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Identification of cuproptosis-
related gene clusters and
immune cell infiltration in major
burns based on machine
learning models and
experimental validation
Xin Wang1, Zhenfang Xiong1, Wangbing Hong1, Xincheng Liao1,
Guangping Yang1, Zhengying Jiang1, Lanxin Jing1,
Shengyu Huang1, Zhonghua Fu1* and Feng Zhu2,3*

1Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang
University, Nanchang, Jiangxi, China, 2Department of Critical Care Medicine, Shanghai East Hospital,
Tongji University School of Medicine, Shanghai, China, 3Department of Burns, The First Affiliated
Hospital, Naval Medical University, Shanghai, China
Introduction: Burns are a global public health problem. Major burns can

stimulate the body to enter a stress state, thereby increasing the risk of

infection and adversely affecting the patient’s prognosis. Recently, it has been

discovered that cuproptosis, a form of cell death, is associated with various

diseases. Our research aims to explore the molecular clusters associated with

cuproptosis in major burns and construct predictive models.

Methods: We analyzed the expression and immune infiltration characteristics of

cuproptosis-related factors inmajor burn based on theGSE37069 dataset. Using 553

samples from major burn patients, we explored the molecular clusters based on

cuproptosis-related genes and their associated immune cell infiltrates. The WGCNA

was utilized to identify cluster-specific genes. Subsequently, the performance of

different machine learning models was compared to select the optimal model. The

effectiveness of the predictive model was validated using Nomogram, calibration

curves, decision curves, and an external dataset. Finally, five core genes related to

cuproptosis and major burn have been was validated using RT-qPCR.

Results: In both major burn and normal samples, we determined the

cuproptosis-related genes associated with major burns through WGCNA

analysis. Through immune infiltrate profiling analysis, we found significant

immune differences between different clusters. When K=2, the clustering

number is the most stable. GSVA analysis shows that specific genes in cluster 2

are closely associated with various functions. After identifying the cross-core

genes, machine learning models indicate that generalized linear models have

better accuracy. Ultimately, a generalized linear model for five highly correlated

genes was constructed, and validation with an external dataset showed an AUC

of 0.982. The accuracy of the model was further verified through calibration

curves, decision curves, and modal graphs. Further analysis of clinical relevance

revealed that these correlated genes were closely related to time of injury.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1335675/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1335675&domain=pdf&date_stamp=2024-02-12
mailto:alexzhujunchi@hotmail.com
mailto:fzh0625@163.com
https://doi.org/10.3389/fimmu.2024.1335675
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1335675
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2024.1335675

Frontiers in Immunology
Conclusion: This study has revealed the intricate relationship between

cuproptosis and major burns. Research has identified 15 cuproptosis-

related genes that are associated with major burn. Through a machine

learning model, five core genes related to cuproptosis and major burn have

been selected and validated.
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1 Introduction

Burns are one of the most destructive forms of trauma,

responsible for more than 265,000 deaths worldwide (1). More

than 95% of burns related to fires occur in low-income and middle-

income countries, especially in Africa. The high mortality rate

associated with major burns is a major cause of loss of disability-

adjusted life years (DALYs) in low- and middle-income countries

(2) Burns are not just a simple pathophysiological process but

rather a destructive injury that leads to structural and functional

defects in multiple organ systems. Burns alter metabolic balance,

immune responses, and tissue structure, triggering a cascade of

physiological responses in patients, including wound infections,

respiratory failure, and other illnesses. Physiological and

morphological changes vary according to the degree of skin

burns, and a high metabolic response can effectively reflect the

severity of burns (3). Skin burns can cause physical and mental

health problems. Currently, the treatment for major burns mainly

focuses on symptomatic supportive care. Studying the pathological

mechanisms of burns can help to identify more precise therapeutic

targets and help patients recover.

As an essential trace mineral, copper is required for a wide

variety of physiological processes in almost all cell types. Cu is an

important cofactor in various biological processes, including

mitochondrial respiration, biosynthesis, and antioxidant defense

(4). It is important to maintain the cellular copper concentration

within a relatively low range, because a rapid increase can lead to

cellular toxicity. Cuproptosis is a cell death mechanism distinct

from classical apoptosis, necroptosis, and ferroptosis (5). Studies

have shown that copper-dependent cell death occurs through the

direct binding of lipolytic components of the copper-dependent

tricarboxylic acid (TCA) cycle (6). Therefore, the intake,

distribution, and elimination of Cu are tightly controlled.

Furthermore, in humans, the accumulation of Cu and related

gene mutations are associated with pathological conditions.

Although the concept of cuprotosis was proposed in 2022, related

studies have been conducted since several years. Studies have

reported that cuprotosis plays a role in signal transduction and

regulates the etiology, severity, and progression of cancer. It not

only plays a role in chronic diseases but also participates in the
02
occurrence and development of various acute diseases, such as acute

myocardial infarction and acute spinal cord injury (7–9).

Cuprotosis, an intervention target for copper metabolism

disorders, may be a novel approach for treating various diseases.

However, the mechanisms underlying the copper surge are not

fully understood.

In the present study, we systematically examined the differential

expression and immune characteristics of cuproptosis-related genes

(CRGs) in healthy individuals and patients with major burns. Based

on the expression profiles of the 19 CRGs, we classified 553 patients

with major burns into two clusters associated with cuproptosis, and

further evaluated the differences in immune cells between the two

clusters. Subsequently, using a weighted gene co-expression

network analysis (WGCNA) algorithm, we identified cluster-

specific coproptosis-related genes and elucidated their diverse

biological functions and pathways. By comparing multiple

machine-learning algorithms, we established predictive models to

determine the risk of different molecular clusters in patients. The

performance of the predictive models was validated using a

nomogram, calibration curve, decision curve analysis (DCA), and

external datasets. Additionally, we investigated the correlation

between model-related genes and injury time. Finally, we

validated the differential gene expression in the blood of patients

with burns using qRT-PCR, providing new insights into predicting

the outcome and treatment of major burn clusters and

associated risks.
2 Materials and methods

2.1 Data collection and processing

By accessing the GEO database (10) (https://www.ncbi.

nlm.nih.gov/geo/), we obtained the relevant datasets, GSE37069

and GSE19743, and downloaded the series matrix and platform

files. The GSE37069 dataset (platform file GPL570) included

transcriptome data from 553 blood samples from patients with

major burns and 37 samples from healthy participants. The

GSE19743 dataset (platform file GPL570) included transcriptome

data of 114 blood samples from patients with major burns and 63
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from healthy participants. We used the GSE37069 and GSE19743

datasets as the training and validation sets, respectively. By using

the “limma” R package for data annotation and normalization, we

obtained gene expression files, which provided information related

to gene expression.
2.2 Differentially expressed genes and
CRGs analysis

Based on previous research on cuproptosis, we identified 19

CRGs (11, 12) After obtaining gene expression data, in R software

4.3.0, we used the “limma” package to correct the data. We

identified differentially expressed CRGs (DE-CRGs) (P<0.05)

between the major burn group and control group. We visualized

the significant DE-CRGs using the “Heatmap” package in the form

of a heatmap, and generated heatmap and box plots.
2.3 Analysis of immune cell infiltration

After obtaining gene expression data, the CIBERSORT

algorithm was applied to perform immune cell infiltration

analysis (13). Analysis included 22 types of immune cells.

Through Monte Carlo sampling, the infiltrating expression levels

of immune cells were obtained, and samples with a p-value <0.05

are considered as accurate immune cell expression levels. The

obtained gene expression levels were relative expression levels,

and the sum of the expression levels of all genes equals 1.
2.4 Immune cell differential analysis and its
correlation with CRGs

After completing the immune cell infiltration analysis,

differential analysis of immune cell infiltration was performed

based on the files obtained (P<0.05). To understand the

relationship between CRGs and immune cells in major burns,

Spearman correlation coefficient was used for correlation analysis,

considering P<0.05 as significant. The visualization of the results

was accomplished using the “ggplot2” package and producing

heat maps.
2.5 Unsupervised clustering analysis of
major burn samples

By running the “ConsensusClusterPlus” package and using the

K-means algorithm, we performed unsupervised clustering analysis

of 533 blood samples from patients with major burns. We selected

the maximum number of subtypes K (K=9) and obtained consistent

clustering scores (14). Based on the cumulative distribution

function (CDF) curve and clustering consistency score, the

optimal number of clusters was selected for further analysis.
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2.6 Gene set variation analysis and
weighted gene co-expression
network analysis

In order to understand the expression differences of CRGs in

different clustering gene sets and pathways, GSVA enrichment

analysis was performed on different genes using the “GSVA”

software package (15). The “limma” R software package was used

to score the GSVA results, and the scores were adjusted. After

performing pathway differential analysis, pathways with a p-value

<0.05 were retained. Finally, the top ten pathways with the most

prominent upregulation and downregulation were selected. Disease-

related modules were identified usingWGCNA, and the genes within

these modules were identified as key genes for the disease (16–18). By

using the ‘WGCNA’ package in R, we selected the top 25% of genes

with the highest variability for WGCNA. We checked for missing

values, performed sample clustering, and obtained a cluster heatmap.

We then obtained a scatter plot of power values and a scatter plot of

the fit index with power values, as well as the average connectivity

with power values. Gene clustering was conducted using the TOM

(Topological Overlap Measure) matrix with the module gene number

set to 100, allowing for dynamic module identification. We generated

a heatmap of the module genes and obtained a heatmap of the

correlations between the gene modules and traits. Subsequent

analyses were performed on the gene modules with high

correlation coefficients and low p - values.
2.7 Obtaining hub genes

Through previous WGCNAs, we obtained hub genes for major

burns and cluster analysis. The “Venn Diagram” R software package

was used to perform clustering analysis on the intersection of hub

genes from the disease to obtain the hub genes within the

intersection. A Venn diagram was used to visualize the hub

genes, and a hub gene list was created for further analysis.
2.8 Establishment of machine
learning models

We built multiple machine-learning models, including Random

Forest (RF), Support Vector Machine (SVM), Generalized Linear

Model (GLM), and Extreme Gradient Boosting (XGBoost)(19). RF

is an ensemble learning algorithm that consists of multiple decision

trees. It can manage a large number of features and samples, and is

robust against missing values and outliers (20). SVM is a common

supervised learning algorithm used for classification and regression

problems (21, 22). Generalized Linear Model establishes a linear

function between the response variable and a set of explanatory

variables using a nonlinear link function to capture the nonlinear

relationship of the response variable. It can handle different types of

response variables, and is suitable for diverse data analysis

problems. XGBoost is a machine-learning algorithm that
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combines multiple weak learners (usually decision trees) to create a

powerful learning model. Each weak learner gradually fits the

negative gradient of the error using a gradient descent (23, 24).

XGBoost incorporates techniques such as cross-validation,

regularization, and pruning to improve model generalization and

control overfitting (25, 26). For the aforementioned analysis, the

CRGs of the two clusters were obtained. The “caret” R package was

used for analysis. The data were divided into training (70%) and

testing (30%) sets. The machine learning model was built using the

training set data, the prediction function was defined, and

visualization was performed, including residual cumulative

distribution plots and boxplots for the four models. Next, the

“pROC” R package was used to plot ROC curves for the four

methods. Residual box plots and ROC curves were used to

determine the best model. Gene importance scores were

calculated using the four methods, and the top five genes were

selected as hub genes for major burns in the best model.
2.9 Column line chart and model validation

Using the “rms” R package, analyze gene expression files to

obtain a gene list, and subsequently visualize the results by creating

a column line chart. The column-line chart scores the expression of

each gene and generates the total score. The probability of disease

occurrence was predicted based on the total score. Decision curves

and decision curve analyses (DCA) were used to evaluate the

accuracy of the model.
2.10 Independent validation analysis

Similarly, the validation dataset, GSE19743 (GPL570), was

divided into groups. The training group comprised 70% of the

data while the test group comprised the remaining 30%. The

appropriate model selected from earlier is used, and the “pROC”

R package is employed to visualize the results and evaluate the

accuracy of the model on the validation dataset. In addition, we

analyzed the relationship between disease-related gene features and

injury time.
2.11 Real-time quantitative polymerase
chain reaction

Blood samples were collected from patients with major burns and

healthy controls. The RNA was extracted using a blood leukocyte

protein extraction kit (Bestbia, Shanghai, China). The RNA was then

reverse-transcribed into cDNA using the SweScript RT 1 First Strand

cDNA Synthesis Kit (with gDNA Remover) (Servicebio, Wuhan,

China) at a concentration of 3000 ng. For qRT-PCR analysis, 2 ×

Universal Blue SYBR Green qPCR Master MIX (Servicebio, Wuhan,

China) and the StepOnePlus Real-Time System (Applied Biosystems,

Marsiling, Singapore) were used. The expression levels of target genes

were normalized to b-actin. We determined the relative gene
Frontiers in Immunology 04
expression levels through the 2-DDCt method. The primer sequences

are as follows: Forward 5′- TCTCCCAAGTCCACACAGG-3′ and

reverse 5′- GGCACGAAGGCTCATCA -3′ for human b-actin,
forward 5′- CACAGGAGCAAAAGTCGGGACA-3′ and reverse 5′-
GTGTCTTCACTCTGCTTTTCTCG -3′ for human LUC7L3, forward

5′- TCCGATAGCGAGGTGGTGCGG -3′ and reverse 5′-
TGGAGTGACCTGGCATGTGCAT -3′ for human MBLAC2,

forward 5′-GTAACAAGTGCCACCAGTCTGC-3′ and reverse 5′-
TGTCCAGAGACTGCATCGGCTT -3′ for human LRRC47,

forward 5′- GAACTACGGAAAGCCGAAAAGGC -3′ and reverse

5′- CCTTCAGCTGTGCAGAATGCTC -3′ for human OFD1,

forward 5′- AATGTCATCCCTGAGTGGCACC-3′ and reverse 5′-
GCAAGTCATTCTGTGGTAAGCCT -3′ for human USPL1.
2.12 Ethics statement

The study design was approved by the Committee of Clinical

Ethics of Nanchang First Hospital [ethics number: (2023)

CDYFYYLK (08-029)]. All clinical experimental procedures were

conducted in accordance with Ethics Committee regulations.
2.13 Statistical analysis

GraphPad Prism 8.0 software (San Diego, CA, USA) was used

for graphing, calculations, and statistical analysis of the qRT-PCR

results. Student’s t-test was used to compare the mean values of

different groups. Statistical significance was set at p < 0.05.
3 Results

3.1 DE-CRGs expression analysis in
major burn

In this study, the “Limma” R package was used to identify

differentially expressed CRGs in the dataset GSE37069. A detailed

flowchart of the research procedure is shown in Figure 1. The

selection standard was set at |log2 FC| > 1 and p-value < 0.05. Box

plots and heat maps (Figures 2A–C) were generated to visualize

differential gene expression. Among the 19 CRGs, 17 CRGs were

associated with major burns and 15 CRGs showed significant

differential expression, with seven genes downregulated (ATP7A,

GLS, LIAS, DBT, PDHB, FDX1, and LIPT1) and eight upregulated

genes (CDKN2A, PDHA1, DLST, SLC31A1, DLD, NLRP3, ATP7B,

and MTF1). Subsequently, correlation analysis was performed on

these differentially expressed CRGs to explore the interactions

between the cuproptosis regulatory factors. Surprisingly, some

cuproptosis-related regulatory factors, such as LIPT1, FDX1,

PDHB, DBT, LIAS, and GLS, exhibited strong synergistic effects.

However, CDKN2A exhibited strong antagonistic effects against

DBT, LIAS, and GLS. The gene network is depicted in the figure

(Figures 2D, E).
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3.2 Analysis of immune cell infiltration in
patients with major burns

To analyze the changes in immune cells in patients with major

burns, we performed a differential analysis of immune cell

infiltration. The results showed elevated expression levels of naïve

B cells, plasma cells, regulatory T cells (Tregs), monocytes,

macrophages M0, eosinophils, and neutrophils among the 22

immune cell types (Figures 3A, B) in major burns. This suggests
Frontiers in Immunology 05
that immune cells play a role in disease progression after major

burns. Furthermore, we performed correlation analysis and found

that several CRGs were closely correlated with immune cells

(Figure 3C). For example, ATP7A was significantly associated

with memory B cells, eosinophils, macrophages M1, activated

mast cells, resting mast cells, monocytes, neutrophils, activated

NK cells, resting NK cells, plasma cells, CD4 memory activated T

cells CD4 memory resting, T cells CD8, T cells, gamma delta T cells,

and regulatory T cells (Tregs) (P<0.0001).
FIGURE 1

The study flow chart.
A B

D EC

FIGURE 2

Identification of differentially expressed CRGs in patients with major burn. (A) The expression patterns of 15 DE-CRGs were presented in the
heatmap. (B) Boxplots showed the expression of 17 major burn-related CRGs between the control group and the major burn group. (C) The location
of 19 CRGs on chromosomes. (D) Correlation analysis of 15 differentially expressed CRGs. Red and green colors respectively represent positive and
negative correlations. The correlation coefficients were marked with the area of the pie chart. (E) Gene relationship network diagram of 15
differentially expressed CRGs. (*p<0.05, **p<0.01, ***p<0.001).
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3.3 Identification of cuproptosis clusters in
major burns

Consensus clustering is a component of precision medicine and

systems biology used to define patient populations or biological

molecules. Consensus clustering is a widely used integrated

approach that combines outputs from multiple runs of

nondeterministic clustering algorithms (27, 28). We applied

CRGs to group samples of patients with major burns and found

that when the value of k was 2 (k = 2), clustering was the most stable

(Figure 4A). The CDF curve showed minimal fluctuations within

the range of consistency index from 0.2 to 0.9 (Figures 4C, D).

Furthermore, when k = 2, the consistency scores for each subtype

reached their highest values (Figure 4B). PCA results indicated

significant differences between these two clusters (Figure 4E).
3.4 Differentiation of cuproptosis
regulators and immune infiltration
between the cuproptosis clusters

Based on the 15 DE-CRGs, we conducted a differential analysis

of clusters 1 and 2 to study the expression levels of CRGs and

immune cell infiltration in both clusters. The results showed that

MTF1, and CDKN2A were highly expressed in cluster 1, whereas

ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, DLD, PDHA1,

PDHB, GLS, and DBT were highly expressed in cluster 2

(Figures 5A, B). In terms of immune cell infiltration analysis,

there were also significant differences in the levels of immune cell

infiltration between Clusters 1 and 2. Cluster 1 had relatively higher

expression levels in plasma cells, T cells regulatory (Tregs),
Frontiers in Immunology 06
monocytes, macrophages M0 and resting mast cells resting,

whereas cluster 2 had relatively higher expression levels in B cells

naïve, T cells CD4 naïve, T cell CD4 memory resting, T cells CD4

memory activated, T cells gamma delta, resting NK cells resting,

and Neutrophils (Figures 5C, D).
3.5 Biological characteristics between two
cuproptosis clusters

We performed GSVA enrichment analysis on different CRGs

using the “GSVA” software package. We used the “limma” R

package to score the GSVA results and adjusted the scores

accordingly. After conducting pathway differential analysis,

pathways with a p-value < 0.05 were retained. Finally, we selected

the top 10 pathways with the most significant upregulation and

downregulation. Functional enrichment results revealed that ATP

ion channel activity and smooth muscle cell proliferation were

significantly upregulated in cluster 2, whereas the lipid metabolism

process and B cell positive regulation were significantly upregulated

in cluster 1 (Figure 6A). Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis revealed that the ribosome pathway

showed the most significant upregulation in cluster 1, whereas the

adherens junction pathway showed the most significant

upregulation in cluster 2 (Figure 6B).
3.6 Gene modules screening and
co-expression network construction

We established co-expression networks and modules using the

WGCNA algorithm in normal individuals and patients with major
A

B C

FIGURE 3

Analysis of immune cell infiltration in patients with major burn. (A) CIBERSORT analysis revealed differences in the abundance of 22 infiltrating
immune cell types between the major burn and control groups. (B) Boxplots showed the differences in immune infiltrating between major burn and
control groups. (C) correlation analysis between 15 DE- CRGs and infiltrated immune cells. *p<0.05, **p<0.01, ***p<0.001.
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burns to identify key gene modules related to major burns. The

variance in gene expression in the GSE37069 dataset was evaluated,

and the top 25% of genes with the highest variance were selected for

further analysis. Co-expression gene modules were identified when

the soft threshold was set to 10 and the scale-free topology fit index
Frontiers in Immunology 07
(R2) was 0.9, co-expression gene modules were identified

(Figure 7A). Twelve different color-coded co-expression modules

were dynamically obtained, and a heatmap of the topological

overlap matrix (TOM) was generated (Figures 7B–D). The blue

module comprised 809 genes closely associated with major burns,
A B

DC

FIGURE 5

Comparison of CRGs expression and immune cell infiltration between molecular subtypes of major burns. (A) Distinct CRGs expression profiles were
observed between Cluster 1 and Cluster 2. (B) Boxplots showed the expression of 15 CRGs between two cuproptosis clusters. (C) The difference in
the abundance of 22 infiltrating immune cell types between the two clusters. (D) Boxplots showed the differences in immune infiltrating between
two cuproptosis clusters. *p<0.05, **p<0.01, ***p<0.001.
A B

D EC

FIGURE 4

Identification of cuproptosis-related molecular clusters in major burns. (A) Consensus clustering matrix when k = 2. (B–D) the score of consensus
clustering (B) Representative cumulative distribution function (CDF) curves (C), CDF delta area curves (D). (E) PCA visualizes the distribution of
two subtypes.
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including 15 core genes (Figure 7E). In the gene module, there was a

strong positive correlation between the blue module and genes

related to the module (Figure 7F).

Furthermore, theWGCNA algorithm was used to analyze the key

gene modules closely related to CRGs clustering. We selected b = 10

and R2 = 0.9 as the most suitable soft-thresholding parameters to

construct the scale-free network (Figure 8A). Specifically, 10 modules

were identified as significant, and the heat map illustrates the TOM of

all module-related genes (Figures 8B–E). Analysis of module-clinical

features (Clusters 1 and 2) revealed a high correlation between the

blue module (926 genes) and major burn clusters, including 307 core

genes (Figure 8F). Finally, the core genes intersecting between the two

modules were obtained using the “Venn” package in R, resulting in 10

genes (Figure 9A).
3.7 Construction of machine
learning models

For the purpose of further identifying subtype-specific genes with

high diagnostic value, we generated expression profiles of ten cluster-

specific DEGs from the major burn training cohort and established four

validated machine learning models (RF, SVM, GLM, XGBoost). The

“DALEX” package was used to interpret the four models and plot the

residual distribution of each model on the test set. The residual values of

the four machine-learning models were relatively low (Figures 9B, C).

Subsequently, the top ten significant feature variables for each model

were ranked based on the root mean square error (RMSE) (Figure 9D).

The discriminative performance of the four machine learning algorithms

was assessed by performing 5-fold cross-validation on the training

set (GSE37069 dataset) and calculating the receiver operating

characteristic (ROC) curves (Figure 9E). The areas under the ROC

curve (AUC) for the four models were as follows: RF (AUC = 0.982),

SVM (AUC = 0.967), XGB (AUC = 0.982), and GLM (AUC = 0.989).

Based on the residual and AUC values, the GLM machine learning

model exhibited the best performance in distinguishing between different

clusters of patients with major burns. The top five genes (LUC7L3,
Frontiers in Immunology 08
MBLAC2, LRRC47, OFD1, and USPL1) ranked in the GLM were

selected as predictive genes for further analyses.
3.8 Assessment of machine
learning models

To further assess the predictive efficiency of the GLM, we

initially created a nomogram to estimate the risk of cuproptosis

clusters in 533 blood samples from patients with major burns

(Figure 10A). The predictive efficiency of the nomogram model

was assessed using calibration and DCA. The calibration curve

showed minimal discrepancy between the actual major burn

clustering risk and the predicted risk (Figure 10C), and the DCA

demonstrated that our nomogram had high accuracy and could

provide guidance for clinical decision-making (Figure 10B).

Subsequently, we validated our 5-gene prediction model using

two blood tissue datasets: one from a normal group and the other

from patients with major burns. The ROC curve showed that the

AUC of the 5-gene prediction model in the GSE19743 dataset was

0.982 (Figure 10D), indicating that our diagnostic model was

equally effective in distinguishing patients with major burns from

normal individuals. Based on the clinical characteristics, the

relationship between major burn injuries (Figures 11A–E) and the

time of injury was predicted using five genes. LUC7L3 (R=-0.24,

P=0.01), LRRC47 (R=-0.23, P=0.004), and USPL1 (R=-0.29,

P=0.0018) showed a negative correlation with the time of

burninjury (Figures 11A, C, E).
3.9 Differential expression of the
signature genes

To further validate this finding, we used RT-qPCR to identify the

relative mRNA expression levels of the five target genes in six pairs of

samples from normal and major burn conditions. The results showed

Significant differences were observed in the expression levels of
A B

FIGURE 6

GSVA t-value ranking differences in biological characteristics between two cuproptosis clusters. (A) Differences in biological functions between
Cluster1 and Cluster2 samples ranked by t-value of GSVA method. (B) Differences in hallmark pathway activities between Cluster1 and Cluster2
samples ranked by t-value of GSVA method.
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LUC7L3, MBLAC2, LRRC47, OFD1, and USPL1 between the normal

and major burn groups, with decreased expression observed in the

major burn groups (Figure 12).
4 Discussion

Major burns involving large areas can lead to shock, infection,

sepsis, and even death (29). Despite improvements in burn wound

care and infection control measures over the past few decades, the

mortality rate of critically ill patients with burns remains high and

challenging to reduce (30). The treatment of major burns mainly

focuses on symptomatic management and empirical medication,

and it is difficult to assess patient prognosis. Therefore, it is

particularly important to understand the specific molecular

clusters and personalized treatments related to changes in the

body after burns. Cuproptosis is a Cu-dependent form of cell

death associated with mitochondrial metabolism. Multiple studies
Frontiers in Immunology 09
have shown a close association between cardioproptosis and the

occurrence and progression of various diseases, such as

atherosclerosis, pulmonary hypertension, epilepsy, and tumors

(31–33). Additionally, patients with sepsis may have elevated

levels of Cu ions in their body.

This study investigated the expression profiles of CRGs in the

blood of healthy individuals and patients with major burns for the

first time. Compared with normal subjects, 15 CRGs were found to

be abnormal in patients with major burns, including ATP7A, GLS,

LIAS, DBT, PDHB, FDX1, LIPT1, CDKN2A, PDHA1, DLST,

SLC31A1, DLD, NLRP3, ATP7B, and MTF1. This suggests that

CRGs play an important role under post-burn conditions.

Subsequently, we analyzed the correlation between CRGs to

elucidate the relationship between cuproptosis and major burns.

Correlation analysis revealed significant synergistic or antagonistic

effects among the cuproptosis regulatory factors.

In the analysis of immune cell infiltration among the 22 cell

types, the expression levels of B cells, plasma cells, regulatory T cells
A B

D

E F

C

FIGURE 7

Co-expression network of differentially expressed genes in major burns. (A) Selection of soft threshold power. (B) Dendrogram of co-expression
module clustering. (C) Representative clustering of module characteristic genes. (D) Representative heat map of correlations between 12 modules.
(E) Correlation analysis between module characteristic genes and clinical states. Each row represents a module, and each column represents a
clinical state. (F) Scatter plot of module membership in the blue module and significance of genes in major burns.
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(Tregs), monocytes, macrophages M0, eosinophils, and neutrophils

were elevated in burn patients. The imbalance between

hyperimmune response and immunosuppression contributes to

increased mortality in critically ill patients (34). Aberrant CD4+

and CD8+ T-cell responses are major components of acquired

immune response dysregulation, and immune dysfunction in

Tregs contributes to pathogenesis (35). It has been reported that

improving the heterogeneity characteristics of Tregs through

intervention strategies can improve the prognosis of sepsis (36).

Additionally, based on the expression profiles of the 15 CRGs,

we utilized unsupervised clustering analysis to elucidate distinct

copper imbalance regulatory patterns based on the CRGs

expression landscape in patients with major burns and identified

two distinct copper imbalance-related clusters. In Cluster2, there

had elevated immune scores and relatively high levels of immune

infiltration. Expression of ATP7B, ATP7A, SLC31A1, FDX1, LIAS,

LIPT1, DLD, PDHA1, PDHB, GLS and DBT was upregulated in

Cluster2. Moreover, immune cell infiltration analysis revealed a
Frontiers in Immunology 10
high expression of B cells naïve, T cells CD4 naïve, T cell CD4

memory resting, T cells CD4 memory activated, T cells gamma

delta, resting NK cells resting, and Neutrophils in Cluster2. KEGG

pathway analysis revealed that Cluster2 was primarily enriched in

biological processes related to adherens junctions, long-term

potentiation, and insulin signaling pathways, which are associated

with post-burn hyperglycemia (37, 38). On the other hand, Cluster1

was characterized by ribosome and fatty acid metabolism,

suggesting an impact of major burns on multiple cellular

metabolic pathways (34).

In recent years, machine learning models based on

demographic and imaging indicators have been increasingly used

to predict disease prevalence. Studies have shown that a multifactor

analysis, which considers the relationships between variables, has

lower error rates and more reliable results than a single-factor

analysis (39). In this study, we assessed and compared the predictive

performance of four specifically chosen machine learning classifiers

(RF, SVM, GLM, and XGB) based on cluster-specific GLM
A B

D
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FIGURE 8

Co-expression network of differentially expressed genes between two clusters of CRGs. (A) Selection of soft threshold power. (B) Dendrogram of
co-expression module clustering. (C) Representative clustering of module characteristic genes. (D) Representative heat map of correlations between
10 modules. (E) Correlation analysis between module characteristic genes and clinical states. Each row represents a module, and each column
represents a clinical state. (F) Scatter plot of module membership in the blue module and significance of genes in Cluster1.
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expression profiles and established a GLM-based predictive model

that demonstrated the highest predictive capability (AUC = 0.989).

This indicates that machine learning based on GLM performs

satisfactorily in predicting major burn-induced physiological

changes in the body. Subsequently, five important variables

(LUC7L3, MBLAC2, LRRC47, OFD1, and USPL1) were selected

to construct a GLM model based on these five genes. LUC7L3 is a

splicing factor containing arginine- and glutamic acid-rich (RE) and

arginine- and serine-rich (RS) domains. Currently, there is limited

research on LUC7L3, although it is known that LUC7L3 is

upregulated in heart failure (40). Knockdown of LUC7L3 has

been identified as a target gene of miR-370-5p. The alternate

expression of LUC7L3 reverses the regulatory effect of miR-370-

5p on the phenotype of breast cancer cells, making it a potential new

target for cancer treatment (41). LUC7L3 also inhibits HBV virus

replication (42). However, the role of LUC7L3 in severe burns and

the development of drug targets still require further research.

MBLAC2 stands for Metallo-b-lactamase domain-containing

protein 2, which has potent acyl-CoA thioesterase activity in vitro

(43). There are limited reports on MBLAC, which may be associated

with myoclonic epilepsy (44). It is worth noting that MBLAC2 is a

common off-target of hydroxamic acid drugs, indicating that

MBLAC2 has potential for drug development (45). LRRC47

contains leucine-rich repeat sequences, which are structural
Frontiers in Immunology 11
motifs involved in protein-protein interactions. LRRC47 plays a

role in various cellular processes, including cell adhesion, signal

transduction, and immune response regulation (46). It interacts

significantly with PDZ-binding kinase (PBK) and influences the

prognosis and immune infiltration of liver cancer (47). It is closely

related to the growth of prostate cancer cells and shows good

therapeutic potential (48). The OFD1 gene (Oral-Facial-Digital

Syndrome 1 gene) is responsible for Oral-Facial-Digital Syndrome

type 1. OFD1 is located on the X chromosome in humans and

encodes OFD1 plays crucial roles in early embryonic development.

Mutations in OFD1 can lead to OFD1 syndrome, which is a rare

genetic disorder. In addition to its role in early embryonic

development, OFD1 plays an important role in cellular processes

such as autophagy (49–51). In particular, OFD1 is the first example

of a ciliopathy protein that controls protein expression and

autophagy/proteasome degradation, providing directions for the

treatment of various diseases (52). USPL1 (Ubiquitin-Specific

Peptidase-Like 1) is a gene that encodes a protein. USPL1 belongs

to the protease family and its structure is similar to that of specific

proteases. It plays a role in cellular deubiquitination by removing

ubiquitin tags from proteins. Ubiquitination is an important cellular

mechanism that regulates protein stability, function, and subcellular

localization (53). USPL1 participates in various biological processes

including DNA repair, cell cycle regulation, and signal transduction.
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FIGURE 9

Construction and evaluation of RF, SVM, GLM, and XGB machine models. (A) Identification of the intersected genes of disease WGCNA and cluster-
WGCNA. The intersection of hub genes in the two modules yielded 10 genes. (B) Cumulative residual distribution of each machine learning model.
(C) Boxplots showed the residuals of each machine learning model. Red dot represented the root mean square of residuals (RMSE). (D) The
important features in RF, SVM, GLM, and XGB machine models. (E) ROC analysis of four machine learning models based on 5-fold cross-validation in
the testing cohort.
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Mutations or abnormal expression of this gene are associated with

certain diseases, such as tumors, neurodegenerative diseases, and

immune system disorders (54–56). USPL1 has potential for

research in various diseases. After major burns, the internal

environment of the body undergoes significant changes, making it
Frontiers in Immunology 12
crucial to predict the prognosis and treatment. Therefore, we

conducted a correlation analysis of the time of injury in patients

with major burns by using five predictive genes. Although our study

did not directly demonstrate the relationship between the five core

genes and the severity and prognosis of burns, such as infection,
A B

DC

FIGURE 10

Validation of the 5-gene-based GLM model. (A) Construction of a nomogram for predicting the risk of major burn clusters based on the 5-gene-
based GLM Model. (B, C) Construction of calibration curve (B) and DCA (C) for assessing the predictive efficiency of the nomogram model. (D) the
ROC curve of the five genes of the GLM model. the ROC curve of the five genes of the GLM model exhibited good performance (AUC= 0.982).
A B

D E

C

FIGURE 11

Correlation analysis between gene expression and disease status in an independent dataset of patients with major burn. (A–E) Correlation between
the 5 genes and active/latent major burn. LUC7L3, LRRC47 and USPL1 were negatively correlated with major burn.
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respiratory failure, organ dysfunction, and wound healing, we

proved that the levels of LUC7L3, LRRC47, and USPL1 were

negatively correlated with the course of the disease (p<0.05).

However, the course of the disease is often positively correlated

with the severity of the disease. The complex relationship between

these genes and the disease, as well as their mechanisms, require

further analysis and experimental research. In conclusion, the GLM

based on these five genes is a satisfactory indicator for assessing the

pathological outcomes of patients with major burns. This study

contributes to predicting the prognosis and treatment targets for

patients with severe burns, laying the foundation for their clinical

application, and has research potential.

This study has some limitations. First, this study was based on a

comprehensive bioinformatics analysis and preliminary experimental

validation. Further clinical or experimental evaluations with larger

sample sizes are needed to validate the expression levels of CRGs.

Therefore, additional clinical features are required to improve the

performance and robustness of the prediction model. Furthermore,

improving the accuracy of cuproptosis-related clusters requires

additional samples from major burns. Finally, the potential

correlation between CRGs and immune cell infiltration is not fully

understood and requires further investigation.
5 Conclusions

Our study revealed the relevance between CRGs and infiltrating

immune cells, highlighted significant immune heterogeneity among

major burn patients in different cuproptosis-related clusters. The

GLM model based on five genes emerged as the best machine

learning model for evaluating major burn patients. We provided

previously unrecorded evidence and conducted experimental

validation to demonstrate the role of cuproptosis in major burns.
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