activity, acting on the CH-CH group of donors,

and electron transfer activity. In the KEGG functional enrichment

analysis (Figure 4C), Chemical Carcinogenesis - Reactive Oxygen

Species, Pathways of Neurodegeneration - Multiple Diseases, HIF-1

Signaling Pathway, and Toll-like Receptor Signaling Pathway were

significantly enriched and the genes enriched in these pathways are

illustrated (Figures 4C, D).
A B
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D

FIGURE 2

Implementation of WGCNA and identification of key module genes. (A) A soft-thresholding power (b) was set at 15, ensuring a scale-free R2 = 0.9.
(B) Hierarchical clustering dendrogram of module eigengenes. (C) The cluster dendrogram of co-expression network modules from WGCNA
depending on a dissimilarity measure. (D) Module-trait relationships between: comparing the control group (C) with the NAFLD group (P). (E) The
scatterplot for the black module displays the relationship between module membership and gene significance. (F) The scatterplot for the darkred
module displays the relationship between module membership and gene significance. (G) The scatterplot for the blue module displays the
relationship between module membership and gene significance.
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Application of machine learning for
screening hub genes

Within the 31 intersection genes of NAFLD and OS, we first utilized

the SVM-RFE algorithm to extract 20 genes (Figures 5A, B).

Subsequently, 6 genes were identified through the LASSO regression

algorithm (Figures 5C, D). Following this, the RandomForest algorithm

selected 9 genes (Figures 5E, F). Ultimately, by employing a Venn

network to intersect these gene subsets, we identified 3 genes: CDKN1B,

NDUFA4, and TFAM (Figure 5G). Simultaneously, the interaction

relationships between these 3 hub genes and other intersection genes

of NAFLD and OS were explored within the PPI network (Figure 5H).
GSEA of hub genes and ssGSEA of hallmark
gene sets

The Gene Set Enrichment Analysis (GSEA) plots provide

insights into the biological processes enriched during high and

low expressions of individual genes. This enrichment allows us to

rank these processes and identify those with the significant

differences. Such analyses are instrumental in revealing the

molecular mechanisms underlying changes in biological states

and the affected biological pathways. In these plots, the horizontal

axis represents gene ranking within an ordered dataset, typically

based on expression levels from high to low. The vertical axis shows

the running enrichment score (ES) for the gene set. The ranked list

metric at the bottom indicates the value used for gene ranking,

which could be the signal-to-noise ratio, fold change, or other
Frontiers in Immunology 08
statistical measures of differential expression. The lines in the plots

trace the path of the enrichment score across the ranked gene list for

each gene set, while the vertical lines below the plot signify the

positions of genes from the gene set within the ranked list.

Figure 6A demonstrates gene sets associated with upregulated

genes linked to CDKN1B. The top of the ranked list features enriched

gene sets including ascorbate and aldarate metabolism, butanoate

metabolism, fatty acid degradation, steroid hormone biosynthesis,

and the degradation of valine, leucine, and isoleucine. Figure 6B

presents gene sets associated with downregulated genes linked to

CDKN1B, including ECM-receptor interaction, galactose

metabolism, platelet activation, proteasome, and thyroid hormone

synthesis. Figure 6C illustrates gene sets related to genes upregulated

in connection with NDUFA4, encompassing ascorbate and aldarate

metabolism, ferroptosis, the intestinal immune network for IgA

production, and steroid biosynthesis. Figure 6D reveals gene sets

corresponding to genes downregulated with NDUFA4, highlighting

glutathione metabolism, insulin resistance, mineral absorption, N-

glycan biosynthesis, and thyroid hormone synthesis. Figure 6E shows

gene sets related to upregulated genes in association with TFAM, with

the top-ranked list showing enrichment in gene sets such as fluid

shear stress and atherosclerosis, glutathione metabolism, mineral

absorption, platinum drug resistance, and ribosome biogenesis in

eukaryotes. Figure 6F displays gene sets linked to downregulated

genes in connection with TFAM, featuring gene sets like arachidonic

acid metabolism, ascorbate and aldarate metabolism, glycerolipid.

ssGSEA, is a method designed to calculate the degree of

enrichment between gene expression data of a single sample and a

predefined set of genes. In contrast to traditional GSEA, which
C

A B

FIGURE 3

Preprocessing of data and selection of DEGs. (A) Volcano plots of DEGs in GSE3814, |log2 fold change (FC)| > 0.3 and p < 0.05 as selection criteria
(B) heatmaps of DEGs in GSE33814: comparing the control group (C) with the NAFLD group (P). (C) 31 intersection genes of OS,WGCNA and DEGs.
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compares groups of samples or conditions, ssGSEA allows for scoring

each individual sample independently. This proves particularly

valuable in revealing changes in biological processes within

individual samples that do not show significant changes at the group

mean level, especially useful in samples with substantial heterogeneity.

It does not necessitate a control group and is applicable to a variety of

gene expression data types, including those from public databases. The

operational procedure is as follows: firstly, it ranks all genes based on

their expression levels; then, for each gene set, ssGSEA calculates an

enrichment score that reflects the relative positioning and distribution

of genes within that set in the ranking. This score is derived by

accumulating the scores of genes within the gene set while subtracting

the scores of genes not included in the set; ultimately, this score may be

normalized to allow comparisons across different samples or gene sets.

A Hallmark Gene Set denotes a group of genes whose patterns of

expression have specific biological significance, such as being indicative

of certain cell types, diseases, or biological processes, and are often

identified through the analysis of experimental data. In summary, a

Hallmark Gene Set provides a predefined list of genes that are

considered biologically relevant; ssGSEA is an analytical tool that

uses these sets to quantitatively assess the expression of these gene
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sets in individual samples. By doing so, ssGSEA can reveal the unique

biological characteristics inherent to each sample. By employing this

method, we can finally determine the significant differences in

biological processes between the control group and the NAFLD

group (Figure 6G), and ascertain the specific biological processes in

which the three hub genes differ significantly (Figure 6H).
Clinical studies of the hub genes

In the correlation heatmap, we observed a positive correlation

between CDKN1B and NDUFA4, while TFAM was negatively

correlated with them (Figure 7A). In the GSE33814 dataset, the

diagnostic value of these three hub genes was further validated

through the ROC curve. Specifically, NDUFA4 (AUC: 0.935), TFAM

(AUC: 0.909), and CDKN1B (AUC: 0.911) demonstrated significant

diagnostic value for NAFLD (Figure 7B). Similar results were obtained

in the GSE48452 validation dataset (Figure 7C). Through the

investigation of the GSE33814 dataset, we discovered that CDKN1B

and NDUFA4 expressions were reduced in NAFLD, whereas TFAM

expression was elevated (Figures 7D–F). These findings were validated
A B

C D

FIGURE 4

Conducting functional enrichment analysis of 31 intersection genes of NAFLD and OS. (A) The DO enrichment analysis reveals the diseases most
significantly associated with the 31 intersecting genes. (B) The GO enrichment analysis elucidates the functional roles of the 31 intersecting genes
from three perspectives: BP, CC, and MF. (C) The KEGG enrichment analysis bubble plot displays the signaling pathways most closely related to the
31 intersecting genes. (D) The KEGG enrichment analysis circular network plot presents a network of relationships between some genes and their
associated signaling pathways.
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in the GSE48452 dataset (Figures 7G–I). Additionally, we constructed a

nomogram to predict the incidence of NAFLD (Figure 7J). These

results suggest that the three hub genes present a satisfactory

performance in diagnosing NAFLD.

Analysis on immunization: immune
infiltration analysis and processing of
single-cell sequencing data

Utilizing the CIBERSORT algorithm for immune infiltration

analysis, significant differences were observed between the control
Frontiers in Immunology 10
and NAFLD groups in Tregs, M0macrophages, M2 macrophages, T

cells CD4 memory activated, activated mast cells, and neutrophils

(Figure 8A). Analysis of the single-cell RNA sequencing dataset

GSE189600 determined the distribution of three hub genes across

six cell clusters (Figure 8B). Significant disparities were identified

between the control and NAFLD groups for CDKN1B in stellate

cells and vascular smooth muscle cells (VSMCs). For NDUFA4,

notable differences were observed between the control and NAFLD

groups in stellate cells and hepatocytes. In the case of TFAM, the

control and NAFLD groups demonstrated significant variation in

VSMCs (Figure 8C).
A C E

B D F

G H

FIGURE 5

Application of machine learning for screening hub genes. (A, B) SVM-RFE algorithm to extract 20 genes. (C, D) 6 genes were identified through the
LASSO regression algorithm. (E, F) RandomForest algorithm selected 9 genes. (G) Venn network to intersect 3 gene subsets. (H) 3 hub genes and
other intersection genes of NAFLD and OS were explored within the PPI network.
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TF-miRNA-mRNA regulatory network

Utilizing the JASPAR database, potential transcription factors

were predicted on the NetworkAnalyst website, while possible

miRNAs were foreseen using the miRTarBase v8.0 database.

Subsequently, a regulatory network map was constructed based
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on their interactive relationships (Figure 8D). Transcription factors

(TFs) are proteins that typically bind to specific DNA sequences to

control the transcription of genetic information from DNA to

mRNA, represented by green circles in the network. MicroRNAs

(miRNAs) are short non-coding RNA molecules that bind to

complementary sequences on target mRNAs, regulating gene
A C E

B D F

G H

FIGURE 6

GSEA of Hub Genes and ssGSEA of Hallmark Gene Sets. (A, B) GSEA analysis of CDKN1B-up and CDKN1B-down. (C, D) GSEA analysis of NDUFA4-up
and NDUFA4-down. (E, F) GSEA analysis of TFAM-up and TFAM-down. (G) ssGSEA Hallmark Gene Sets functional enrichment analysis results for the
NAFLD group and the control group. (H) ssGSEA Hallmark Gene Sets functional enrichment analysis of the three hub genes.
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expression post-transcriptionally, often resulting in mRNA

degradation or repression of translation, depicted by blue squares.

Messenger RNAs (mRNAs) are the final transcripts that carry

genetic information from DNA—transcribed by the action of TFs

—to the ribosome, where proteins are synthesized. Lines within the

network indicate interactions or regulatory influences between

these entities, with the direction of regulation (from TF to mRNA

or from miRNA to mRNA) typically denoted by lines originating

from the regulator and pointing towards the target. These networks

are crucial for understanding the complex layers of gene regulation
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within cells, elucidating how genes are switched on or off, how

miRNA fine-tunes this regulation, and the intricate balance that

maintains normal cellular function or contributes to disease

when dysregulated.
Animal experimentation

Considering the prevalent obesity and diabetes symptoms in

NAFLD patients, this study utilized the Attie Lab Diabetes Database
A B C

D E F

G H I

J

FIGURE 7

Clinical studies of the hub genes. (A) Correlation heatmap of the 3 hub genes. (B) ROC curve in the GSE33814. (C) ROC curve in the GSE48452.
(D–F) Hub genes expression in the GSE33814: comparing the control group (C) with the NAFLD group (P). (G–I) Hub genes expression in the
GSE48452: comparing the control group (C) with the NAFLD group (P). (J) Nomogram for the diagnosis of NAFLD based on the hub genes.
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BTBR ob/ob mouse model to select liver tissues from 10-week-old

C57BL/6 (control) and BTBR mice, categorizing them into lean and

ob/ob groups, to investigate the expression of hub genes under

various conditions. The findings indicated significant differences in

the expression of CDKN1B and TFAM genes between the control

and BTBR strains, as well as between the lean and ob/ob mice,

aligning with our expectations (Figures 9A, B).

Subsequently, this research focused on a NASH mouse model,

representing a more advanced stage of NAFLD, employing RT-

qPCR and Western Blot techniques to examine the expression of

these key genes at RNA and protein levels, respectively. The RT-

qPCR results revealed significant differences in the expression of

CDKN1B and TFAM between the control and NASH groups,

consistent with prior expression trend predictions (Figures 9C,

D). At the protein level, the findings from the WB analysis

corroborated those from RT-qPCR (Figure 9E), with subsequent

statistical analysis conducted (Figures 9F–I).
Discussion

NAFLD, a disease syndrome that encompasses NAFL and

NASH, impacts nearly a quarter of the global population, with its

prevalence escalating annually. Alarmingly, NASH possesses the

potential to further progress into cirrhosis and hepatocellular

carcinoma, triggering a cascade of complications and ultimately,

may prove fatal, thereby imposing a substantial disease burden on

society. In light of this, an in-depth understanding of NAFLD’s

pathogenic mechanisms, formulation of appropriate therapeutic

strategies, and identification of reliable diagnostic markers

become paramount.

miRNAs are genes encoding small RNAs, predominantly

functioning by inhibiting the translation of target mRNAs or

inducing their degradation, thereby playing pivotal roles in the

proliferation, development, and differentiation across numerous cell

types, and is also involved in the progression of various diseases.

The microRNA regulatory studies have been exhibited in the TF-

miRNA-mRNA regulatory network we constructed (Figure 8C) and

have been validated in numerous previously published papers.

Hepatotoxicity mediated by free radicals and demonstrated the

therapeutic effect of antioxidants against free radical-mediated

NAFLD. Moreover, epidemiological statistics on the liver have

confirmed that changes in the redox state of NAFLD are closely

related to an increased subsequent metabolic risk. According to the

“second hit” and “multiple hit” theories, oxidative stress appears to

be one of the most crucial mechanisms leading to liver injury

in NAFLD.

The CDKN1B gene encodes the p27 protein, which plays a

crucial role in regulating cell growth, differentiation, cytoskeletal

dynamics, and cell division. A reduction in p27 protein is associated

with the invasiveness of various human tumors, such as colon

cancer, breast cancer, prostate cancer, and ovarian cancer (40).

Hepatic fibrosis and hepatocellular carcinoma are closely related to

CDKN1B. The accumulation of the Extracellular Matrix (ECM) in

the liver leads to the onset of liver fibrosis. Excessive production of
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ECM by activated hepatic stellate cells and myofibroblasts is

considered the primary mechanism inducing liver fibrosis, which

may further develop into cirrhosis and hepatocellular carcinoma.

miR-221/222 is considered a new indicator of stellate cell activation

and liver fibrosis progression. The expression of miR-221/222 is

positively correlated with the progression of liver fibrosis and

significantly associated with the expression of Col1A1 and aSMA

mRNA. The expression of miR-221/222 has been validated in

human fibrotic liver samples and mouse models of liver fibrosis.

They interact with CDKN1B and inhibit the expression of CDKN1B

mRNA and protein in human stellate cell line LX-2. The expression

of miR-222 in stellate cells may be regulated by NF-kB activation

(41). The overexpression of miR-221/222 promotes cancer cell

proliferation, most likely through their regulation of the CDKN1B

expression (42). The upregulation of miR-221/222 can promote the

growth of hepatocellular carcinoma (HCC) cells by increasing the

number of S-phase cells, and the oncogenic activity of miR-221 is

believed to be realized through the regulation of CDKN1B (42, 43).

CDKN1B has been validated as a target of miR-221, and the

CDKN1B gene is directly associated with HCC proliferation (44).

F. Fornari et al. (45) observed that CDKN1B gene expression was

downregulated in 77% of HCC samples, and the downregulation of

CDKN1B affected the prognosis of HCC. In human HCC, the

downregulation of CDKN1B showed prognostic significance

associated with advanced tumor stages, lower survival rates, and

HCC recurrence (46). HCC represents the terminal stage of

NAFLD, suggesting that the regulatory mechanism of miR-221/

222 on CDKN1B may play a vital role in the etiology of NAFLD.

These findings provide a basis for developing potential therapeutic

strategies for liver fibrosis and liver cancer.

NDUFA4 has been relatively underexplored. Initially, NDUFA4

was identified as a component of the mitochondrial respiratory

complex I. However, subsequent studies revealed that NDUFA4 is

actually associated with complex IV rather than complex I (47).

This gene demonstrates significant tissue-specific expression in the

liver and brain (48). NDUFA4 is a target of miR-147, and the

inhibition of miR-147, coupled with the overexpression of

NDUFA4, can induce mitochondrial damage and renal tubular

cell death (49). A deficiency in NDUFA4 expression can exacerbate

oxidative stress, further predisposing to the onset of diabetes (50).

MiR-210 promotes the pathogenesis of obesity-induced diabetes in

mice by targeting NDUFA4 gene expression (51). MiR-210-3p

accelerates cardiomyocyte apoptosis and impairs mitochondrial

function by targeting NDUFA4, contributing to the cardiac

dysfunction induced by sepsis (52). In the liver, NDUFA4 may

also play a role in disease onset through mechanisms related to

mitochondrial dysfunction.

TFAM as a pivotal structural protein of mammalian nuclei,

serves as a transcription activator, specifically stimulating certain

mitochondrial transcription initiation points (53). This protein is

integral to various processes, including the transcription and

replication of mitochondrial DNA (mtDNA), its packaging into

nucleoid structures, and playing an indispensable role in the

regulation of mtDNA copy numbers. Notably, an overexpression

of TFAM, exceeding normal physiological levels, can directly lead to
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postnatal death and mitochondrial functional impediments.

Experimental evidence reveals that mice with high TFAM

expression typically exhibit smaller sizes and weaker physical

conditions compared to their wild-type littermates, with

significantly reduced liver, heart, and kidney volumes. Further

research has also disclosed an increase in lipid accumulation in
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the liver tissues of mice with TFAM overexpression, potentially

attributable to the dysregulation of lipid metabolism induced by the

upregulation of mitochondrial protease interference pathways (54).

Variations in TFAM expression have also been observed in studies

of other liver diseases. For instance, in a study related to alcoholic

liver disease, the hepatic TFAM levels in mice fed with ethanol rose
A

B C

D

FIGURE 8

Analysis on immunization and TF-miRNA-mRNA regulatory network. (A) Immune infiltration analysis between the NAFLD group and the control
group. (B) Analysis of the single-cell RNA sequencing dataset GSE189600. (C) Hub genes enrichment in immune cells. (D) TF-miRNA-mRNA
regulatory network. In B, C, and D, “C” represents the control group, and “P” represents the NAFLD group. "ns" indicates not significant, "*" indicates
P<0.05, "**" indicates P<0.01, "***" indicates P<0.001.
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by 30% compared to the control group fed with water (55).

Meanwhile, studies of human normal and malignant liver tissues

and cell lines demonstrate that TFAM expression trends upward in

Hepatocellular Carcinoma cells resistant to drugs. However, TFAM

is only upregulated in a small portion of HCC patients, and

inhibiting TFAM can suppress the growth and survival of HCC

cells, thereby enhancing the effectiveness of chemotherapy (56).

While the importance of TFAM in maintaining mtDNA and

facilitating mitochondrial biogenesis is widely acknowledged, the

interactions between TFAM and certain miRNAs in the context of

diseases remain shrouded in mystery. For example, a deficiency in

human TFAM has been identified as a catalyst for mitochondrial

dysfunction and a reduction in nucleoid formation, culminating in

fatal liver failure (57). After TFAM depletion, its roles, both as an

oncogene and a tumor suppressor, have been observed (58, 59).

TFAM is identified as a direct target of miRNA-590-3p; in bladder

cancer, a downregulation of miRNA-590-3p expression correlates

with a marked increase in TFAM expression (60), while in colon

cancer, an elevation in miRNA-590-3p expression is associated with

a significant decrement in TFAM expression (61). Furthermore,
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factors such as sex, age, and diet can influence TFAM expression.

For instance, TFAM protein levels in the livers of female rats are

quadruple those in males, a sexual dimorphism fundamentally

attributed to the females’ heightened degree of mitochondrial

differentiation, which leads to superior substrate oxidation

capability and efficiency (62). It is noteworthy that TFAM protein

expression diminishes progressively with age, a process that can be

fully mitigated through calorie restriction (CR) (63). In conclusion,

the exact mechanisms by which TFAM functions in disease onset

remain intricate and necessitate further exploration.

Transcription factors such as SPI1, ETS1, and CEBPA have been

identified as promising targets for the prevention and treatment of

NASH (64). These transcription factors are integral components of a

complex regulatory network involving TF-miRNA-mRNA

interactions, highlighting the sophisticated molecular interplay

underlying NASH pathogenesis. CEBPA is linked to the regulation

of NDUFA4, a component of the mitochondrial respiratory chain,

suggesting a role in metabolic efficiency and oxidative stress response.

SPI1’s regulation of TFAM, a key factor in mitochondrial DNA

maintenance and transcription, points to its importance in
A B

C D E

F G H I

FIGURE 9

Animal experimentation (A) Comparison of CDKN1B relative gene expression in lean and ob/ob groups of 10-week-old C57BL/6 and BTBR strain
mice, using mlratio to quantify changes. (B) Comparison of TFAM relative gene expression in lean and ob/ob groups of 10-week-old C57BL/6 and
BTBR strain mice, using mlratio to quantify changes. (C) Relative mRNA levels of CDKN1B in control and NASH mice. (D) Relative mRNA levels of
TFAM in control and NASH mice. (E) Comparison of protein expression levels for CDKN1B and TFAM. (F) Statistical analysis of CDKN1B protein
expression, standardized by b-actin. (G) Statistical analysis of TFAM protein expression, standardized by b-actin. (H) Statistical analysis of CDKN1B
protein expression, standardized by tubulin. (I) Statistical analysis of TFAM protein expression, standardized by tubulin. "ns" indicates not significant,
"*" indicates P<0.05, "**" indicates P<0.01, "***" indicates P<0.001.
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mitochondrial biogenesis and function. ETS1’s influence on

CDKN1B implicates it in cell cycle regulation and potentially in the

control of hepatocyte proliferation and apoptosis, processes central to

NASH progression and liver regeneration.

In our study, we employed immunoinfiltration analysis

techniques to investigate the disparities in the immune cell

composition between patients with NAFLD and healthy control

groups. Significant differences were observed across several immune

cell subpopulations, including neutrophils, macrophages, regulatory

T cells (Tregs), and mast cells. Further, single-cell sequencing

technology revealed expression pattern discrepancies in three hub

genes within specific cellular subpopulations, such as hepatic

stellate cells and vascular smooth muscle cells (VSMCs),

suggesting their potential key regulatory roles in hepatic

pathological processes. Notably, these cells play a decisive role in

the development of inflammatory damage, hepatocyte injury, and

liver fibrosis induced by oxidative stress.

Moreover, our comprehensive bioinformatics enrichment

analyses identified multiple signaling pathways closely associated

with the pathogenesis of NAFLD, related to oxidative stress. We

also uncovered a series of critical biological processes, including

dysregulated lipid metabolism, imbalance in inflammatory response

regulation, and extracellular matrix remodeling. The aberrant

regulation of these pathways and biological processes offers new

insights into the pathophysiological foundation of NAFLD.

Nevertheless, the present study has not yet conducted in-depth

mechanistic validations of these findings. Future research should

explore the causal relationships between these central genes and the

characteristics of immune cell infiltration, as well as their specific

roles in the progression of NAFLD, through in vivo and in vitro

experimental models. Additionally, the current study lacks direct

experimental evidence at the cellular level, necessitating further

validation of these genes’ roles and importance in the progression of

NAFLD through functional experiments, such as gene knock-out,

overexpression studies, and immunohistochemical staining.

Through these extensive experimental investigations, we will be

able to elucidate the pathological role of oxidative stress in non-

alcoholic fatty liver disease more accurately and potentially develop

new therapeutic targets.
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