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Highly heterogenous humoral
immune response in Lyme
disease patients revealed by
broad machine learning-assisted
antibody binding profiling with
random peptide arrays
L. Kelbauskas1,2*, J. B. Legutki1,2 and N. W. Woodbury1

1Biodesign Institute, Arizona State University, Tempe, AZ, United States, 2Biomorph Technologies,
Chandler, AZ, United States
Introduction: Lyme disease (LD), a rapidly growing public health problem in the

US, represents a formidable challenge due to the lack of detailed understanding

about how the human immune system responds to its pathogen, the Borrelia

burgdorferi bacterium. Despite significant advances in gaining deeper insight into

mechanisms the pathogen uses to evade immune response, substantial gaps

remain. As a result, molecular tools for the disease diagnosis are lacking with the

currently available tests showing poor performance. High interpersonal variability

in immune response combined with the ability of the pathogen to use a number

of immune evasive tactics have been implicated as underlying factors for the

limited test performance.

Methods: This study was designed to perform a broad profiling of the entire

repertoire of circulating antibodies in human sera at the single-individual level

using planar arrays of short linear peptides with random sequences. The peptides

sample sparsely, but uniformly the entire combinatorial sequence space of the

same length peptides for profiling the humoral immune response to a B.burg.

infection and compare them with other diseases with etiology similar to LD and

healthy controls.

Results: The study revealed substantial variability in antibody binding profiles

between individual LD patients even to the same antigen (VlsE protein) and

strong similarity between individuals diagnosed with Lyme disease and healthy

controls from the areas endemic to LD suggesting a high prevalence of

seropositivity in endemic healthy control.

Discussion: This work demonstrates the utility of the approach as a valuable

analytical tool for agnostic profiling of humoral immune response to a pathogen.
KEYWORDS

peptide array, antibody profiling, machine learning, predictive modeling, Lyme disease
(LD), humoral immune response
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Introduction

Lyme disease (LD) is the most prevalent tick-borne disease in

the United States with an estimated 476,000 new cases annually (1,

2). The pathogen causing the majority of LD cases in the US,

Borrelia burgdorferi (B.burg.), a spirochete bacteria, is spread by a

bite from an infected Ixodes scapularis tick. While correctly

diagnosed LD can be treated with antibiotics, the disease

diagnosis represents a formidable challenge due to the lack of

reliable diagnostic tools. Clinical diagnosis of LD is limited as it

relies upon the patient presenting with a characteristic “bullseye”

rash (Erythema migrans, EM). However, a large portion of LD

patients either do not present with the rash at all or exhibit differing

appearance of the rash complicating the correct diagnosis that is

largely dependent on skill and experience of the diagnosing

physician. The only molecular diagnostic tool for LD currently

recommended by the American Centers for Disease Control and

Prevention (CDC) is the Standard Two-Tier Test (STTT) (3) and,

more recently, Modified Two-Tier Test (MTTT) (4), a serological

test that constitutes the detection of LD-specific adaptive humoral

immune response in the form of a panel of LD-specific antibodies in

the patient’s serum. However, the test suffers from low sensitivity

and a high false-positive rates, especially in the early stages of the

disease (5). Person-to-person variability in both immune response

timing and antigenic targets as well as intricate interplay between

B.burg. and host immune system have been suggested as main

factors for the poor test performance. Following tick bite, B. burg. is

well equipped to evade the complement and adaptive immune

response and avoid triggering the generation of specific antibodies.

The bacterium benefits initially from immunosuppressive Ixodes

saliva proteins allowing it time to upregulate genes needed to

survive the mammalian host environment. Expression of surface

proteins which bind complement system regulatory proteins results

in the short-term inhibition of opsonization and subsequent

damage to the bacterium (6, 7). Interference with the complement

system further shields B. burg. from the adaptive immune system by

removing triggers such as C3b that recruit immune cells to the

infection site (8). Within a single infection, there is a progression of

surface protein expression starting with OspA at inoculation,

transitioning to OspC as infection is established and finally the

antigenically shifting VlsE as disease progresses (9–12). The

challenges presented by the B. burg. survival strategies which shift

with disease progression are also reflected in the lack of accurate

serologic diagnostic tools for LD. This suggests that the complexity

of the B. burg. behavior in human hosts combined with the person-

to-person variability in immune response requires new approaches

to explore the host immune response to B. burg. in its broadest

sense and in an agnostic way. As a result, to develop more robust

serologic diagnostics and to capture the individual immune

responses in patients, it appears necessary to profile humoral

immune response at the single-patient level and without an a

priori bias towards specific antigens.

Broadly profiling of the humoral immune system arm

represents unique challenges. It is estimated that at baseline

the number of unique antibodies (Ab) in a person’s repertoire is

on the order of 1012-15 making studies to experimentally interrogate
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the binding profile in its entirety prohibitively expensive and

impractical. Studies of Ab response are further complicated by

substantial inter-individual variation both in terms of immune

system homeostasis and response even to the same challenge (e.g.

vaccination or infection with a pathogen) reported in emerging

research (13–16). While current technological advances have made

broad Ab profiling possible, significant limitations remain. For

example, bacterial phage display (17–19), a widely adopted

technique for determining epitopes and mimotopes of Ab

binding, is a high-throughput approach based on the expression

of large (~107-109) libraries of random peptides on the surface of

bacterial phages followed by a series of stringent washing and

amplification steps to select for phages expressing Ab-binding

peptides. Phage immunoprecipitation sequencing (PhIP-Seq) that

is based on combining phage display of a synthetic representation of

complete proteomes with immunoprecipitation and high-

throughput sequencing (20) has been demonstrated to enable

autoantigen discovery in the human proteome and antigen

detection in the virome (21). Antibody binding epitope mapping

(AbMap) is another technique that combines phage display with

next-generation sequencing (22). Due to the stringent selection,

however, the methods are strongly biased towards peptides that

bind antibodies with high affinity and can miss other, clinically

relevant but lower affinity antibodies.

The advent of peptide microarray (PM) technology has enabled

inquiries into a broad variety of questions in biomolecular

recognition, primarily focusing on protein-protein and peptide-

protein interactions (23–27). Ab reactivity profiling (epitope

mapping) has been one of the main research fields where the use

of this technology resulted in a number of impactful discoveries (23,

27, 28) demonstrating the utility of the approach in discovering

biologically relevant information. When used in combination with

random peptide libraries, the approach offers a way for

interrogating the combinatorial binding space agnostically

without any a priori knowledge about the pathogen underlying a

particular immune response. Work conducted by this lab has

demonstrated that it is possible to characterize the binding

profiles of different proteins by combining binding information

collected with an array of ~125,000 random peptides that sparsely

and evenly sample an entire combinatorial space of ~1012 peptides

with machine learning (ML) methods (29). This finding implies

that, at least in theory, one could explore the binding profile of a

polyclonal response by sparsely and evenly sampling the entire

binding space with randomly generated peptide libraries and obtain

relevant information about the circulating Ab repertoire. This

hypothesis is supported by previous studies directed at Ab

binding profiling using solid-phase planar PMs in sera of patients

diagnosed with a number of different infectious diseases to robustly

distinguish circulating Ab repertoires elicited by the humoral

immune response to various pathogens (30–43). In contrast to

this study, these efforts used a purely statistical basis to distinguish

Ab binding profiles, without taking into account the sequence

information contained in the library peptides the antibodies

bound to. A more recent study performed in this lab focused on

5 human pathogens, 4 viruses and a trypanosome (Hepatitis B and

C, Dengue Fever, West Nile Virus and Chagas disease) and explored
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the possibility of relating the peptide sequence information to

the binding of total IgG from serum on the arrays. By utilizing a

neural network (NN) model to relate peptide sequence to

its binding strength, a marked improvement not only in

classification performance but also in robustness against noise

was demonstrated (44). The study corroborated the notion that

despite very sparse sampling of the entire combinatorial peptide

sequence space (~105 peptides sampling a space of ~1012 total

possible peptides), there is enough information to successfully

model polyclonal Ab profiles in response to the 5 different

pathogens. Furthermore, the ability of the approach to predict the

cognate epitope of a monoclonal antibody using models trained on

binding to near random sequences was reported (45). Very sparse,

near random sampling of the entire combinatorial space allows one

to generate a statistically accurate model for the binding to any

other random samples of sequences. These findings suggest that

despite the limitation one is facing with linear peptide arrays to

likely miss structural epitopes, Ab binding to linear peptides contain

enough information about the disease-specific humoral immune

response to reliably distinguish different diseases and recognize

short sequences they interact with in proteins.

This study is focused on interrogating and modeling the human

humoral immune response to the B. burg. bacterium. As an

alternative to a full-scale profiling of the circulating Ab repertoire,

this work profiles and compares the binding of the circulating Ab

repertoire in LD patients, healthy controls from both LD endemic

and non-endemic geographic areas in the US, and patients

diagnosed with diseases that have similar etiology to LD by

sparsely sampling the entire combinatorial binding space. The

sampling is performed with a set of peptide sequences that

broadly cover the entire binding space, but whose number is

orders of magnitude smaller than the number of all possible

sequences. Using ML methods to model the peptide sequence-

binding relationship of binding to the peptides on the array, it is

then possible to map the information learned from the array-based

serum Ab binding onto potential antigens from the B. burg.

proteome. The working hypothesis is that binding of Abs raised

in response to B. burg. infection to their respective target antigens

can be modeled by measuring generally weaker binding to peptides

with properties similar to the targets (mimotopes). If true, one

should be able to reconstruct reasonably well the overall binding

profile of a patient’s Ab repertoire by sparsely sampling, in a nearly

random fashion, the entire combinatorial binding space. In contrast

to the previous studies performed by this group, this work extends

the utility of the approach through associating binding information

measured on the arrays with biologically relevant insight by

predicting Ab reactivities to the entire B. burg. proteome. The

antigen identification method used in this study builds upon Ab

profiling but integrates a sequence-binding relationship developed

via ML models based on the NN approach to relate binding data

with the peptide sequence. Due to the near-random nature of the

peptide sequences, the peptide array can be thought of as a reduced,

sparsely sampled representation of the entire binding space of a

patient’s Ab repertoire binding to, on average, 9-10-mer peptide

sequences with a total of 2010 possible peptides, and one can use

ML/NN approaches to “learn” a quantitative relationship between
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the sequence of amino acids and Ab binding (29). The NN

approach effectively provides a way to integrate the measured

binding data into a single model that reliably captures the

observed peptide sequence-binding relationship. The resulting

computational NN models allow one to predict binding of any

possible peptide sequence not represented in the library.

Importantly, these computational models can also be built for

each individual donor and, when applied to tiled protein

sequences from the entire B. burg. proteome or any other

pathogen proteome, including serotype specific sequences,

provide a complete immune response map for each patient. This

enables the identification of epitopes predicted to have differential

binding between LD patients, healthy controls and disease with

similar clinical symptomology on an individual patient basis.

Of course, peptide arrays are inherently biased towards Ab

binding to linear, contiguous epitopes, and provide only partial

binding to structural epitopes. However, despite this limitation, the

approach offers unprecedented levels of detail into overall

reactivities of a patient’s circulating antibodies with the potential

to provide new insight into immune response and discover new

antigenic targets associated with LD. Furthermore, the method

enables relatively simple and rapid profiling of hundreds to

thousands of patient samples reliably and reproducibly at a

relatively low cost.
Results

The binding assays were performed as described previously (44,

46). Briefly, human serum was diluted 1:625 in mannitol and

incubated on peptide arrays at 37° C. The dilution factor was

determined over a number of earlier studies performed by this

group. It was established that this dilution provides the best

coverage of the detector dynamic range in terms of binding signal

distribution. Following incubation and washing steps, the arrays

were incubated with a fluorescently labeled goat anti-human IgG

secondary Ab. The arrays were then washed, dried under nitrogen

and imaged on a fluorescence microscope. Each image was analyzed

and fluorescence intensities for each peptide sequence were

extracted for further analysis. Data quality was assessed utilizing a

set of replicate control peptides with identical sequences distributed

in a random fashion across the entire array. Samples that showed a

coefficient of variation in intensity of these probes of >0.2 were

excluded from further analysis. This resulted in the exclusion of an

average of 5-10% of samples per cohort (Table 1).

The binding data was analyzed in two different ways. The first

method was based on the measured Ab binding to the peptide

arrays and was used to assess how well can one differentiate between

the different diseases (LD vs. look-alike diseases), disease states

(seropositive vs. seronegative LD) and the healthy controls. To this

end, performance of classifiers trained on the array data to

distinguish the different sample types was assessed and compared.

The main question this type of analysis addresses is whether the

sparse sampling of the binding space embodied by the peptide

arrays captures enough disease-specific information about LD to

enable its robust differentiation from other diseases and healthy
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controls. This analysis does not take into account the peptide

sequence-binding relationship and relies instead on purely

statistical approaches to select and combine a set of array

peptides with the most differentiating power. The second method

is built around predictive NN models trained on the array binding

data to project a learned sequence-binding relationship onto the B.

burg. proteome. The main objective of this analysis was to associate

the information captured on the peptide arrays with biologically

relevant, disease-specific insights and identify potential

immunogenic targets the patient’s antibodies are reactive against.
Frontiers in Immunology 04
Similar Ab reactivity distributions between
LD and healthy controls

To evaluate whether gross differences in the Ab binding profiles

between the donor cohorts as measured on the peptide arrays exist,

peptide binding intensity profiles were compared between the

different types of donors (Table 1). The peptide binding

intensities were log10 transformed to make the binding intensity

distributions more normal-like. For comparison purposes, the

binding intensity values for each peptide and each donor sample

were normalized by calculating the ratio of the peptide intensity and

the median intensity value of the peptide for the entire

corresponding cohort. For all 5 cohorts the binding intensity

distributions show 2 distinct peaks, one centered at the low end

of the binding range of 0.50-0.95 and the second peak representing

stronger binding peptides in the 1.05-1.20 range (Figure 1A). The

weakly binding peptides depicted by the first peak for all 5 cohorts

show a substantial overlap and essentially identical binding

intensity distributions. In comparison, the peptides in the second

peak that correspond to stronger Ab binding show greater

differences between the cohorts both in terms of peak location

and height among the cohorts. The look-alike diseases show the

most differentiating second peak in the binding intensity profile

compared with the other 4 cohorts. Both the location and the height

of this peak are markedly different, with the peak located in ~1.1-1.2

intensity range and up to 50% lower peak height. Similarly, the non-

endemic healthy cohort exhibits largely different distribution of the

stronger binding peptides from the other donor types. Interestingly,

both LD cohorts (seropositive and seronegative) and the endemic

healthy donors are almost indistinguishable from one another.

Overall, compared with the other cohorts, the look-alike binding

intensity distribution suggests a substantially stronger, broader Ab
A B

FIGURE 1

Ab binding profiles measured on the diverse peptide library of 5 different donor cohorts representing healthy individuals from non-endemic LD
areas, healthy donors residing in LD endemic areas, seropositive LD patients, seronegative, clinically diagnosed LD patients, and look-alike diseases
with etiology similar to LD. (A) Comparison of binding intensity distributions among the different donor cohorts reveals relatively minor differences
among the endemic healthy donors and LD patients but shows strongly differentiating profile between the look-alike diseases and the other 4
cohorts. The fluorescence intensities of each peptide on the array were averaged over the entire corresponding cohort. (B) UMAP representation of
the measured fluorescence intensities with each data point representing an individual donor. The plot shows little separation among LD and
endemic healthy cohorts but suggests marked differentiation between the look-alike diseases and LD and healthy cohorts.
TABLE 1 Donor cohort breakdown.

Category Disease Number of samples

Cases
Lyme (seropositive) 99

Lyme (seronegative) 91

Controls
Endemic healthy 110

Non-endemic healthy 64

Look-alike diseases

Alcoholic liver disease 10

Anti-nuclear antibodies 14

Babesia 14

Chlamydia 12

Epstein-Barr virus 11

Influenza 12

Rheumatoid arthritis 14

Syphilis 19
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reactivity with the distinct second peak well differentiated from the

first peak. In contrast, while the two LD cohorts and the endemic

healthy donor group are very similar, all three are distinctly

different from the look-alike and healthy non-endemic donors.

The relative invariance of the first peak in the distributions of all

5 donor cohorts suggests that there is little Ab reactivity against a

substantial number (~50-60%) of peptides on the array. The

differences between the cohorts are contained mostly in the

stronger binding peptides represented by the second peak in

the distribution that contain most of the disease-specific Ab

binding information.

To further assess the ability to differentiate the five different

types of donors based on Ab binding to array peptides, the peptide

binding data was transformed using the Uniform Manifold

Approximation and Projection (UMAP) method (47). The

method allows mapping of high dimensional data to a low

dimensional space, while retaining most of the cohort-specific

information. The peptide binding data projected onto a 2-

dimensional space using UMAP is shown in Figure 1B. The plot

reflects the general trends observed in the intensity distributions

(Figure 1A). The look-alike donors are most differentiated from the

rest of the donor types, followed by the non-endemic healthy

controls. In contrast, the two LD cohorts and the endemic

healthy controls are largely indistinguishable from one another,

with the individual donors interspersed among the three cohorts.

This finding corroborates the main result observed in Figure 1A

with grossly similar binding profiles among these cohorts. However,

the UMAP representation revealed another important point. The

data point distribution indicates the presence of at least 3 potential

clusters (dashed ellipses in Figure 1B) suggesting underlying sub-

populations of the donors within the cohorts. Furthermore, the fact

that the clusters are not cohort-specific implies that there is strong

apparent donor-to-donor variability in Ab binding to the peptides

even within the same cohort. In summary, this cohort-level analysis

indicates that while the non-endemic healthy controls and look-

alike diseases show marked differences in Ab binding profile

between one another and the LD and non-endemic healthy

controls, both LD cohorts and the endemic healthy controls

exhibit highly similar Ab binding to the array peptides profile.
Sample classification between cohorts
using measured binding intensity to the
array peptides

In addition to comparing the binding profiles at the cohort-

level, disease classification of the different cohorts was explored

using the measured Ab binding to the array peptides. In previous

studies, this has been done directly using the binding values from

the array peptides (35, 36, 42–44). In this case (a so-called

“immunosignature”), feature selection is performed, often using t-

tests to select which peptides best distinguish cohorts as a first step

in developing classifier models.

To assess whether the different cohorts could be distinguished

using the measured binding profiles from the peptide array, models
Frontiers in Immunology 05
were trained for pair-wise classification of the different donor types.

The main question addressed here is how well binding to a library of

peptides with near-random sequences can recapitulate clinical and

serological differences between the different types of donors. To

accomplish this, a number of classifiers were trained to distinguish

between LD, look-alike diseases and normal controls. The Extreme

Gradient Boosting (XGBoost) method was combined with the

Random Forest (RF) approach for classifier model development.

Due to the inherent ability of RF to perform feature selection during

training, no features were selected a priori. The training was

performed 10 times using 10-fold cross validation with randomly

selected 10% of the samples as a hold-out dataset. The classification

results presented as Receiver Operating Curves (ROC) and their

Area Under the Curve (AUC) are shown in Figure 2. The results

indicate robust differentiation between the seropositive LD cohort

and the non-endemic healthy controls (Figure 2A) with an AUC of

0.96 (95% CI: 0.93-0.99). A slightly lower classification performance

is observed between the clinically diagnosed, seronegative LD and

the non-endemic controls (Figure 2B) with AUC=0.92 (95% CI:

0.85-0.99). Both ROCs show high sensitivity values at high

specificity (0.75 sensitivity at 0.90 specificity). However, a more

detailed comparison of the ROC characteristics shows that the

classification performance of the seronegative LD cohort shows

markedly lower specificity at sensitivity of 1. Here, while the

seropositive LD vs. healthy controls classification reaches 0.5

specificity at a sensitivity of 1, in case of seronegative LD vs.

healthy controls specificity drops to 0.25. This suggests a higher

similarity of the circulating Ab binding profiles between the

seronegative (clinically diagnosed) LD and the non-endemic

healthy donors as compared with the seropositive LD vs. non-

endemic controls. In comparison, the performance of a classifier

trained to distinguish between the look-alike diseases and a

combined cohort of seropositive and seronegative LD patients

(Figure 2C) shows robust classification with an AUC=0.93 (95%

CI: 0.91-0.95). This finding is especially relevant from the

perspective of differential diagnosis, i.e. distinguishing between

LD and a number of diseases with identical or similar clinical

manifestations. This comparison is important from the perspective

of validation the ability of the approach to distinguish between

clinically different types of individuals. Similarly, look-alike diseases

show strong differentiation from the endemic healthy controls

(Figure 2D) with an AUC of 0.96 (95% CI: 0.95-0.97).

Interestingly, a substantial drop in classification performance was

observed when comparing either the seropositive LD or

seronegative LD vs endemic healthy controls with a resulting

AUC of 0.82 (95% CI: 0.74-0.88) (Figure 2E) and 0.61 (95%CI:

0.54-0.68) (Figure 2F), correspondingly. In parallel to the findings

with the binding profile distributions, this result suggests a

markedly more similar Ab reactivity profiles between the two LD

cohorts and the endemic healthy controls as compared with the

look-alike diseases and non-endemic healthy controls. These results

also demonstrate that binding profiles measured with a library of

peptides of diverse sequences contain relevant information enabling

robust differentiation between the LD donors and look-alike

diseases and non-endemic healthy controls.
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Binding motif discovery with peptide
array data

To explore whether there are preferences among the Ab binding

profiles for specific patterns (motifs) in the peptide sequences, a
Frontiers in Immunology 06
motif discovery analysis using the MEME STREME tool was

performed (48). This analysis is based on the discovery of

repeating patterns in the peptide sequences that the patient’s

antibodies bind to. The algorithm finds patterns in a target set of

sequences with statistically enriched representation compared to
A B

D

E F

C

FIGURE 2

Receiver operating curves (ROC) representing performance of classifiers trained on measured Ab reactivity against array peptides to differentiate
between the different donor cohorts. The classifiers were developed using the XGBoost approach with a 10-fold cross-validation utilizing randomly
selected 10% of the samples for validation. Area under the curve (AUC) values are given along with the 95% confidence intervals indicated in the
brackets. ROC curves represent classification performance between the following cohorts: (A) seropositive vs. healthy donors from non-endemic
(NE) areas. (B) clinically diagnosed, seronegative LD vs healthy donors from NE areas. (C) combined seronegative and seropositive LD vs. diseases
with look-alike symptoms, (D) look-alike diseases vs. endemic healthy controls, (E) seropositive LD vs. endemic controls. (F) seronegative LD vs.
endemic controls.
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the control dataset (the full peptide library used in this study). In the

context of a polyclonal Ab response that typically takes place

following the infection with a pathogen, the presence of preferred

binding to well defined motifs would suggest a more specific Ab

targeting of antigens by the immune system. To perform motif

discovery analysis, a total of 13,490 peptides selected by the

XGBoost classifier as features with most differentiating power to

distinguish seropositive LD from non-endemic healthy controls

(Figure 2A) were used. No pre-selection of peptides was performed

prior to training the classifier allowing the classifier to freely pick

the peptides that best differentiate between the two cohorts. The

MEME algorithm was run to discover contiguous motifs with a

length of 3-6 amino acids using the set of the selected peptides as

target and the entire peptide library as reference dataset. The

algorithm identified 2 motifs with statistical significance

(Figure 3) and varying representation of distinct amino acids. The

most statistically significant motif, KDAA (Figure 3A), showed a

low E-value (p-value adjusted for multiple comparisons) of 3.0·10-4

and a total number of peptides containing the motif of 3,774

suggesting a strong prevalence of Ab binding in the seropositive

LD cohort compared with the healthy non-endemic controls.

Mapping the motif onto the B.burg. proteome revealed that the

motif is contained in 5 different proteins (Supplementary Table S1).

One of them, decorin-binding protein A (DbpA, Uniprot ID:

O50917), is a strong immunogen (49, 50) with diagnostic value in

LD (51). The location of the motif in DbpA (Figure 3A) shows it is
Frontiers in Immunology 07
surface exposed and accessible for binding. The motif with the

second-lowest p-value (lower statistical significance) is a tetramer

QEDE with a markedly lower significance (p-value of 1.8E-2,

adjusted for multiple comparisons) compared with the first motif.

It mapped to a single protein-flagellar hook-associated protein 1

(Uniprot ID: P70859), Supplementary Table S1. Its surface-close

location (Figure 3B) is amenable to binding and is in a loop region

of the protein. The two discovered motifs differ markedly in the

number of peptides they occur in and the p-values. The data implies

that there are at least two distinct immunogenic regions the

immune system is reacting to with differential reactivity between

the seropositive LD patients and non-endemic healthy control

donors. This also demonstrates the utility of the approach in

gaining a detailed insight into potential antigenic regions of B.burg.
Using peptide array binding and machine
learning models to predict binding to B.
burgdorferi proteome

While information about binding to the array peptides can be

used for classification and binding motif discovery, it provides only

limited biological insight into actual antigens targeted by the

humoral immune response.

One way to utilize the biological value of the sequence

information is to instead use the binding information on the
A B

FIGURE 3

Motif discovery analysis results using the peptides selected by the classifier in Figure 2A as important for differentiation between the seropositive LD
and non-endemic healthy controls. The motif length was limited to a maximum of 6 AAs. (A) The top motif ranked by the p-value and its location on
decorin-binding protein A (DbpA), a well-characterized immunogen in LD (B) The second top ranked motif (QEDE) and its location on flagellar
hook-associated protein 1 from the B. burg. proteome, the only protein containing the QEDE motif. E-values are p-values adjusted for multiple
hypotheses comparison. # peptides denotes the number of peptides containing the motif.
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peptide array to train a model that mathematically relates sequence

with binding intensity (Figure 4A). Such a model enables one to

predict binding intensities to any peptide. It is then possible to

apply this model to predict Ab binding intensities to tiled peptides

from an entire proteome, e.g. the B. burg., and build classifiers

based on these values. To achieve this, a separate neural network

model was trained on the data from each donor to predict binding

intensity of any peptide sequence of a set length of 10 AAs to

ultimately predict antigens from the proteome with high reactivity

to the patient’s antibodies. To this end, a feed-forward

backpropagating NN model consisting of 3 hidden layers with

100 nodes each was used. Each hidden layer was implemented with

batch normalization, a 10% dropout rate, and no bias. The models

were trained with 25-50 epochs using a batch size of 256 data

points. As a check of model performance, NN models were trained

on randomly chosen 90% of all peptide intensity anti-IgG binding

data and predicted the binding values of the remaining 10% left-

out portion with 10 rounds of training and validation. For each

donor one individual NN model was developed separately. The

deep learning models showed robust performance in predicting

actual peptide array data that was left out during model training

with Pearson correlation coefficients between the measured and

predicted binding intensities of 0.82-0.92 (Figure 4B) indicating

good model prediction generalization. To generate predictions of

binding to full proteins or the entire B. burg. proteome, the
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sequences of each protein were tiled into peptides of 10 AAs by

using a sliding window with a 9 AA overlap between two adjacent

tiles. The proteome tiles were then used as inputs for the NN

models to compute predicted Ab binding intensities. The

performance of the separate models was evaluated as the ability

to predict differential binding to known, biologically relevant acute

LD antigens when comparing the seropositive LD and endemic

healthy controls. The two cohorts were chosen for comparison due

to the opposing serological testing results (positive for LD and

negative for controls). While classification performance of the two

sets of samples was low compared with other sample types,

differentiating confirmed LD and endemic controls is mostly

relevant in the geographic areas with high disease prevalence.

Predicted binding to a set of selected antigens that includes the

10 IgG antigens used in the STTT serological LD test was analyzed

(Table 2). The STTT for LD recommended by the American

Centers for Disease Control and Prevention (CDC) consists of 2

tests with test 1 (tier 1) based on enzymatic immunoassay (EIA) of

Ab response to either a peptide from or the full VlsE protein (3). If

the tier 1 test result is positive or indeterminate, a second test (tier

2) based onWestern Blot (WB) assays using a panel of 3 biomarker

proteins for the IgM Ab isotype and a panel of 10 biomarker

proteins for the IgG Ab isotype (Table 2), is recommended. Table 2

shows the false discovery rate (FDR) values of the predicted most

significant tiles of the shown proteins for a total of 13 of known
A

B

FIGURE 4

Predictive modeling of the immune response to B. burg infection. (A) Overall approach to predictive modeling of binding intensities for tiled proteins
from B burg. proteome (B) Strong predictive performance of a deep learning regression model relating sequence to binding that was trained on
anti-IgG binding to a diverse peptide array. Predicted binding intensities in a test dataset held out during training were compared to measured
intensities. PCC-Pearson correlation coefficient.
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antigen LD proteins, including the 10 STTT biomarkers, predicted

by the NN models when comparing the seropositive LD vs endemic

healthy cohorts. The data show that all the STTT IgG proteins

showed significantly higher predicted binding in the seropositive

LD cohort compared with the samples in the endemic controls.

Furthermore, we find that our predictions recapitulate the

significantly stronger binding to the VlsE protein in the

seropositive LD patients compared with the endemic controls.

Using the same modeling approach and classification methods

as explained above for the measured peptide array binding data

(Figure 2), classifiers were trained on the values of predicted binding

to the tiled B.burg. proteome. A comparison between the classifiers

trained on the measured binding values on the peptide array and

predicted binding to B. burg. proteome (Table 3) shows that in most

cases the classifiers trained on the predicted data show similar to or

better performance than the models trained on the peptide array

binding data. Only the seropositive LD vs non-endemic healthy

classification was slightly lower (0.90 vs 0.96) when using a model

trained on the predicted binding values. This suggests that the

predictive models used to project the peptide array data onto the

B.burg. proteome maintain the cohort-specific information

contained on the arrays. In addition, when comparing look-alike

diseases with LD or endemic healthy controls, projection on the

B.burg. proteome slightly increases classification performance

suggesting that pathogen-specific information supplied in form of

specific sequences can further improve differentiation. It is

interesting to note that the low differentiating power of either

seropositive or seronegative LD vs the endemic healthy controls

persisted regardless of whether the peptide array itself or the

predicted binding to the tiled B.burg. proteome was used

(Table 3). Consistent with the clinical testing data, this result

suggests a less pronounced humoral immune system response in

the seronegative LD than in the seropositive LD cohort.
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Evaluating epitope predictions based on
3D protein structure

Next, the performance of the NN models was assessed from the

standpoint of predicting peptides in the accessible regions of the

proteins from the B. burg. proteome. More specifically, it was

explored whether the predicted epitopes identified as having the

most differentiating power tend to be located in the protein regions

generally accessible to Ab binding. While Ab binding may not be

restricted to regions on the surface of the target proteins, for

bacterial infections this mode of antigen recognition likely

dominates. Three proteins were selected for this analysis: DNA

polymerase II, ErpQ and Flagellar motor switch protein. DNA

polymerase II subunit a (Uniprot ID: O51526) is the protein with

the highest-ranking peptide by p-value (lowest p-value) when

compared between the seropositive LD and endemic healthy

controls. ErpQ (Uniprot ID: Q9S035) and Flagellar motor switch

protein (Uniprot ID: O51239), were selected because they are

known antigens that contain peptides with the highest ranking

(lowest p-value). For each of the selected proteins, the highest-

ranking peptide and the second-highest ranking peptide were

mapped on the 3D structures of the proteins (Figure 5). A

comparison of the spatial location of the peptides on the 3D

structure of the 3 proteins showed that all 6 predicted antigenic

peptides are located on the outer regions of the proteins and are at

least partially accessible to Ab binding. All 6 predicted epitopes map

primarily to the linear/loop-like regions of the proteins, with only

the first epitope of flagellar motor switch protein showing partial

overlap with a a-helix. This suggests that, at least in the 3 proteins

analyzed here, there is a preference of the predicted epitopes to

loop-like structures. As the models are trained purely on sequence-

intensity relationships without any structural inference, the
TABLE 3 Performance comparison between classifiers trained on
measured peptide array data and predicted binding to tiled
B.burg. proteome.

Contrast Data used
for training

Performance (AUC
(95 CI))

Sero+ LD vs.
NE healthy

Peptide array 0.96 (0.93-0.99)

Bburg proteome 0.90 (0.86-0.94)

Sero- LD vs.
NE healthy

Peptide array 0.92 (0.87-0.98)

Bburg proteome 0.91 (0.85-0.97)

Combined Sero+/-
LD vs.

look-alike diseases

Peptide array 0.93 (0.91-0.95)

Bburg proteome 0,97 (0.94-0.99)

Look-alike
diseaeses vs.

endemic healthy

Peptide array 0.96 (0.95-0.97)

Bburg proteome 0.99 (0.98-1.00)

Sero+ LD VS.
endemic
healthy

Peptide array 0.82 (0.74-0.88)

Bburg proteome 0.72 (0.65-0.79)

Sero- LD VS.
endemic
healthy

Peptide array 0.61 (0.54-0.68)

Bburg proteome 0.57 (0.54-0.61)
NE, non-endemic.
TABLE 2 The model accurately predicts significantly different binding to
all IgG antigens from the panel of 10 proteins used in the STTT clinical
assay when comparing the confirmed LD cases vs. the endemic controls.

Protein UID STTT biomarker FDR

DbpA 050917 × 6.21E-05

OspC Q07337 × 2.09E-04

OspD H7C7Q2 × 1.31E-04

p30 P70831 × 5.97E-07

OspA POCL66 6.51E-04

OspB P17739 3.03E-05

BmpA Q45011 × 3.06E-04

Fla P11089 × 4.09E-04

BBK32 050835 × 3.05E-04

HSP60 POC923 × 3.78E-05

P66 H7C7N8 × 4.06E-05

P83/100 Q45013 × 4.66E-05

VIsE G5IXI6 8.07E-05
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predictions are not based on structural aspects of the predicted

epitopes. It is interesting to note that the relative locations of the

predicted epitopes vary depending on the protein. While the

epitopes are located relatively closely in terms of the physical

location on the protein for flagellar motor switch and DNA Pol

III subunit a, the epitopes of ErpQ are markedly farther (>250 AA)

apart with one epitope being close to the N-terminus of the protein

and the other close to the C-terminus. Despite the relative physical

vicinity of the epitopes in the former two proteins, sequences of all

epitopes have little similarity suggesting distinct immunogenic

regions in the protein. Similarly, for ErpQ, the models predict

epitopes with markedly different sequences. The lack of similarity

among the epitope sequences suggests that the models predict at

least two distinct antigenic regions in each of the proteins.
Comparing predicted Ab reactivities to VlsE
surface lipoprotein antigen
between cohorts

The VlsE protein is a known LD antigen and is used as a

biomarker in the STTT. To gain insight into how variable the

humoral immune response is in LD, relative reactivities to the tiled

VlsE protein between the seropositive LD and endemic and non-

endemic controls were compared. To this end, the protein amino

acid sequence was broken down into tiles of 10 AAs with 9 AA

overlap between two adjacent tiles. The relative reactivities for each

donor in a cohort were computed as a Z-score using the endemic or

non-endemic control cohort as a reference for calculating the mean

and standard deviation values. First, the Z-scores were calculated

for each tile of the protein (Equation 1).
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zi,j =
(xi,j − mi,j)

di,j
, (1)

where i and j denote ith tile of jth protein, z is the z score, xj is the

predicted binding intensity, µ is the mean binding intensity, and d is

the standard deviation of the same tile in either the endemic or non-

endemic healthy controls. A comparison between the seropositive

LD and the non-endemic healthy donors showed strong

differentiation between the two cohorts (Figure 6A) with the

seropositive LD samples exhibiting an overall stronger reactivity

to the VlsE protein than the non-endemic controls. Interestingly,

there are at least several distinct antigenic regions of the protein that

overlap across the majority of the LD samples. However, the

different regions appear to vary in terms of the samples where

they are reactive. For example, region 1, demarkated by the white

dashed box between residues 1-5 (Figure 6A) is strongly reactive in

~50% of the LD samples, whereas reactivity in regions 2 and 3

between residues 107-110 and 183-191, respectively, appears in

samples that only partially overlap with those in region 1. Region 4

between residues 247-251, that overlaps partially with the invariable

region 6 (IR6) of the VlsE, is reactive in ~40% of the LD samples.

The comparison of the seropositive LD samples with the endemic

healthy samples revealed a markedly different pattern (Figure 6B).

with a substantially lower differential binding between the cohorts

and only two somewhat discernable regions with increased Ab

reactivity. In this comparison, the LD samples exhibit a more

dispersed differential reactivity to the VlsE protein with little

overlap between the samples. The region at the N-terminus

(residues 1-10) shows increased reactivity in the LD cohort,

although in only ~20-25% of samples. Similarly, a weakly reactive

region can be seen at the C-terminus of the protein, also in about

20% of samples. The data shows that despite the presence of the
FIGURE 5

Epitopes in the B. burg. proteome with high predicted immunogenicity based on a NN model trained on the binding data from the diverse peptide
array and comparison between seropositive LD and endemic healthy controls. The predicted antigenic regions are located on the outside of the
proteins in the areas accessible to binding by antibodies. The predictions were produced using a tiled B. burg. proteome with a tile size of 10 amino
acids. The p-values shown were calculated by performing the Welch’s t-test comparing the seropositive LD and endemic healthy controls.
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overlapping regions of reactivity among the LD patients, there is

marked overall variability in protein regions each donor responds to.

The predicted reactive regions were compared with the relative

solvent accessibility (RSA) scores computed for each residue of the
Frontiers in Immunology 11
protein. A residue was considered “exposed” if its RSA score

(fraction of the total residue volume accessible to solvent) was

>25% and “hidden” otherwise. As can be seen in Figure 6A

(seropositive LD vs. non-endemic healthy controls), reactivity
A B

DC

FIGURE 6

Comparison of Ab binding reactivity to the VlsE protein between the seropositive LD and non-endemic (NE) controls (A) and seropositive LD and endemic
controls (B). The data represented in the heatmaps are Z-scores computed with respect to the corresponding control cohort and calculated using a sliding
sum window of 5 residues. Each row represents a single donor, while the columns are the amino acid residues from the protein sequence. Left color bar-
cohort assignment, upper color bar – residue exposure with red representing hidden and green exposed to solvent residues. The dashed white boxes
denote areas of partial overlap in binding reactivities among the different donors. (C, D) depict the relative positions of the four reactive regions in panel A on
the 3D structure of the VlsE protein at 0° and 90° relative presentation angle, respectively (PDB: 1L8W, Uniprot ID: G5IXI6).
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regions 1-3 contain mainly exposed residues. In contrast, region 4

contains markedly more “hidden” and solvent-inaccessible residues.

Region 4 also contains the invariable region 6 (IR6) of the protein

which is one of the biomarker immunogens used currently in the

serological testing for LD. IR6 has been demonstrated to be

inaccessible to antibodies in vivo, which corresponds to the

residue accessibility data. Mapping the common reactive regions

onto the 3D structure of the VlsE protein (Figures 6C, D) confirmed

the closeness of the regions to the surface and accessibility to

binding. Three out of four reactive regions are close to the protein

surface with reasonable accessibility to solution.
Discussion

Lyme disease, a complex and difficult to diagnose condition

caused in the US by the infection with the bacterium B. burg. was

chosen as the subject of this study due to the known highly complex

interaction between the bacterium and the humoral immune

response. Combined with large person-to-person variability in

immune system response, this complexity has so far prevented

not only the development of reliable diagnostics for LD but also led

to the gaps in knowledge about the interaction between the

pathogen and dynamics in immune response.

This study was designed to apply a library of short linear peptides

with a median length of 9 AAs and near-random sequences to

sparsely, but uniformly sample the entire combinatorial sequence

space of the same length peptides for profiling the humoral immune

response to a B.burg. infection. Using machine learning and data

from antibodies binding to library peptides, it is possible to

reconstruct the binding/reactivity profile of the circulating Ab

repertoire for an individual. Having characterized such a

reactivity profile one can not only determine disease-specific

antigens, but also gain broader understanding of disease

pathology in terms of host immune response. The ability to

reconstruct the binding profiles of a circulating Ab repertoire

utilizing a sparse sample of the combinatorial binding space is

based on the concept that there is a certain degree of promiscuity in

Ab binding to their cognate epitopes. This promiscuity means that

Abs raised against a specific immunogenic target can bind peptides

with physicochemical properties resembling those of the cognate

epitope, but with typically lower affinity. The binding strength

should correlate with the degree of peptide similarity to the

cognate epitope. As a result, one should be able to predict the

cognate binding targets using information about Ab binding to such

peptides. In this case, information about Ab binding to the peptides

present on the peptide library representing only a relatively small

sample of the binding space can be sufficient to learn about the

underlying binding preferences via training of an appropriate

model relating the sequence information in the library with the

binding intensity values. This approach presumably works because

the antibody binding information in this case is “distributed”

among the entire library of the 105 peptides, even though this

represents a small sample of the entire combinatorial space of

peptides. The sequence-binding relationship can then be used to

predict binding to any sequence of the same or similar length as the
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training dataset, including entire tiled proteomes. As a result, it is

possible to model the binding profiles of an Ab repertoire with

statistical accuracy for a broad variety of applications ranging from

biomarker discovery to potentially monitoring disease progression

to response to treatment.

Because the peptide libraries used in the study represent a very

sparse sample of the entire combinatorial peptide space, it is

possible that binding of highly specific, high-affinity antibodies

could be underrepresented on the array leading to potentially

missing them altogether. However, our previous studies using

monoclonal antibodies have indicated that even such highly

specific interactions can still be resolved using the peptide arrays

(44, 45), suggesting that the approach should be applicable to

profiling of circulating antibodies that in general show less

specific binding characteristics.
Method comparison with previous studies

To validate the approach several analyses were performed to

compare the findings of this work with the previous studies. The

motif discovery revealed the presence of at least two short sequences

with binding preference in the seropositive LD as compared to the

non-endemic healthy controls (Figure 3). The most statistically

significant motif KDAA was found to be part of decorin-binding

protein A (DbpA), a strong immunogen in LD in animals (50) and

humans (49) with diagnostic value (51). Interestingly, the motif was

also found to be part of a highly immunoreactive peptide in LD

patient sera in a study based on targeted peptide arrays (52). This

finding provides strong support for the approach used in this study

to discover biologically relevant immunogenic targets. While it is

true that a motif of only 4 amino acids can be found in a number of

proteins in e.g. human and the Ixodes scapularis tick proteomes, the

finding that the two statistically significant motifs were identified

using peptides with differentiating power between LD and non-

endemic controls indicates pathogen, B. burg., specificity.

The predictive ML models show strong predictive power for the

test sets of sequences left-out from training on the bulk of the

peptide array binding data (Figure 4B). The predicted Ab binding to

the B. burg. proteome calculated using the ML models show good

correspondence with previous studies in terms of statistically

significant differential binding between the seropositive LD and

endemic healthy control cohorts for the 10 biomarker antigens used

in the STTT for serological testing (Table 2) (3). Taken together,

these results demonstrate in broad terms the validity of the

approach as an agnostic method for broad profiling of circulating

Ab repertoire in patient’s sera.
High donor-to-donor heterogeneity in
antibody reactivity

The UMAP representation of the measured Ab binding to the

library peptides intensities (Figure 1B) reveals a highly

heterogeneous Ab response profile at the single-donor level. The

data shows that all cohorts exhibit complex and partially
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overlapping distributions with no clear separation between them.

The UMAP distribution of the data points indicates the presence of

at least 3 clusters (dashed ellipses) that encompass all 5 cohorts to

differing degrees. This suggests the presence of several sub-

populations of the donors used in the study. The lack of cohort-

specificity of the clusters suggests that, from the Ab reactivity

perspective, donors from the same cohort, e.g. diagnosed with LD

or healthy controls, are not confined within one single cluster. Ab

binding in these donors can display patterns that are not only

markedly different from other individuals in the same cohort but

also partially overlap with donors from different cohorts. The

degree of overlap differs among the donor types. The look-alike

diseases separate most from the 4 other donor types with little

overlap, whereas the LD and endemic healthy controls exhibit the

strongest overlap. This suggests that the binding profiles show in

broad terms high variability in Ab reactivity at the single-donor

level within the same cohort. The high degree of heterogeneity in Ab

binding between the individual donors is not unexpected. Because

the peptide arrays represent a sparse and random probe of a much

larger combinatorial binding space, the measured Ab binding

patterns represent a broad screen of the entire Ab repertoire and

not just the portion associated with an acute infection. In contrast to

peptide arrays targeting a specific disease or pathogen, it is highly

likely that the measured binding profiles encompass not only Abs

raised in response to one specific pathogen (e.g. B.burg. in the

confirmed LD donor cohort). Abs that were raised because of

immune system responding to any additional pathogen(s) the

body is also currently exposed to or has encountered in the past

are also contributing to the binding pattern. Because the number of

different pathogens a person has encountered during their lifetime

can vary greatly between individuals, it is reasonable to expect that

the broad profiling performed in this study would generally be

highly variable at the single-individual level as well. To extract

pathogen-specific information, the predictive MLmodels trained on

the peptide array data were used to predict Ab binding to specific

pathogen proteins. As an example, Ab binding characteristics to the

VlsE protein from the B.burg. proteome, a known antigen with

diagnostic value in LD, were analyzed. Here, binding predicted by

the ML models revealed a highly variable binding profile at the

individual donor level within the seropositive LD, endemic healthy

and non-endemic healthy control groups. The seropositive LD

samples that represent the strongest humoral immune response

by the STTT standard to the pathogen among the cohorts, display

predicted immunoreactive regions within the protein that are highly

variable among the donors with only a partial overlap for several

distinct regions of the protein (Figure 6). This finding is indicative

of a heterogeneous humoral immune response to B.burg. among the

infected individuals in terms of immunogenic targets, essentially

resulting in little overlap in Ab reactivity among the patients. A

possible explanation for this variability could be the molecular

immunomodulatory and immunosuppressive tools deployed by the

bacterium to prevent a strong humoral immune response from

being adequately mounted by the host. High interpersonal

variability in immune response in general (14, 15) and in

response to B.burg. infection in humans in particular with B cell

responses with little overlap between patients (53) have been
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reported previously and support the high person-to-person

variability in humoral immune response observed in this study.
Complexity in Ab binding profiles
associated with LD

Comparison of Ab binding intensity profiles (Figure 1A)

revealed 2 distinct peaks characteristic to all studied donor

cohorts. The first peak is located at the low end of binding range

and encompasses peptides that show little or no Ab binding. It is

likely that the weak Ab binding to these peptides is a result of non-

specific, low-affinity interactions between Abs and peptides. These

interactions could be caused by hydrophobic properties or the

presence of a charge in a peptide as a whole as opposed to its

specific AA sequence. It is therefore not surprising to see the strong

overlap of this part of the binding distributions across all cohorts.

This result also indicates that, as one would expect with a random

sampling of a large binding space represented by the patient’s

circulating Abs, a substantial portion of the peptides does not

show substantial binding. This is most likely due to the peptides

being too dissimilar in their physicochemical properties to the

cognate targets of the Abs. On the other hand, the second peak

that represents the stronger binding peptides contains most of the

Ab- and cohort-specific binding content. Both the position and the

height of the second peak can vary substantially between

the cohorts. In this regard, the look-alike diseases with etiology

similar to LD and the non-endemic healthy controls display the

largest differences whereas both LD cohorts (the seropositive and

the seronegative/clinically diagnosed LD) and the endemic healthy

controls are highly similar to one another as indicated by the strong

overlap of the corresponding peaks. The varying position of the

second peak with respect to the first across several cohorts is

another interesting result. An increased shift of the second peak

to the right in the plot (stronger binding) suggests an in general

stronger and more distinct Ab reactivity and thus could be

associated with a more pronounced humoral immune response.

Accordingly, the proximity of the second peak to the first for the LD

cases and the endemic healthy controls indicates a comparatively

less-pronounced Ab response in LD cases than in look-alike

diseases. A similar trend can be seen from the comparison of the

distributions between the LD cases and the non-endemic healthy

controls with the second peak shifted towards stronger binding in

the latter.

Overall, a comparison of the cohort-level binding intensity

distributions (Figure 1A) and the UMAP representations

(Figure 1B) shows that circulating Ab repertoires of the

seropositive, seronegative LD and the healthy controls from the

LD endemic areas are similar to one another. In contrast, the non-

endemic healthy and look-alike disease cohorts differentiate from

the LD and endemic healthy controls. These results are further

supported by the classifier models trained to differentiate between

the conditions. The peptide array data allows for robust

classification between the seropositive LD or seronegative LD and

the healthy controls from non-endemic areas using classifiers with

AUC values of 0.96 (95% CI: 0.93-0.99) and 0.92 (0.85-0.99),
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respectively (Figures 2A, B). The ability to reliably differentiate

between the look-alike diseases and the combined (seropositive

+seronegative) LD cohort (AUC 0.93 (95% CI: 0.91-0.95, Figure 2C)

suggests that the Ab repertoires in the two types of samples are

disease-specific. In addition, this shows that the linear peptide array

binding data provides enough information to distinguish LD from

other diseases with similar clinical symptoms. Furthermore, the

finding that one can robustly differentiate between the look-alike

diseases and healthy non-endemic controls (AUC 0.96 (95% CI:

0.95-0.97), Figure 2D) provides further support to the ability of the

method to detect alterations in circulating Ab repertoire related to

an ongoing immune response. In comparison, classification

performance of the seropositive or seronegative LD vs. endemic

healthy controls is markedly lower, resulting in AUCs of 0.82 and

0.61 (Figures 2E, F). This indicates that in the LD endemic

geographic areas the immune response to B.burg. is less

distinguishable from the healthy controls than the controls from

non-endemic areas. The geography of the donors could be an

important underlying factor. However, the finding that the non-

endemic healthy controls and the look-alike diseases donors that

cover a number of different geographic areas in the US, as opposed

to the LD endemic area, are markedly different provides strong

support that the differences are not geography-specific and are

associated with the disease. The observed strong similarity between

the seropositive and seronegative LD cohorts can be explained by

the individual’s humoral immune response to the same pathogen

(B. burg.). The lack of difference between the LD and the endemic

healthy controls is somewhat unexpected and interesting. One

possible explanation is that a significant portion of the currently

healthy individuals living in the LD endemic areas had been

exposed to the pathogen in the past and were either not

diagnosed with Lyme disease or had asymptomatic disease. In

such cases one could detect B.burg. specific Ab binding patterns

potentially due to the presence of Ab-producing memory plasma B-

cells in patient’s blood. The reported seroprevalence of Ab reactivity

to B. burg. antigens in individuals exposed to tick bites can be as

high as 38% (54) and could potentially act as a confounding factor

when comparing the LD with the endemic healthy cohort. In

addition, it is also possible that the immunomodulatory

mechanisms used by B.burg. to weaken host immune response

results in an overall suppressed Ab reactivity profile. The weak

overall immune response to B.burg. observed in this study has also

been reported in mice LD models (55) and human patients (53). A

weakened humoral immune response could result in Ab binding in

LD patients being similar to individuals from the endemic area that

do not have an ongoing infection with the bacterium. These two

factors, either in separation or combined, may contribute to the

observed similar humoral response or lack thereof between the

infected individuals and the endemic controls. The more distinct

separation between the confirmed LD and non-endemic controls

suggests that the Ab binding profile is different from the healthy

individuals who are much less likely to have been exposed to B.

burg. in the past. The strong differentiation performance between

the LD and look-alike disease samples shows that the observed Ab

response in the LD cohorts is different from other diseases, despite

the apparent similarity between the LD and endemic controls.
Frontiers in Immunology 14
Therefore, corroborating findings in the previous studies, this

study demonstrates the complexity of LD with implications for the

development of reliable serodiagnostic for the disease. The findings

suggest that due to the potentially high prevalence of B. burg.

specific antibodies in LD endemic areas, a set of unique biomarkers

distinguishing active vs. previous infection is necessary to establish a

robust diagnostic.

This study is limited in several different aspects. First, the use of

only 16 out of 20 canonical AAs in the array peptides introduces a

certain bias in binding data. Consequently, one is unable to sample

the portion of the combinatorial space representing the 4 missing

amino acids. While the effect of this incomplete sampling on the

measured data is presently difficult to assess, it is likely to affect the

NN model accuracy for binding predictions of epitopes in which

the 4 missing AAs (methionine (M), threonine (T), isoleucine (I)

and cysteine (C)) are critical residues. However, it should still be

possible to derive useful information about the epitopes from

mimotopes (peptides with sequences with physicochemical

properties similar to the cognate sequence) that have one or more

of the 4 missing AAs substituted with similar residues (e.g. M

substituted with valine (V), T with serine (S) etc. based on the

BLOSUM substitution scores). Second, due to the linear structure,

the peptides on the array explore primarily binding to linear

epitopes. This limits the applicability of the approach in

discovering structural epitopes. As a result, the presented findings

likely underestimate binding reactivities to immunogenic targets.

Third, given the observed substantial heterogeneity in Ab reactivity,

the sample sizes used in the study are comparatively small. This can

limit the ability to identify antigens that appear only in a subgroup

of individuals from a particular cohort. The number of samples was

mainly dictated by sample availability. While the number of

samples per look-alike disease category is low, the comparison

was with the look-alike diseases pooled together as a single cohort,

providing a larger effective size.

Despite these limitations, past studies conducted by this group

suggest that the current approach can be used to differentiate

humoral immune response to a number of pathogens (30–43). A

more recent study using arrays of peptides with random sequences

has demonstrated the feasibility of the method to reliably represent

and distinguish a number of infectious diseases caused by viral

pathogens (44) using sequence-binding information contained on

the random display library. The findings of this study imply that the

approach provides valuable information regarding not only the

overall Ab binding profile on the peptide array for differentiating

immune responses, but also with respect to the biologically relevant

insights at the single-individual level in terms of antigens targeted

by the humoral immune system in response to infection with the B.

burg. bacterium.

In summary, the work has demonstrated that random planar

peptide arrays combined with machine learning models not only

provide a means for differentiating between different pathologies of

a highly heterogenous and complex bacterial disease, but also enable

the discovery of candidate biomarkers not previously known.

Furthermore, the approach allows for deeper insight into overall

humoral immune response in terms of circulating Ab repertoire at

the single-patient level and is thus amenable to analyzing
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heterogenous immune responses. The fact that validated

biomarkers provide statistically significant differential signals in

the peptide array data indicates that it is possible to learn about

binding preferences of Abs from relatively weak interactions with

peptides randomly probing the combinatorial sequence space. This

is in contrast with the biopanning approach where primarily strong

interactions are being explored. This also supports the notion of

polyclonal Ab response having enough promiscuity to allow for

sufficient binding to peptides with similar physicochemical

properties (mimotopes).
Materials and methods

Samples

Well-characterized LD patient and endemic healthy donor

samples were obtained from the Lyme Disease Biobank (5).

Samples were collected from patients with signs and symptoms of

early Lyme and endemic controls. Samples were tested as described

and categorized as seropositive Lyme having either an EM rash

greater than 5 cm in diameter or PCR confirmation combined with

positive STTT serology. The seronegative Lyme samples were

obtained from patients having an EM rash greater than 5 cm in

diameter, but without positive STTT serology. These patients were

diagnosed with Lyme by a physician based on the clinical

symptoms. The endemic healthy samples were collected from

donors who reside in the LD endemic areas, are self-declared

healthy and seronegative on the STTT. Participants were enrolled

in East Hampton, NY, Central Wisconsin and Martha’s Vineyard,

MA. Each of the three cohorts contained equivalent numbers of

patients from each collection site. Cohorts and collection sites were

balanced across each assay batch of microarrays. The patient

samples for the diseases with similar etiology to LD as well as

non-endemic healthy controls were obtained from several

commercial sources (Boca Biolistics, Pompano Beach, FL,

Discovery Life Sciences, Huntsville, AL, Creative Testing

Solutions, Tempe, AZ, SeraCare, Milford, MA). Note that these

samples were obtained from commercial biobanks with no data

about their previous exposure to LD was provided. Given that the

samples were collected outside of the LD endemic areas, it is likely

that these patients have not been exposed to B. burg. infection.
Peptide microarray assays

Peptide microarrays containing diverse peptides were

synthesized in a commercial production facility (Cowper Sciences,

Chandler, AZ), following a previously described library design and

photo-lithography based manufacturing process (42, 46). Synthesis

occurred on 200 mm silicon wafers which were diced into 25x75

mm microscope slide pieces each containing 24 arrays in a 3 x 8

pattern. Four slides could be loaded into a custom cassette enabling

use of standard 96 well laboratory automation equipment.

Microarrays used contained 125,509 diverse peptide sequences

plus a set of 6,203 control peptides. The standard serum Ab
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profiling assay protocol described in Arvey et al. was used as

modified for a modular research use assay system. All dilution

and liquid handling steps were conducted on a BRAVO robotic

pipetting station (Agilent, Santa Clara, CA). Samples were thawed

from single use aliquots and diluted to 1:625 in assay buffer (PBST

with 0.05% Tween 20, 0.1% Proclin 950 and 1% mannitol).

Microarrays were rehydrated in distilled water for 1 hour (h),

PBS for 30 minutes followed by assay buffer for 1 h. Diluted

samples (90 ul) were applied to duplicate arrays and incubated

for 1 h at 37°C with mixing (TeleShake95 platform mixer). The

cassette was then washed three times in PBST-P using a 96 well

microtiter plate washer (BioTek Instruments, Inc., Winooski, VT).

Peptide bound serum antibodies were detected using either 4.0 nM

goat anti-human IgG (H+L) conjugated to AlexaFluor 555

(Invitrogen-Thermo Fisher Scientific, Inc., Carlsbad, CA) or 4.0

nM Goat anti-human IgM (H+L) (Novus Biologicals, Centennial,

CO), conjugated to DyLight 550 in secondary incubation buffer

(0.5% casein in PBST-P) for 1 h with mixing at 37°C. After the final

incubation, slides were washed three times with PBST-P followed by

distilled water to remove residual salts. Slides were then sprayed

with isopropanol and dried by centrifugation.
Peptide microarray data extraction

Dried slides were imaged using an ImageXpress imaging system

to detect fluorescently labeled secondary antibodies. The imager

used an LED light engine (SemRock) centered at 532nm wavelength

to excite fluorophore-conjugated secondary Ab. Mapix (version

7.2.1; Innopsys, Carbonne, France) was used to place a grid

alignment file over the obtained images and extract the median

foreground pixel intensities using the central 60% of each feature.

Images were saved as TIFF files and extracted intensities saved as

GenePix results files.
Data quality checks

Images were inspected to identify arrays with artifacts and

image anomalies. The samples associated with such arrays were

re-assayed on arrays from the same production batch as the original

assay. Since each slide contains 24 arrays, additional replicates of

some samples were included on the re-assay batch to utilize the

available arrays and ensure that each cohort was adequately

represented on the individual slides.
Modeling of peptide binding using
machine learning

Predictive models were built using the machine learning

methods based on feed-forward, backpropagating fully connected

neural networks, similar to those described previously (44). Peptide

sequence was one-hot encoded by transforming each peptide into a

vector of length 256. The vector length was derived from a

maximum peptide length of 16 residue positions with 16 possible
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amino acids for each position. The amino acid present at each

position is represented as a 1 while all other elements of the vector,

including empty positions, are zero. For encoding, all peptides are

N-terminally justified as this is the free end of the peptide on the

array (peptides are attached by the C-terminal). In prior tests,

center or C-terminal justification yielded identical performance to

N-terminal justification. Feed forward neural networks were

constructed individually for each donor using R (version 4.2.2, R

Foundation for Statistical Computing, Vienna, Austria) as

programming language and utilizing TensorFlow (version 2.11.0)

and Keras (version 2.11.1) as interface packages. The NN models

were constructed using 3 hidden layers with 100 nodes each with a

10% dropout and no layer bias. RelU activation was used for each

layer. EachNNmodel was trained 10 times using a random 90:10 split

of the dataset each time. To compensate for occasionally imbalanced

binding intensity distributions on the array showing lower numbers of

strong binding peptides, the data points were weighted by the

frequency of peptides appearing in an intensity interval. To this end,

the entire intensity range was subdivided 100 equal bins and the

number of peptides falling into each binwas calculated. Theweight for

each peptide was computed using the Equation 2:

wi =
1
ffiffiffiffi

ni
p (2)

where wi is the weight of the i
th peptide and ni is the number of

peptides in the bin that the ith peptide falls into.

Accuracy of the model to predict Ab binding to the array was

evaluated by predicting the binding to the held out 10% of the data

and reported as the Pearson correlation between the measured and

predicted binding intensities. Binding to B. burg. epitopes was

accomplished applying the NN models to the B. burgdorferi B31

reference proteome (Uniprot Accession # UP000001807) that had

been represented as 10-mers with sliding window of one amino

acid offsets.
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