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Herrera-López B, Pineda C,
Martı́nez-Nava GA and López-Reyes A (2024)
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Introduction: Serine proteases play a critical role during SARS-CoV-2 infection.

Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and

serpine family E member 1 (SERPINE1) could help to elucidate the contribution of

variability to COVID-19 outcomes.

Methods: To evaluate the genetic variants of the genes previously associated with

COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-

CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675,

rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were

genotyped using the Open Array Platform. The association of polymorphisms with

disease outcomes was determined by logistic regression analysis adjusted for

covariates (age, sex, hypertension, type 2 diabetes, and obesity).

Results: According to our codominant model, the GA genotype of rs2227667

(OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667
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(OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role

against disease. However, the rs2227692 T allele and TT genotype SERPINE1

(OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007;

respectively) were associated with a decreased risk of death. Similarly, the

rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6;

p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was

associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02).

Discussion: Our data suggest that the rs75603675 TMPRSS2 and rs2227692

SERPINE1 polymorphisms are associated with a poor outcome. Additionally,

rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical

COVID-19 patients, and this genetic variant could contribute to the identification

of new pharmacological targets and treatment strategies to block the inhibition

of TMPRSS2 entry into SARS-CoV-2.
KEYWORDS

COVID-19, SERPINE1, TMPRSS2, Polymorphism, SARS-CoV-2
1 Introduction

Serine protease cascades control coagulation, and innate

immune responses are increased during severe SARS-CoV-2

infection (1, 2). Different enzymes with serine protease activity,

such as transmembrane protease serine 2 (TMPRSS2), have been

described as critical determinants of spike (S) protein shedding in

the SARS-CoV-2 virus and therefore trigger the infection process

via the endosomal route or by membrane fusion with the host cell

(3, 4). TMPRSS2 expression is crucial for the spread and

pathogenesis of SARS-CoV-2. The spike protein of SARS-CoV-2

can be cleaved by circulating thrombotic proteases, thrombin and

Factor X, as well as the thrombotic protease plasmin, which

contributes to severe COVID-19 complications (1, 5).

The TMPRSS2 gene is located on chromosome 21q22.3 and

comprises 14 exons and 13 introns; its transcriptional activity is

controlled by androgen receptors, which play roles in

carcinogenesis (6). The enzymatic activity of TMPRSS2 in viral

infection and its inhibition have been proposed as novel

mechanisms to reduce mortality associated with SARS-CoV-2

infection (7, 8). In this sense, a nonpharmacological strategy to

regulate the activity of TMPRSS2 by its endogenous inhibitor

plasminogen activator inhibitor-1 (PAI-1) for influenza and

coronavirus infections has recently been reported (9).

The serpine family E member 1 (SERPINE1) gene encodes

plasminogen activator inhibitor-1 (PAI-1), whose principal

physiological activity is to inhibit urokinase plasminogen activator

(uPA) and tissue-type plasminogen activator (tPA) to further

regulate the breakdown of blood clots. Therefore, the modulation
02
of uPA and tPA could control the production of plasmin, D-dimer,

and ferritin, which are associated with coagulopathies and adverse

outcomes in patients with COVID-19 (10). The presence of D-dimer

guarantees that coagulation is amplified and that fibrin deposits are

ultimately stabilized (11, 12). SERPINE1 and other serine protease

inhibitors have the potential to inhibit TMPRSS2 (5).

The SERPINE1 gene is located on chromosome 7q22.1, and

some polymorphisms in the SERPINE1 promoter region have been

associated with severe COVID-19 (13, 14) as well as with a

suboptimal fibrinolytic response (15, 16).

Genetic polymorphisms in these genes could modulate genetic

predisposition to infection and virus clearance in the host (17). The

rs12329760 polymorphism is present in the exonic splicing enhancer

site srp40 and could increase the chance of expression due to

potential disruption of the exonic splicing enhancer site. rs2070788

and rs75603675 were reported to have higher levels of TMPRSS2

expression and structural changes (13, 17). rs2227631 is located in the

promoter and is implicated in PAI regulation. rs5557667 is located in

the intronic region between exons 3-4, rs2070682 is located in introns

5-6, and rs222692 is located in introns 7-8 (14, 18).

Given the critical participation of TMPRSS2 and SERPINE1 in

SARS-CoV-2 infection, it is relevant to investigate whether their

genetic variants could be associated with the severity of clinical

manifestations and/or fatal outcomes in COVID-19 patients. The

aim of this study was to determine the associations of the

polymorphisms rs2070788, rs75603675 and rs12329760 of the

TMPRSS2 gene and the polymorphisms rs2227631, rs2227667,

rs2070682 and rs2227692 of the SERPINE1 gene with COVID-19

severity and their relationships with inflammatory biomarkers.
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2 Materials and methods

2.1 Setting and participants

We conducted a cross-sectional study including 1536 patients

from different Mexican institutions of governmental health care

from June 2020 to March 2021. Nonprobability sampling was

performed for unvaccinated patients. The inclusion criteria were

as follows: individuals who were not familiar with COVID-19,

independent of their sex, were aged ≥18 years with clinical

features of COVID-19, and had a positive qRT–PCR test from a

nasopharyngeal swab. Participant enrollment was performed in the

following public hospitals of the Mexican governmental health

system located in Mexico City: Instituto Nacional de

Rehabilitación Luis Guillermo Ibarra Ibarra (17/20 AC); Instituto

Nacional de Cardiologıá Ignacio Chávez (20–1202); Hospital

Central Militar (045/2020); Instituto Nacional de Ciencias

Médicas y Nutrición Salvador Zubirán (REF 3340); and Hospital

General Dr. Manuel Gea González (CONBIOETICA09-CEI-

024-20161215).

The exclusion criteria were pregnancy and incomplete clinical

records. The participants were classified according to disease

severity as previously described (19). All demographic and clinical

data were obtained from the clinical records of each

included patient.

This research complied with the Declaration of Helsinki and

was approved by the participating health institutions’ ethics and

research committees. In addition, all participants provided written

informed consent before agreeing to participate in the study.
2.2 Blood, serum, and DNA
sample processing

Peripheral blood samples were collected from each participant

at the hospital’s triage for DNA and serum isolation. Genomic DNA

was isolated using a specialized commercial kit (QIAmp DNA

Blood Mini Kit, part number 51106, Qiagen, Hilden, Germany).

The quality of the DNA samples was evaluated by the 260/280 nm

absorbance ratio, and 1% agarose gels were stained with SYBR®

Green (Invitrogen, CA, USA). Then, the DNA concentration was

quantified using a Thermo Scientific NanoDrop spectrophotometer

to measure the absorbance at wavelengths ranging from 260 to 280

nm; the quality of the samples ranged from 1.8-2.0, and the

concentration was adjusted to 20 ng/ml. In addition, a vacutainer

tube with SST II Advance gel was used for serum isolation. Serum

samples were separated and stored at -80°C until further use.
2.3 Selection of single nucleotide
polymorphisms (SNPs)

The polymorphisms of TMPRSS2 (rs2070788, rs75603675,

rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682,

rs2227692) were selected on the basis of their previous scientific
Frontiers in Immunology 03
evidence of associations with different diseases in any population

that included independent genetic studies from 2003–2020. The

included polymorphisms had to present a minor allele frequency

(MAF) ≥5%, according to the 1000 Genomes Project or Hap map in

the Mexican population (MXL) or the Iberia (IBS) population (20).

For genotyping, 10 ng/ml genomic DNA was transferred into

genotyping OpenArray plates, which previously contained the

specific genotyping primers and probes, using the AccuFill

system. Real-time PCR amplification was performed according to

the supplier’s protocol using the Open Array Platform through a

Quant Studio 12 K Flex System (Thermo Fisher Scientific,

Waltham, MA, USA), and the results were analyzed using

TaqMan Genotyper v1.6 software.
2.4 Statistical analysis

We performed an exploratory bivar ia te ana lys i s .

Nonparametric variables are reported as medians (p50) with

interquartile ranges (IQRs). We used the Kruskal−Wallis test for

continuous variables, while categorical variables were evaluated

with the chi-square test. Hardy−Weinberg equilibrium was tested

for all SNPs with a mild outcome. Linkage disequilibrium

estimations between SNPs and haplotypes were performed with

Haploview V4.2 Software (Broad Institute of Massachusetts

Institute of Technology and Harvard University, Cambridge,

MA, USA).

Binary logistic regression analysis was applied to determine the

genetic associations with the outcomes of patients with COVID-19.

The main inherence models were considered and adjusted for risk

confounding variables such as age, sex, obesity, type 2 diabetes, and

hypertension. In addition, the final models were assessed using the

Hosmer−Lemeshow goodness-of-fit test.

To determine the association of SERPINE1 polymorphisms

with increased D-dimer levels, we conducted a logistic analysis

adjusted for age, sex, obesity, type 2 diabetes, and hypertension,

stratifying D-dimer according to serum levels. The cutoff points for

high and low concentrations were ≥500 ng/mL and <500 ng/mL,

respectively (21).

The statistical analysis used STATA v.16 (StataCorp, Texas,

USA). A P value < 0.05 indicated statistical significance.
3 Results

3.1 Patients and clinical traits

We enrolled 1,728 patients; however, subjects with incomplete

data were excluded (n=172). For the final analysis, 1,536 patients

were classified according to disease severity into mild (35%), severe

(33%), critical (18%) and deceased (14%) groups. Sixty-four percent

of the total population were males, and the median age was 55 years

(IQR=45-65). However, the median age of the deceased group was

67 years (IQR=57-75.5). Further relevant clinical and laboratory

features are depicted in Table 1.
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Martı́nez-Gómez et al. 10.3389/fimmu.2024.1335963
Our data revealed that the highest levels of D-dimer

(p50 = 691.41 ng/mL (IQR=238-1242)), ferritin (p50 = 692.7 ng/

mL (IQR=361.7-1067.4)), LDH (p50 = 407 ng/mL (IQR=317-

484.8)) and C-reactive protein (p50 = 22.1 mg/L (IQR=14.4-

41.9)) were detected in the deceased group (Table 1). Although

the laboratory parameters tended to increase with disease severity,

this was not the case for D-dimer in the critical group.
3.2 Genotypes and allelic frequencies by
disease severity and linkage disequilibrium

The genotypic and allelic frequencies among the COVID-19

groups were assessed for each TMPRSS2 (rs2070788, rs75603675,

rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682,

rs2227692) polymorphism (Supplementary 1). We identified two

genetic variants out of seven with a statistically significant difference

in allelic frequency distribution among COVID-19 patients,

corresponding to rs2070788 (P=0.003) and rs7560375 (P=0.04) of

the TMPRSS2 gene. Nevertheless, only rs2070788 was also

significant for genotype distribution (P=0.009).

Our data showed that only the TMPRSS2 rs75603675 and

SERPINE1 rs2227667 genotypes were not in Hardy−Weinberg

equilibrium (P=0.03 and P=0.02, respectively). The SERPINE1

polymorphisms rs2227667, rs2070682 and rs2227692 displayed

linkage disequilibrium (LD), with D´ values of 0.99 and r2 = 0.74

(Figure 1). The frequencies of the haplotypes were 27% for ATC,

27% for ATT, 13% for GTC, 13% for GCC, 10% for GTT and 10%

for GCT. The TMPRSS2 polymorphisms did not show an LD.
Frontiers in Immunology 04
3.3 Logistic regression analysis of TMPRSS2
and SERPINE1 polymorphisms in COVID-
19 patients

Logistic regression analysis adjusted for age, sex, and

comorbidities (hypertension, type 2 diabetes, and obesity) revealed

a statistically significant association between the TMPRSS2 rs2070788

and rs75603675 genetic variants and between the SERPINE1

rs2227631, rs222667 and rs2227692 and critical and deceased

outcomes. Table 2 summarizes the significance of each TMPRSS2

and SERPINE1 polymorphism with respect to COVID-19 outcomes.
TABLE 1 Clinical parameters and anthropometric characteristics of the population.

Total
n = 1,536
(100%)

Mild
n = 543
(35%)

Severe
n = 503
(33%)

Critical
n = 278
(18%)

Deceased
n = 212
(14%)

P value

Age (years)*
55

(45-65)
51

(39-63)
54

(45-63)
56

(47-64)
67

(57-75.5)
<0.001

Sex
Male**

979 (64%) 316 (58%) 329 (65%) 191 (69%) 143 (67%) 0.007

Type 2 diabetes** 478 (31%) 124 (23%) 167 (33%) 99 (36%) 88 (41%) <0.001

Obesity** 568 (37%) 203 (37%) 195 (38%) 113 (41%) 57 (27%) 0.009

Hypertension** 506 (33%) 141 (26%) 162 (32%) 96 (34%) 107 (50%) <0.001

D-Dimer (ng/mL)*
593.5

(283-1016)
586

(330.5-951.5)
609

(301-1070)
492

(87-951)
691.4

(238-1242)
0.02

Ferritin (ng/mL)*
503.8

(253.9-913.3)
385

(165-724)
521.2

(266.2-955.1)
572.2

(376.2-1000.8)
692.7

(361.7-1067.4)
<0.001

LDH
(U/L)*

300.5
(212.1-427)

151
(122-190)

282.1
(221-372)

391.8
(280-482)

407
(317-484.8)

<0.001

Platelets
Millions/mm3*

234.5
(178.5-303.5)

222
(182-264)

237
(181-319)

245
(186-322)

216
(164-290)

0.01

C-Reactive Protein (mg/L)*
16.34

(5.41-36.3)
2.8

(1.1-10.2)
17.3

(6.5-71.5)
19.1 (8.7-33.1)

22.1
(14.4-41.9)

<0.001
fro
*Kruskal−Wallis test; **Chi−square test. The value in bold denotes statistical significance.
FIGURE 1

Linkage disequilibrium of rs2227631, rs2227667, rs2070682 and
rs2227692 of the SERPINE1 gene. The D´ value showed a LD of
rs2227667, rs2070682 and rs2227692.
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TABLE 2 Associations of TMPRSS2 and SERPINE1 polymorphisms with COVID-19 severity.

Polymorphism Severe Critical Deceased

OR* 95% CI P OR* 95% CI P OR* 95% CI P

TMPRSS2

rs2070788

G 1 1 1

A 0.86 0.72-1.03 0.12 0.76 0.61-0.94 0.02 1.18 0.91-1.53 0.2

GGc 1 1 1

GAc 0.84 0.66-1.17 0.40 0.72 0.51-1.00 0.05 1.04 0.67-1.61 0.85

AAc 0.73 0.51-1.07 0.11 0.64 0.41-0.99 0.05 1.38 0.84-2.3 0.21

GA+AAd 0.84 0.64-1.11 0.22 0.69 0.51-0.95 0.03 1.14 0.76-1.72 0.51

AAr 0.79 0.57-1.11 0.18 0.77 0.52-1.15 0.20 1.13 0.88-2.07 0.17

rs75603675

C 1 1 1

A 0.88 0.72-1.08 0.25 0.88 0.68-1.13 0.33 1.27 0.96-1.69 0.08

CCc 1 1 1

CAc 0.82 0.62-1.08 0.17 0.85 0.61-1.18 0.34 1.04 0.71-1.54 0.83

AAc 0.88 0.56-1.4 0.60 0.86 0.49-1.52 0.61 1.97 1.07-3.6 0.03

CA+AAd 0.83 0.65-1.08 0.17 0.85 0.62-1.16 0.32 1.19 0.83-1.72 0.34

AAr 0.95 0.61-1.48 0.82 0.92 0.53-1.60 0.77 1.93 1.07-3.47 0.03

rs12329760

C 1 1 1

T 0.88 0.67-1.16 0.39 0.85 0.62-1.18 0.34 1.19 0.83-1.71 0.32

CCc 1 1 1

CTc 0.86 0.62-1.18 0.36 0.83 0.57-1.21 0.35 1.30 0.85-1.99 0.22

TTc 0.92 0.37-2.26 0.85 1 0.42-2.8 0.87 1.03 0.33-3.18 0.96

CT+TTd 0.86 0.64-1.18 0.36 0.86 0.60-1.23 0.41 1.27 0.85-1.92 0.25

TTr 0.95 0.39-2.33 0.92 1.12 0.43-2.91 0.80 0.96 0.32-2.94 0.95

SERPINE1

rs2227631

G 1 1 1

A 0.89 0.72-1.11 0.32 0.89 0.69-1.16 0.42 0.79 0.58-1.09 0.15

GGc 1 1 1

GAc 0.92 0.69-1.23 0.60 0.86 0.62-1.21 0.39 0.55 0.36-0.84 0.006

AAc 0.76 0.44-1.31 0.33 0.87 0.47-1.61 0.69 1.09 0.55-2.18 0.79

GA+AAd 0.89 0.68-1.17 0.43 0.86 0.62-1.19 0.38 0.64 0.43-0.94 0.02

AAr 0.79 0.46-1.33 0.38 0.93 0.51-1.68 0.80 1.35 0.69-2.64 0.38

rs2227667

A 1 1 1

G 0.92 0.76-1.12 0.44 1.04 0.79-1.35 0.78 0.73 0.56-0.96 0.03

(Continued)
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3.4 Polymorphisms associated
with protection

The protective effects of the TMPRSS2 and SERPINE1 genetic

variants are shown in Table 2. For rs2070788, the A allele had an

OR of 0.76 (95% CI = 0.61-0.94; P=0.02), indicating a critical

COVID-19 outcome. Moreover, the dominant model (GA+AA)

exerted a protective effect, with an OR of 0.69 (95% CI 0.51-0.95;

P=0.03) for critical outcomes.

Interestingly, patients who died from COVID-19 were the main

group in which rs2227631 and rs2227667 of SERPINE1 showed a

significant protective effect. Similarly, the rs2227631 GA genotype

had an OR of 0.55 (95% CI = 0.36-0.84; P=0.006), and similar

results were found for the dominant model (AG+GG), with an OR

of 0.64 (95% CI = 0.43-0.94; P=0.02). Regarding the rs2227667 G

allele, a significant protective association was also observed with

decreased COVID-19 incidence (OR=0.73; 95% CI = 0.65-0.96;

P=0.03). Similar results were obtained for the GA genotype, with an

OR of 0.59 (95% CI = 0.38-0.91; P=0.02) in the deceased group.
Frontiers in Immunology 06
3.5 Risk polymorphisms

According to the main inherent genetics models of TMPRSS2

rs75603675, a statistically significant association was found

between the AA genotype and decreased COVID-19 incidence

(OR=1.97; 95% CI 1.07-3.6; P=0.03). Similarly, a significant

association was observed for the rs2227692 T allele of the

SERPINE1 gene, with the deceased outcome showing an OR of

1.45 (95% CI = 1.11-1.91; P=0.006). The main inherence genetics

models were associated with the deceased group (Table 2).

Interestingly, the codominant model for the TT genotype had

an OR of 2.08 (95% CI=1.22-3.57; P=0.007) for the deceased

outcome, while the dominant (TC+TT) and recessive models had

ORs of 1.60 (95% CI=1.03-2.50; P=0.03) and 1.67 (95% CI=1.07-

2.59; P=0.02), respectively.

We performed a logistic regression of SERPINE1 haplotypes

and only found a statistically significant association between the

ATT haplotype and the deceased group, with an OR of 1.6 (95% CI

= 1.08-2.25; P=0.02).
TABLE 2 Continued

Polymorphism Severe Critical Deceased

OR* 95% CI P OR* 95% CI P OR* 95% CI P

rs2227667

AAc 1 1 1

AGc 1.13 0.82-1.55 0.42 1.27 0.87-1.84 0.21 0.59 0.38-0.91 0.02

GGc 0.83 0.56-1.22 0.34 1.00 0.63-1.56 1 0.60 0.35-1.01 0.06

AG+GGd 1.03 0.76-1.38 0.84 1.17 0.83-1.67 0.36 0.59 0.39-0.89 0.01

GGr 0.76 0.54-1.07 0.12 0.86 0.59-1.26 0.44 0.81 0.51-1.29 0.38

rs2070682

T 1 1 1

C 1 0.79-1.27 0.97 1.04 0.79-1.35 0.78 0.96 0.70-1.32 0.82

TTc 1 1 1

TCc 1.01 0.76-1.35 0.94 1.03 0.73-1.44 0.86 0.65 0.42-0.99 0.05

CCc 0.98 0.50-1-94 0.97 1.11 0.52-2.36 0.79 1.77 0.83-3.80 0.14

TC+CCd 1.00 0.76-1.33 0.95 1.03 0.75-1.43 0.82 0.77 0.52-1.16 0.22

CCr 0.98 0.50-1.92 0.96 1.09 0.51-2.31 0.81 2.04 0.97-4.31 0.06

rs2227692

C 1 1 1

T 1.10 0.90-1.33 0.33 0.97 0.78-1.22 0.84 1.45 1.11-1.91 0.006

CCc 1 1 1

CTc 1.16 0.84-1.60 0.35 1.04 0.72-1.51 0.82 1.41 0.42-0.99 0.15

TTc 1.19 0.82-1.73 0.35 0.95 0.61-1.47 0.81 2.08 1.22-3.57 0.007

CT+TTd 1.17 0.86-1.58 0.29 1.01 0.72-1.42 0.95 1.60 1.03-2.50 0.03

TTr 1.08 0.79-1.50 0.61 0.92 0.63-1.35 0.68 1.67 1.07-2.59 0.02
frontier
*Adjusted by age, sex, hypertension status, type 2 diabetes status and obesity status. Inheritance models= c, codominant; d, dominant; r, recessive. The value in bold denotes statistical significance.
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3.6 Associations of TMPRSS2 and SERPINE1
polymorphisms with clinical laboratory
parameters stratified by outcome

To understand the impact of each polymorphism on the

immune-hematological response to SARS-CoV-2, we further

studied the relationships of each polymorphism with diverse

laboratory features among COVID-19 patients. In this sense, the

analysis revealed a significant difference between the minor allele

carriers of SERPINE1 rs2227667, which had a decreased LDH

concentration compared to the major allele (p50 = 306 U/L;

IQR=205-431) vs. p50 = 322 U/L; IQR=222-453, respectively)

(P=0.03). Although the minor allele of rs2227631 also tended to

decrease LDH concentration, there was no statistically significant

difference from the major allele. On the other hand, the risk variant
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of the SERPINE1 gene (rs2227692) had increased D-dimer levels

compared with those of the minor and major alleles (p50 = 613.5

ng/mL; IQR=281.6-1035 vs. p50 = 545.8 ng/mL; IQR=229-1001,

respectively) (P=0.02). This was also observed for the LDH

concentration (p50 = 317 U/L; IQR=222-453 vs. p50 = 294 U/L;

IQR=202-426.1) (P=0.01) (Table 3).

Due to the possible relationship between D-dimer and SERPINE1

gene risk polymorphisms, we further evaluated the association of each

genetic variant with D-dimer, which was dichotomized based on the

cutoff value of 500 ng/mL. Our population study revealed a significant

association between the T allele of the rs2227692 polymorphism and a

high D-dimer concentration (>500 ng/mL) (OR=1.24; 95% CI=1.03-

1.48; P=0.02, Table 4). Interestingly, when COVID-19 outcomes were

stratified, rs2227692 maintained its association in the deceased patient

group (OR=2.04; 95% CI=1.23-3.37; p=0.006) (Table 5).
TABLE 3 Laboratory parameters of COVID-19 patients stratified by polymorphism alleles.

TMPRSS2

Total Allele Allele P value*

rs2070788 G A

Platelets 234.5 (178.5-303.5) 238 (184-305) 224 (175-298) 0.06

Ferritin (ng/mL) 503.5 (253.6-910.6) 508.05 (254-916.9) 491.8 (253-898.7) 0.34

D Dimer (ng/mL) 592 (278-1013) 585 (272.6-1005) 592 (284-1022) 0.45

C-Reactive Protein (mg/L) 16.34 (5.41-36.3) 16.37 (6-35.24) 16.13 (5-36.58) 0.49

LDH (U/L) 300.5 (212.1-427) 312 (214-430) 290 (211-424) 0.29

rs75603675 C A

Platelets 235 (178-304) 235 (181-303) 232 (174-304) 0.92

Ferritin (ng/mL) 500.4 (253.1-900) 504.5 (253-916.9) 486.6 (253.1-841.5) 0.31

D Dimer (ng/mL) 593.5 (281-1013.5) 595.5 (281-1035) 591 (274.5-983.5) 0.24

C-Reactive Protein (mg/L) 16.31 (5.375-39.005) 16.435 (5.63-49.2) 15.06 (4.5-34) 0.05

LDH (U/L) 299 (211-426) 306.61 (214-426) 288.8 (204.8-428) 0.25

rs12329760 C T

Platelets 237 (183-308) 237 (184-307) 236 (172-312) 0.44

Ferritin (ng/mL) 491.8 (245.3-896.4) 492.1 (253-896.4) 482.5 (220.6-889.8) 0.52

D Dimer (ng/mL) 564 (251-1002.41) 567 (252-1006) 528 (241-951) 0.48

C-Reactive Protein (mg/L) 18.215 (5.2-64.1) 18.38 (5.42-67.5) 16.91 (2.8-55.5) 0.24

LDH (U/L) 299.5 (207-435.25) 307 (214-438) 256 (179.05-426) 0.02

SERPINE1

rs2227631 G A

Platelets 237 (181.5-307.5) 235 (178-303) 238 (186-324) 0.23

Ferritin (ng/mL) 491.8 (243.9-898.7) 491.8 (242.6-904.3) 487.5 (245.3-886) 0.70

D Dimer (ng/mL) 568 (260-1005) 579 (267-1006) 524 (208-002.41) 0.10

C-Reactive Protein (mg/L) 18.215 (5.26-69.7) 18.38 (5.47-72.6) 17.565 (4.66-49.9) 0.28

LDH (U/L) 299 (205-436.5) 307.305 (214-440) 278.45 (188-421) 0.06

(Continued)
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Martı́nez-Gómez et al. 10.3389/fimmu.2024.1335963
4 Discussion
Since COVID-19 emerged, people infected with SARS-CoV-2

have experienced different clinical outcomes. Nevertheless, the

development of fatal COVID-19 cases has been strongly

associated with comorbidities, including obesity, type 2 diabetes,

and cardiovascular diseases, which can exacerbate the inflammatory

state (21–25).

In COVID-19 pathogenesis, many factors contribute to viral

pathogenesis. Several authors have described three points: (1)

recognition of the virus by cellular receptors; (2) suppression of

the antiviral response; and (3) the ability to evade the immune

system (23, 26).

SARS-CoV-2 uses the ACE2 receptor and TMPRSS2 to

promote cellular entry by cleaving the S protein into S1 and S2

(27–29). TMPRSS2 is used by diverse viruses to infect humans, and

it has been associated with physiological processes such as digestion,

tissue remodeling, blood coagulation, fertility, inflammatory

responses, and pain, among others, and the expression of

TMPRSS2 is regulated by aging (30). Recent studies have

explained the possible role of structural and regulatory variants of

TMPRSS2 in susceptibility to COVID-19. In this sense, the variants

p.Gly8Val/c.23G>T (rs75603675) and p.Val197Met/c.589G>A
TABLE 3 Continued

SERPINE1

rs2227667 A G

Platelets 239 (181-309) 238 (179-309) 242 (184-310) 0.69

Ferritin (ng/mL)
499.9 (257-910.6) 510.1 (258.9-940)

491.9
(253.6-842.5)

0.19

D Dimer (ng/mL) 585 (265-1018) 611 (281.6-1035) 563 (234-1008) 0.09

C-Reactive Protein (mg/L) 19.145 (5.83-75.85) 19.98 (6.5-77.8) 18.3 (5-73.9) 0.27

LDH (U/L) 313.8 (217-445) 322 (222-453) 306 (205-431) 0.03

rs2070682 T C

Platelets 238 (181-309) 238 (180-305) 238 (183-324) 0.47

Ferritin (ng/mL) 495.6 (255.4-907.4) 492.3 (253.3-907.4) 504.1 (268.6-907.4) 0.50

D Dimer (ng/mL) 581 (265-1016) 592 (276-1005) 577 (200-1057) 0.44

C-Reactive Protein (mg/L) 19.08 (5.76-73.9) 18.92(5.9-71.6) 20.165 (5.42-90) 0.47

LDH (U/L) 312.5 (216.1-442.3) 312 (217-447) 313 (213.3-426.1) 0.65

rs2227692 C T

Platelets 237 (181-309) 238 (185-308) 235 (177-312) 0.62

Ferritin (ng/mL) 492.5 (253.6-900) 491.8 (252.1-864.7) 507.6 (257-917.9) 0.31

D Dimer (ng/mL) 577 (260-1008) 545.875 (229-1001) 613.5 (281.6-1035) 0.02

C-Reactive Protein (mg/L) 19.05 (5.76-71.62) 17.6 (5-71.62) 19.755 (6.945-71.905) 0.19

LDH (U/L) 307.5 (212.2-439.5) 294 (202-426.1) 317 (222-453) 0.01
F
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*Kruskal−Wallis test. The value in bold denotes statistical significance.
TABLE 4 Association of high D-dimer concentrations with SERPINE1
risk polymorphisms.

SERPINE1
SNPs D-dimer (>500 ng/mL)

rs2227631 OR* 95% CI P

G 1

A 0.85 0.69-1.05 0.14

rs2227667

A 1

G 0.83 0.69-1.00 0.05

rs2070682

T 1

C 0.84 0.67-1.05 0.13

rs2227692

C 1

T 1.24 1.03-1.48 0.02
ntie
*Adjusted by age, sex, hypertension status, type 2 diabetes status and obesity status. The value
in bold denotes statistical significance.
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(rs12329760) have been reported to influence its interaction with

ACE2 and the S protein (29, 31, 32). rs2070788 has been reported to

be highly expressed in the lungs of patients at risk of developing

severe COVID-19 (33), suggesting that these variants could play an

important role in the severity of SARS-CoV-2 infection (34–36).

Nevertheless, the study of TMPRSS2 polymorphisms has been

described in some populations with contradictory results (37–39).

Our study explored the association of TMPRSS2 genetic variants

with COVID-19 severity; interestingly, we observed that rs75603675

increased the risk of death due to COVID-19. rs75603675 is a

missense variant, c.23G>T, which modifies protein structure to

decrease specificity or induce impaired interaction with viral

proteins. The isoforms of TMPRSS2 are composed of 492 amino

acids and 22 cysteine residues (40, 41). Some reports have described

different strains of SARS-CoV-2 with the TMPRSS2 receptor; of the

different SARS-CoV-2 variants, the omicron is the least dependent

on TMPRSS2 (42). In the present study, we did not characterize the

viral strain; however, according to epidemiological data reported in

Mexico from the first, second, and third waves (summer 2020-

summer 2021), the SARS-CoV-2 variants were alpha-gamma, which

is associated with a high mortality rate (43). In this sense, Sabyasachi

Senapati et al. reported that rs75603675 could disrupt the local

protein structure, increasing the stability of TMPRSS2, while

rs12329760 increased the number of S protein domains (31).

However, other SNPs in TMPRSS2 influence its expression (29).

According to these findings, using a molecular docking approach,

Sabayasachi Senapati et al. identified some phytochemicals that

could bind to TMPRSS2 during host−interactions. However, the

authors recommended in silico and in vitro studies to validate the

efficacy of these phytochemicals.

The rs75603675 23G>T (Gly8Val) and rs12329760 (589 G>A,

Val197Met) are theoretically considered to be responsible for changes

in the interaction of TMPRSS2 with the S protein of the virus (26).
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Posadas-Sánchez et al. previously studied the associations of the

TMPRSS2 rs462574, rs456298, rs2298659, and rs12329760

(pV197M) polymorphisms with the risk of infection with SARS-

CoV-2 in a Mexican population and reported that only rs462574

and rs456298 were associated with this association (44). Consistent

with our results, rs12329760 (pV197M) does not show an

association with either the risk or protection of infection.

rs12329760 (pV197M) has been described to protect against

COVID-19 in different populations because it is present in an

exonic splicing enhancer site associated with protein malformation

(45). This result also agrees with the study of Schönfelder et al.

(2021), who also concluded that there is no association between

rs12329760 and the risk of infection or COVID-19 severity (46).

In some studies, TMPRSS2 expression of the G allele of

rs2070788 was associated with increased protein expression in

lung tissue, which could lead to an association with increased

susceptibility to COVID-19 (35, 41). Recently, a bioinformatics

analysis performed by Mujalli et al. (2022) revealed the

overexpression of genes implicated in the ACE2-TMPRSS2

signaling pathway in COVID-19 patients with severe and fatal

phenotypes. Moreover, SERPINE1 was identified as a drug target

gene of TMPRSS2, with a similarity score of 0.54, which could

suggest an interaction with the spike protein of SARS-CoV-2 (47).

The SERPINE1 gene encodes PAI-1, which is implicated in

coagulopathy and regulates the balance between coagulation and

fibrinolytic systems. In some studies, coagulopathies have been

reported in patients with severe COVID-19 (48). The mechanism

of thrombosis in patients with COVID-19 may involve a cytokine

syndrome that activates the coagulation process. For the imbalance

of PAI-1, the coagulation process, among other factors, has been

implicated as a genetic risk factor. SERPINE1 has been associated

with thrombosis in diseases such as ischemic stroke, cancer, and,

more recently, COVID-19 (10, 49–52).
TABLE 5 Laboratory parameters of COVID-19 patients stratified by polymorphism alleles.

SERPINE1
SNPs

Mild Severe Critical Deceased

OR* 95% CI P OR* 95% CI P OR* 95% CI P OR* 95% CI P

rs2227631

Low 1 1 1 1

High 0.91 0.63-1.31 0.62 0.82 0.56-1.20 0.32 0.83 0.43-1.31 0.44 0.74 0.41-1.29 0.28

rs2227667

Low 1 1 1 1

High 0.87 0.62-1.23 0.45 0.77 0.56-1.07 0.13 0.89 0.61-1.31 0.58 0.61 0.37-1.01 0.06

rs2070682

Low 1 1 1 1

High 0.93 0.61-1.40 0.72 0.94 0.63-1.40 0.78 0.59 0.37-0.94 0.03 0.78 0.44-1.39 0.41

rs2227692

Low 1 1 1 1

High 1.14 0.82-1.58 0.42 1.28 0.93-1.78 0.13 1.16 0.79-1.71 0.44 2.04 1.23-3.37 0.006
frontier
*Adjusted by age, sex, hypertension status, type 2 diabetes status and obesity status. The value in bold denotes statistical significance.
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In that sense, COVID-19 patients exhibit variable states of

coagulopathy, with a marked thrombotic tendency among

nonsurviving individuals. Salem N. et al. reported that 31% of

COVID-19 patients exhibited increased hypercoagulability with

hypofibrinolytic capacity (53, 54). These findings indicate the

potential implications of SERPINE1 genetic variants for COVID-

19 outcomes. Moreover, in infectious diseases, PAI-1 plays a role in

the inflammatory process as a mediator of the early host defense

response to combat pathogens and inhibits fibrinolysis and could be

related to thrombophilia (55).

The association of several SERPINE1 polymorphisms with

previously described pathologies has been reported and could

represent a risk factor for severe COVID-19. The SERPINE1

polymorphisms evaluated in this study included rs2227631 (-1844

G/A), which is located in the promoter region and has been implicated

as a regulatory region variant with possible functional loci; however,

functional studies are necessary to explore the specific effects on

COVID-19 severity (18). Furthermore, rs2227667, rs2070682, and

rs2227692, located in intronic regions, were also analyzed (14).

In the present study, we observed a greater D-dimer

concentration (>500 ng/mL) in COVID-19 patients, similar to

that reported by others from different populations, who reported

higher D-dimer concentrations in patients with COVID-19 and

critical illness (21, 56). Chocron et al. (2021) reported that D-dimer

is one of the measures used to detect COVID-19 severity; increased

D-dimer levels could be a risk marker of thrombotic events (21).

However, other authors found no association between D-dimer

levels and death in COVID-19 patients (57, 58).
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In addition, it has been reported that in patients with

COVID-19, hyperinflammation can induce dysfunction and

damage in endothelial cells, resulting in increased D-dimer

levels (59). Lange et al. (2008) reported that SERPINE1 genetic

variants were associated with D-dimer concentrations in older

European and African-American populations and that rs2227667

was associated with higher D-dimer levels and fibrin deposits

(11); however, gene SNPs explained ≈2% of the total variation in

D-dimer levels (60).

Coagulation biomarkers such as D-dimer, which are associated

with SERPINE1 genetic variants, could increase the risk of

complications due to coagulation activity in patients with severe

COVID-19. Identifying patients at risk of complications in clinical

practice could improve treatment and outcomes to optimize health

services. Lopez-Castaneda et al. (2021) suggested the use of low-

molecular-weight heparin, as a prophylactic treatment for COVID-

19 patients, to limit the hypercoagulable state (13).

Dittmann et al. (2015) showed that some SERPINE1 SNPs could

inhibit TMPRSS2, showing an antiviral effect against the influenza

A virus (61). rs2227631 and rs2227667 of the SERPINE1 gene could

have antiviral effects by preventing viral membrane fusion of SARS-

CoV-2, leading to the inhibition of TMPRSS2-mediated S protein

cleavage. In this sense, Rosendal et al. (2022) showed that

SERPINE1 prevents the cleavage of the S protein by binding to

TMPRSS2 (5). Moreover, the authors found that the antiviral effects

of SERPINA1, SERPINE1, SERPINE2, and SERPINF1 were observed

during the first steps of infection in HBEC ALI cultures, revealing

reduced SARS-CoV-2 entry into target cells (5).
FIGURE 2

The TMPRSS2 rs75603675 and SERPINE1 rs2227692 variants are associated with poor outcomes. SERPINE1 could influence the altered processes of
fibrinolysis development in hypercoagulable patients.
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Treatment with serpentine targets could decrease lung

inflammation and modify thrombotic protease and complement

levels. PEGSerp-1 has been developed as a new anti-inflammatory

therapeutic or biologic for vascular damage, coagulation disorders, and

inflammation damage (1). The highlights of the present study

contribute to the knowledge of the specific polymorphisms that

could affect COVID-19 severity through the identification of new

pharmacological targets and treatment strategies to block SARS-CoV-2

entry via TMPRSS2 inhibition, such as argatroban and famotidine,

which act as new scaffolds for TMPRSS2 inhibition (62), and other

future treatments that could be used for other similar diseases.

SERPINE has been identified as an endogenous antiviral

molecule against SARS-CoV-2 and could represent a possible

treatment option due to its biological role in inhibiting the entry

of the virus into host cells (22). Polymorphisms of TMPRSS2 and

SERPINE1 could be associated with COVID-19 severity, modifying

the susceptibility to fatal outcomes. However, it is necessary to

elucidate the genetic susceptibility to severe disease caused by

SARS-CoV-2.

In response to the recent COVID-19 pandemic, the search for

therapeutic targets to combat the severity and complications of

infection caused by SARS-CoV-2 has led to the identification of

SERPINE1 as a natural inhibitor of the TMPRSS2 protease that

enhances the viral infection process.

In conclusion, our study revealed that the TMPRSS2 rs75603675

gene variant may induce an amino acid change from glycine to valine,

which is more frequent in patients with COVID-19 who die. Similarly,

we were able to demonstrate the association of the SERPINE1

rs2227692 variant not only with a decreased outcome but also with

an increase in D-dimer, which could influence the altered processes of

fibrinolysis development in patients with a hypercoagulable state, as

observed in critical pathology outcomes (Figure 2).
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