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Immune escape and metastasis
mechanisms in melanoma:
breaking down the dichotomy
Carl A. Shirley1†, Gagan Chhabra1†, Deeba Amiri 1, Hao Chang1,2

and Nihal Ahmad1,2*

1Department of Dermatology, University of Wisconsin, Madison, WI, United States, 2William S.
Middleton Memorial Veterans Hospital, Madison, WI, United States
Melanoma is one of the most lethal neoplasms of the skin. Despite the

revolutionary introduction of immune checkpoint inhibitors, metastatic spread,

and recurrence remain critical problems in resistant cases. Melanoma employs a

multitude of mechanisms to subvert the immune system and successfully

metastasize to distant organs. Concerningly, recent research also shows that

tumor cells can disseminate early during melanoma progression and enter

dormant states, eventually leading to metastases at a future time. Immune

escape and metastasis have previously been viewed as separate phenomena;

however, accumulating evidence is breaking down this dichotomy. Recent

research into the progressive mechanisms of melanoma provides evidence

that dedifferentiation similar to classical epithelial to mesenchymal transition

(EMT), genes involved in neural crest stem cell maintenance, and hypoxia/

acidosis, are important factors simultaneously involved in immune escape and

metastasis. The likeness between EMT and early dissemination, and differences,

also become apparent in these contexts. Detailed knowledge of the mechanisms

behind “dual drivers” simultaneously promoting metastatically inclined and

immunosuppressive environments can yield novel strategies effective in

disabling multiple facets of melanoma progression. Furthermore,

understanding progression through these drivers may provide insight towards

novel treatments capable of preventing recurrence arising from dormant

dissemination or improving immunotherapy outcomes.
KEYWORDS

immune escape, metastasis, EMT, hypoxia, acidosis, neural crest stem cell genes,
dormancy, early dissemination
1 Introduction

Melanoma is a highly aggressive malignancy arising from melanocytes. Despite recent

advances in melanoma research, the incidence of metastatic melanoma has only grown in

the past decade (1–3). Treatments often fail to effectively overcome the adaptive

mechanisms driving melanoma, especially in metastatic instances (4–11). Current
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immunotherapies for advanced stage melanomas involve

antagonization of cytotoxic T-lymphocyte-associated protein-4

(CTLA-4, ipilimumab) and programmed cell death protein-1

(PD-1, nivolumab and pembrolizumab), but in 45-70% of cases

these therapies encounter primary resistance (Table 1) (5, 11).

Further, immunotherapies with initially promising responses

eventually yield to cancer progression in ~20-30% of respondents

as secondary resistance occurs (5, 13, 14). Moreover, relatively high

recurrence rates persist among patients treated with

immunotherapies and the 5-year survival rate for advanced

melanoma rests around 40% (1, 9, 10). As melanoma progresses,

the acquisition of an immunosuppressive milieu and alterations to

endogenous pathways allow immune escape.

The immune evasive capabilities of melanoma facilitate tumor

survival, whereas its metastatic nature is what leads to lethality, as

metastasis is estimated to cause about 90% of cancer deaths (15).

Metastasis is a complex phenomenon involving sufficient

lymphomagenesis or angiogenesis, intravasation, dissemination,

resistance to anoikis and shear-stress induced apoptosis,

extravasation, and subsequent resistance to a hostile metabolic

and oxidative environment (15–20). Recent research has also

challenged the linear progression model of cancer development,

which suggests metastasis is a late-stage product of stepwise genetic

and/or epigenetic changes in the primary tumor serving to

gradually enhance cellular fitness and metastatic potential (21).

Instead, the dissemination of metastasis-capable melanoma cells

may be a common occurrence in the early stages (22–24).

Malignantly juvenile cells escaping immunosurveillance may
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occupy a dormant phenotype for years before stimulation spurs

metastatic colony formation and recurrence occurs (24). Immune

escape and metastasis may initially appear as separate phenomena

contributing individually to fatality, but they are intrinsically linked

through individual drivers of melanoma progression. This becomes

apparent in epithelial-mesenchymal transition (EMT), which has

classically been viewed as the development of a stem cell-like,

antiapoptotic, migratory, and progression-associated phenotype.

Gathering evidence also associates EMT with the development of

immune escape capabilities, and vice versa (25–30). “The chicken or

the egg?” has been asked regarding the immunosuppressive

environment and EMT (28). Immune escape and metastasis can

be seen as two sides of the same coin—progression-associated

mechanisms of melanoma development may simultaneously drive

both migratory capabilities and subvert the immune response.

Metastasis and immune escape are both critical factors in

melanoma development that also inform therapeutic ventures and

further research. This review focuses on discussing recently

discovered drivers of melanoma progression that concurrently

promote an immune evasive and metastatically inclined

environment as well as future therapeutic directions.
2 Immune escape mechanisms
in melanoma

Immune escape occurs when tumor cells avoid recognition and

attack by the immune system. This phenomenon plays a key role in
TABLE 1 Summary table of melanoma therapy standard of care recommendations from the American Society of Clinical Oncology 2023 guidelines (12).

Resection Stage BRAF
Status

Therapy
Type

Neoadjuvant
Treatment

Primary
or Adjuvant
Treatment

Progression Status

YES

I-IIA

NA

NA Not recommended Not recommended

NA

IIB/C Immuno Not recommended
1) pembrolizumab

2) nivolumab

III
A/B/
C/D

WT Immuno

pembrolizumab
for IIIB/C/D

1) pembrolizumab
2) nivolumab

Mutant
(V600)

Immuno
1) pembrolizumab

2) nivolumab

Targeted dabrafenib + trametinib

IV NA Immuno pembrolizumab pembrolizumab

NO III/IV

WT Immuno

NA

1) nivolumab + ipilimumab
followed by nivolumab

2) nivolumab + relatlimab
3) nivolumab

4) pembrolizumab

Progression on PD-1-based therapies? Switch to
ipilimumab/ipilimumab-containing

Mutant
(V600)

Targeted
1) dabrafenib + trametinib
2) encorafenib + binimetinib
3) vemurafenib + cobimetinib

Progression on BRAF/MEK therapies? Switch to
ipilimumab/ipilimumab-containing

Immuno

1) nivolumab + ipilimumab
followed by nivolumab

2) nivolumab + relatlimab
3) nivolumab

Progression on PD-1-based therapies? Switch to
BRAF/MEK targeting
NA, Not available; WT, Wild Type.
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cancer progression and is linked to the effectiveness of

immunotherapy (31). Malignant cells employ a variety of

strategies to counteract antigenic recognition and the stimulation

of the immune system. The escape of melanoma cells also relies on

faulty immune recognition and increased resistance to apoptosis.

An immunosuppressive microenvironment can also be vital in the

escape of melanoma cells from the immune system (32). Below, we

discuss important signaling mechanisms contributing to immune

escape in melanoma.
2.1 Defective immune recognition

A major contributor to immune escape is defective immune

recognition. Dysregulated antigen processing and recognition

promote melanoma progression; inefficient antigen processing

inhibits the ability of CD8+ T cells to recognize antigens on

tumor cells (33). Antigens are displayed to CD8+ T cells through

presentation as part of the major histocompatibility class-I complex

(MHC I). It should be noted that the effectiveness of T cell

cytotoxicity demands antigen presentation by mature dendritic

cells (DCs). The co-stimulation and antigen presentation of DCs

influence the melanoma immune response. During melanoma

progression, immunosuppressant stimuli, such as interleukins (IL)

IL-8 and IL-10, in the microenvironment can hinder DC

maturation and lock DCs in immature phenotypes. This DC

impairment is linked with decreased co-stimulation activity as a

result of defective CD80 expression (34). Other populations such as

myeloid-derived suppressor cells (MDSCs) and regulatory T cells

(Tregs) accumulate in the melanoma milieu and contribute to

imbalance between immune suppression and stimulation (35).

Recruitment and active MDSCs can release soluble factors such as

reactive oxygen species (ROS) including nitric oxide (NO), which

can inhibit anti-melanoma abilities of natural killer (NK) cells and

T-cells (36). Further, Tregs can inhibit the immune system through

IL-10 and indoleamine 2,3-dioxygenase (IDO) overproduction. IL-

10 and IDO similarly lessen the responses of NK cells, CD4+ and

CD8+ lymphocytes against melanoma (37). Melanoma cells can also

directly evade NK cell recognition by shedding MICA/B, which are

recognized by the NK group 2D (NKG2D) receptor (38). Defective

immune response is also linked to reduced levels of

argininosuccinate synthetase in melanoma cells, leading to

decreased production of arginine (39–41). When arginine is

deprived, T cells show decreased survival rates and proliferation

(42). Overall, multiple mechanisms and factors have been shown to

be involve in defective immune recognition of tumor initiating cells,

which influence the melanoma prognosis.
2.2 Immune checkpoint receptors

Immune checkpoints are a crucial control mechanism to inhibit

T-cell responses and maintain self-tolerance. Dysregulation in

immune checkpoint receptors represent another critical immune

escape mechanism in melanoma. The most extensively studied

immune checkpoint receptors are PD-1 and CTLA-4. PD-1 is a
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receptor that is involved in T-cell tolerance of self-antigens. Various

studies have highlighted a ligand of PD-1, programmed death

ligand-1 (PD-L1), as another factor in tumor immune escape.

PD-L1 is expressed in non-blood cells such as astrocytes,

neuronal cells, and keratinocytes (43, 44). PD-L1 demonstrates

unusually high expression in tumor cells. The increased expression

of PD-L1 by cells in the tumor microenvironment inhibits the

function of cytotoxic T cells and apoptosis (45). Results from

studies have shown an association between PD-1 expression on

tumor infiltrating T cells and low chances of survival in cancer

patients. In cutaneous melanoma metastases, PD-L1 has been

shown to be frequently expressed (46). Indeed, the PD-1/PD-L1

pathway is the basis of many current immunotherapies, including

melanoma (Table 1) (47).

The abnormal expression of immune checkpoint receptors and

their binding capability by relative ligands has also been suggested

as a mechanism to inhibit T cell activity in melanoma (48). This

binding can initiate T cell exhaustion, diminishing T cell cytokine

responses and cytotoxicity, and elevating expression of inhibitory

surface receptors (49). These surface receptors include T-cell

immunoglobulin mucin-3 (TIM-3), PD-1, Lymphocyte-Activation

Gene 3 (LAG-3), CTLA-4, V-domain Ig suppressor of T cell

activation (VISTA), and CD160 (50–54). Activation of these

receptors also reduce IL-2 and Tumor Necrosis Factor-alpha

(TNF-a) production (46). Table 1 exemplifies the prevalence of

immunotherapy in recommended melanoma treatment guidelines

(12). Current investigation into connections between immune-

related pathways and metastasis is an intense area of research that

may lead to identification of new therapeutic targets and treatment

options for melanoma management.
3 Immune escape and epithelial-to-
mesenchymal transition

EMT is often considered a prerequisite to successful

colonization of metastatic cells in distant organs and has been

established as the critical mechanism responsible for acquisition of

malignant phenotypes in epithelial cancers. During this transition,

loss of epithelial polarity and adhesive factors are accompanied by

simultaneous acquisition of a motile and stress-resistant

mesenchymal phenotype (25, 55–57). Further, signaling

associated with this process degrades the extracellular matrix to

create an environment favoring dissemination (58). While

melanocytes arise from the neural crest, they can still undergo

dedifferentiation programs holding similar features to the classical

EMT process. Melanoma “EMT” can be viewed as a phenotypic

spectrum spanning between differentiated melanocytes and a

dedifferentiated state (25). The concept of phenotype switching,

which refers to the ability of cells or organisms to switch between

multiple states/morphologies, is critical for melanocyte lineage

differentiation, but also dedifferentiation into EMT-like phenotype

transformations leading to metastasis (57). This process is

associated with the increased expression of many immune

checkpoints, as reviewed in (27), increased expression of

mesenchymal markers or EMT transcription factors (EMT-TFs),
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and the simultaneous loss of epithelial markers (25, 57). Epithelial

cadherins are replaced with N-cadherins and the expression of

many EMF-TFs including Zinc finger proteins SNAI1/2, Zinc finger

E-box-binding homeoboxes 1/2, and Twist-related protein (SNAI1/

2, ZEB1/2, TWIST) are upregulated (25, 27, 55, 57). As melanoma

progresses, EMT provides necessary intrinsic and extrinsic shifts

promoting metastasis and post-disseminative survival (25, 58–60).

These classical aspects of EMT are well realized, but an emerging

paradigm is the two-fold contributions of EMT to both metastasis

and immune escape. Below, we summarize recent literature

showing connections between immune escape and EMT

initiation, EMT-transcription factors and phenotype switching.
3.1 Immune escape and EMT initiation

Recent research suggests EMT is not a metastatically exclusive

phenomenon as the dedifferentiated cell state is also associated with a

variety of immunosuppressive properties. This first becomes apparent

by examining the progressive framework behind EMT initiation. EMT-

TFs can be initiated by modulations in a variety of pathways, including

PI3K/AKT/mTOR, mitogen-activated protein kinase (MAPK),

transforming growth factor-beta (TGF-b), wingless-related integration

site (WNT), JAK/STAT, neurogenic locus notch homolog protein

(NOTCH), SRY-Box Transcription Factor 10 (SOX10) among others

(25, 57, 61–68). Activation of these pathways in melanoma

simultaneously initiates EMT to promote metastatic and invasive

phenotypes and deters the immune response. The multifaceted roles

of important signaling cascades responsible for EMT directly tie

metastasis to immune evasion. We have summarized the mechanisms

of immune escape associated with these important signaling pathways

leading to EMT and melanoma metastasis in Table 2.
3.2 Immune escape and EMT-
transcription factors

Common pathways leading to EMT only lay the foundation for

EMT-related immune security. Increasing numbers of reports have

suggested that EMT-TFs themselves play an active role in shaping

the immune-regulation of melanoma. SNAI1 enhances production

of C-C motif chemokine ligand (CCL) 2, which can subsequently

induce EMT signaling in other cells of tumor microenvironment

(TME) lacking endogenous SNAI1 while simultaneously

contributing to the development of immunoregulatory DC

populations. SNAI1-CCL2 signaling-induced regulatory DCs,

which subsequently enhanced immunosuppressive Treg cells and

impaired CD8+ T cells (99). SNAI1 overexpressing B16-F10 cells

also displayed increased resistance to CD8+ T cell cytotoxicity in co-

culture (100). SNAI1+ melanoma cells display enhanced

production of TGF-b, thrombospondin-1 (TSP1), CCL2, and

l i p o c a l i n 2 ( LCN2 ) , wh i c h may h a v e a dd i t i o n a l

immunosuppressive effects beyond Treg and DC regulation (99,

100). For example, CCL2 in TME has been shown to recruit MDSCs

and macrophages (27).
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TABLE 2 Immune escape impacts of commonly dysregulated EMT-
inducing pathways.

Signaling
pathway

Mechanisms of immune
escape in melanoma

References

PI3K/
AKT/mTOR

Immunosuppressants ↑ (IL-1, IL-6, IL-10,
IL-35, TGF-b)
Treg activity ↑

Context-dependent roles in B and T
lymphocytes

B cell development ↑
MDSC recruitment ↑

Suppressive monocyte recruitment ↑
“M2” Macrophage Polarization ↑

APC suppression ↑
PD-L1 expression ↑↓

(69–73)

BRAF/MAPK Immunosuppressants ↑ (IL-1, IL-6, IL-8,
IL-10, VEGF)

Immunostimulants ↓ (IL-12, TNF-a)
Antigen Presentation ↓

MHC Class I ↓
Lymphocyte infiltration ↓
MDSC recruitment ↑
Treg recruitment ↑
NK infiltration ↓
APC suppression ↑
STAT3 signaling ↑
PD-L1 expression ↑↓

(74–76)

TGF-b Immunosuppressants ↑ (MCP-1, IL-8, IL-
10, TGF-b, VEGF, CCL22, type 2

cytokines)
Antigen Presentation ↓
MHC Class I and II ↓
CD40 expression ↓

Lymphocyte effectiveness and recruitment
↓

B cell infiltration ↓
MDSC recruitment ↑
Treg recruitment ↑
NK activation ↓

APC suppression ↑
Suppressive Dendritic Cell accumulation ↑

“M2” Macrophage Polarization ↑
Stimulation of MAPK, JAK/STAT, WNT ↑

(77–82)

WNT Immunosuppressants ↑ (IL-6, VEGF,
MMP-2, IL-8, IL-11, MCP-1)

CD8+ T cell activity, infiltration,
proliferation ↓

Treg accumulation and survival ↑
NK activation ↓
DC activity ↓

Enhanced MDSC suppression
NF-kB activity ↑

(83–86)

JAK/STAT Immunosuppressants ↑ (VEGF, MMP-2)
MDSC recruitment ↑
Treg population ↑

CD8+ T cell killing ↓
NK tumor surveillance ↓

PD-L1 expression ↑
Interferon Resistance ↑

Immune stimulating cytokines ↓
HIF-1 ↑ p53 ↓

Macrophage crosstalk promoting WNT
signaling ↑

(87–94)

SOX10 IRF1 ↓
CEACAM1 ↑

(95–98)

(Continued)
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Milk fat globule EGF-8 (MFG-E8) can be released by myeloid cells

and was recently associated with melanoma progression and identified

as an EMT trigger. In B16 cells, the migratory effects of MFG-E8 were

diminished by TWIST knockdown. MFG-E8 also enhances Treg

populations; this effect is mediated by TWIST activation in

macrophages. Thus, TWIST is relevant as a target in both the

microenvironment and melanoma-intrinsic signaling cascades (101).

Further, ZEB2 is essential for the development of terminal

effector T cells, indicating modification of ZEB2 levels in T cells

may be a mechanism promoting anti-immunity. When B16-F10

melanoma cells were co-cultured with T lymphocytes in hypoxic

conditions, ZEB2 expression was inhibited with suppressed

cytotoxic activity of T-cells showing a resistance strategy for

immune escape (102). In human melanoma samples, high ZEB1

levels were found to be associated with decreased CD8+ T cell

infiltration. A recent report utilizing a melanoma mouse model

found ZEB1 expression decreases immunostimulant T-cell

chemokines and impairs CD8+ T cell recruitment (103). ZEB1

has also been associated with M2 macrophage polarization and PD-

L1 expression increases in lung adenocarcinoma, however, these

factors remain to be explored in melanoma (103, 104). As the effects

of EMT-TFs on immune escape are just emerging, additional

research is required in the context of melanoma. Mechanisms

behind EMT-TF driven immunogenicity in carcinomas are better

documented and have been expanded to include effects on antigen

presentation, MHC I expression, and immune checkpoint

expression (25, 27). As the importance of EMT in metastasis and

immunosuppression becomes apparent, investigation of other

EMT-TFs and their interplay with the immune response is critical

for understanding and controlling melanoma progression.
3.3 Immune escape and
phenotype switching

EMT-TFs like SNAI1/2, ZEB1/2, and TWIST control the

phenotype switching and are crucial for melanoma development.

ZEB2/SNAI2 induces the expression of microphthalmia-associated

transcription factor (MITF) and inhibits the expression of AXL

receptor tyrosine kinase (AXL) to contribute to the MITFhigh/AXLlow

phenotype. On the other hand, ZEB1/TWIST1 does the opposite and

contributes to the MITFlow/AXLhigh phenotype (25). Evidence shows

the ZEB2 to ZEB1 switch drives invasion and furthers the

dedifferentiation of melanoma cells (25, 59, 60). High AXL resulting

from EMT is associated with the upregulation of a myriad of genes

governing both intrinsic immune evasion pathways and the release of

immunosuppressants (29). Earlier studies in this area have shown how
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both high and low MITF populations evade the consequences of

immunity through antigen, MHC, and immune checkpoint

expression, inflammation, and deterring various lymphocyte activities

(105–107). The relationship between EMT and immunity is further

highlighted by looking at its relationship with immunotherapy. EMT is

cited as a major obstacle for successful immunotherapy; the resulting

phenotypes evade immunity through a plethora of intrinsic and

environmental mechanisms (30, 108). In particular, the MITFlow/

AXLhigh phenotype predicts resistance to a multitude of melanoma

drugs (109).

Other markers beyond MITF and AXL can give insight to

melanoma phenotypes produced by EMT. For example, increased

nerve growth factor receptor (NGFR) can mark a post-EMT state

(25) associated with T cell resistance (14) and NK cell resistance,

enhancing metastatic potential (110). EMT is a process at the

cellular level, but also the tumoral level. Various degrees of EMT-

program induction and microenvironmental cues drive the

formation of heterogeneous tumors, containing a wide range of

phenotypic states with immune evasive and/or metastatic

capabilities. Phenotype switching in the context of immune

escape was recently reviewed in (111) and contributing to

metastic progression in (112). Taken together, the signaling

leading up to, during, and after an EMT-like dedifferentiation

program enhances immune escape and metastatic ability at the

cellular and tumoral levels.
4 Neural crest stem cell genes in
EMT/metastasis and immune escape

Neural crest stem cells are a transient cell population in neural

crest-derived tissues that arise during embryonic development and

harbor stem cell properties. During embryonic development,

melanocytes differentiate from neural-crest stem cells (NCSCs)

(19, 113). Melanomas can manipulate genes important to NCSCs

to achieve EMT-like characteristics involving growth, metastasis,

and immune escape (113). In fact, neural crest (NC) cells experience

EMT during normal development (114). The previously discussed

transcription factors involved in EMT also play key roles in NC cell

differentiation (25). Earlier review articles have discussed how

NCSC programs and EMT are tightly linked (25, 114).

Additionally, NOTCH, WNT, and SOX family members, as well

as MITF, Paired Box 3 (PAX3), and Forkhead Box D3 (FOXD3) are

essential for early neural crest development and have been reviewed

in the context of initiating EMT in melanoma (57, 115–120). EMT

reflects previous NCSC developmental programs and can hijack the

same frameworks in melanoma progression. Below, we summarize

recent reports of genes relevant to NCSCs being repurposed for

immune escape and metastasis/EMT contributions in melanoma.
4.1 SHC adaptor protein 4

SHC4 is involved in the formation of epiblast stem cells (a

pluripotent state that may give rise to neural crest stem cells) and
TABLE 2 Continued

Signaling
pathway

Mechanisms of immune
escape in melanoma

References

HVEM ↑
T cell activity ↓

PD-L1 expression ↑
↑: increased, ↓: decreased.
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later expressed in cells with neural identity (121). Normal

melanocytes do not express SHC4, but its expression can be

induced during the generation of malignant melanoma cells (19).

A recent study in a melanoma mouse model found SHC4

reactivation greatly enhanced melanoma metastasis. In melanoma

cell lines, ectopic SHC4 expression reduced cell adhesion, promoted

amoeboid morphology of the tumor cells, and caused the activation

of the MAPK pathway (19).
4.2 Brain-specific homeobox/POU domain
protein 3A

BRN3A is not expressed in melanocytes, but is found to be

expressed and required for cell cycle progression and survival in

melanoma cells (122, 123). Histone Deacetylase 2 (HDAC2)

promotes BRN3A expression and is a known attenuator of the

immune response through regulation of PD-L1 expression, and its

influences on antigen presentation (122). BRN3A also plays

important roles in nervous system development. In melanocytic

nevi, BRN3A cooperatives with RAS/RAF signaling to promote

anchorage-dependent growth, which is a metastatic prerequisite

(123, 124).
4.3 Special AT-rich binding protein-2

SATB2 is a transcription factor involved in neural development

and migration. It regulates activation of many NCSC-related genes.

Previous research has associated SATB2 expression with the

metastatic MITFlow/AXLhigh and MITFlow/NGFR1high/Aquaporin-

1high (AQP-1) genetic states (125). Another study has associated the

MITFlow/AXLhigh state with immune escape through MHC I

suppression and activation of TGF-b (126). A recent study

further confirmed the ability of SATB2 overexpression to produce

invadopodia and drive metastasis in a melanoma zebrafish model.

Further, SATB2 was found to act as an EMT switch through

activation of many EMT and NCSC programs (125).
4.4 Lysophosphatidic acid receptor 1

LPAR1 is present at high levels in NCSCs and certain

melanoma cell lines but is either undetectable or barely expressed

in melanocytes. In melanoma cell lines, its reactivation is shown to

enhance migration and invasion (127). LPAR1 also activates yes-

associated protein 1 (128), a known driver of immune escape and

EMT in melanoma cell lines (82, 127, 129).
4.5 Neural cell adhesion molecule

NCAM plays an important role in controlling NCSC adhesion.

NCAM expression drives malignancy in a multitude of cancer cell

types. In A375 and M102 cell lines, NCAM knockdown reversed

EMT marker expression and deterred migration (130). In addition,
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NCAM activates the AKT/mTOR pathway, its role as an initiator of

EMT and contributor to immune evasion has already been

discussed (69, 130, 131).
4.6 Bone morphogenetic proteins

BMPs are cytokines in the TGF-b family activated by growth

differentiation factor 6 (GDF6), an important factor in neural crest

development (132, 133). GDF6 developed a neural crest genetic

fingerprint in A375 melanoma cell lines, and upregulated the NC

markers SOX10, FOXD3, and SNAI2 while downregulating the

growth inhibiting SOX9 protein. GDF6 was also linked to low levels

of MITF, further demonstrating its ability to manipulate melanoma

phenotypes (133). BMP signaling is present in 80% of melanomas

but is absent in adult melanocytes. A recent study in a zebrafish

melanoma model found BMP signaling has a large effect on early

progression and contributes to the initiation of melanoma (134).

The impact of BMPs on early progression, pathways controlling

EMT, and their prevalence in melanoma specifically highlights the

potent effects of NCSC genes. The power of certain NCSCs over

metastasis and immune escape pathways combined with their silent

nature in melanocytes provides an alluring avenue for future

drug development.
4.7 Aquaporin-1

AQP-1 is an established NCSC marker (135). In a B16-F10 mouse

model, an AQP-1 DNA vaccine was able to inhibit melanoma growth

in a T cell dependent manner (136). The NCSC marker p75

neurotrophin receptor, also known as p75NTR/CD271/NGFR, acts

as a lymphocyte suppressor through PD-L1 and antigen expression

modulation (137). Past research has demonstrated AQP-1

overexpression in B16-F10 increases transwell migration (138).

Through EMT, melanoma acquires not only the ability to

metastasize, but also to further fortify its immunosuppressive

properties to the point of therapy resistance. The duality of

metastasis and immune evasion can be seen throughout the EMT

process. First in the pathways initiating EMT, the expression of

EMT-TFs, and then in the properties and active genetic programs of

the resulting dedifferentiated states. EMT is also tightly linked to

NCSC-relevant genes, which may play a role in further fortifying

the metastatic and immunoevasive properties of melanomas

(Figure 1). EMT is crucial for melanoma progression and

understanding the detailed mechanisms driving this process will

result in development of novel therapies that simultaneously tackle

immunity and invasion.
5 Immune escape in tumor hypoxia
and acidification

Hypoxia, a prevalent feature of melanoma is characterized by a

low oxygen level (<1%), compared to approximately 4–10%

physiological oxygen concentration in different types of normal
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tissues and organs. Further, hypoxia is closely related to tumor

acidification, a state of acidic tumor microenvironment (TME) (13,

40). Hypoxia and acidification are nearly unavoidable during

development and progression of cancer, including melanoma (13,

40, 139–143). Initial tumor proliferation normally lacks

accompanying vascularization; this quickly triggers oxygen

depletion to create a hypoxic environment. Oxygen-sensitive

pathways stimulated by hypoxia manifest themselves in a variety
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of metabolic genes. Anaerobic glycolysis becomes favored even in

the presence of oxygen, leading to lactic acid accumulation in the

TME (40, 143). The ability of hypoxia and acidosis to stimulate

intrinsic melanoma pathways activating EMT, progression, and

invasion is well studied (40, 139, 143–145). Hypoxia and acidosis

are also able to reactivate NCSC genetic programs to bestow

melanoma with stem-cell properties (40, 139). Oxygen-depletion

also plays an important role in the tumor milieu, where it directly
FIGURE 1

Immune implications of the epithelial-mesenchymal transition. At every stage of EMT, the activation of many signaling programs and their resulting
phenotypes contribute to an immunosuppressive milieu. NCSC-related genes spur commonly dysregulated EMT-inducing pathways. EMT-TFs then
act to modulate the melanoma phenotype. Each stage of this process contributes to intrinsic and extrinsic immune evasion mechanisms while
simultaneously placing tumors in dedifferentiated states prone to metastasis. Created with BioRender.com. AQP-1, Aquaporin-1; AXL, AXL receptor
tyrosine kinase; BMPs, bone morphogenetic proteins; BRAF, Serine/threonine-protein kinase B-Raf; CCL22, CC motif chemokine ligand 22; GDF6,
growth differentiation factor 6; IL, interleukin; JAK, Janus kinase; LPAR1, Lysophosphatidic acid receptor 1; MAPK, mitogen-activated protein kinase;
NF-kB, nuclear factor kappa B; NOTCH, neurogenic locus notch; MCP-1, monocyte chemoattractant protein 1; MDSC, myeloid derived suppressor
cell; MITF, melanocyte inducing transcription factor; MMP-2, matrix metallopeptidase 2; NCAM, neural cell adhesion molecule; NCSC, neural crest
stem cell; NGFR, nerve growth factor receptor; NK, natural killer; SATB2, special AT-rich binding protein-2; SNAI, snail family transcriptional
repressor; SOX, SRY-related HMG-box genes; STAT, signal transducer and activator of transcription; TAM, tumor associated macrophage; Treg,
regulatory T cell; TGF-b, transforming growth factor beta; TWIST, twist-related; VEGF, vascular endothelial growth factor; WNT, wingless and int;
ZEB, zinc finger E-box binding homeobox.
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hinders T cell differentiation, drives T cell exhaustion, upregulates

immune checkpoints and deters immunosurveillance (143, 144).

Immune evasion is only further promoted by the acidic TME

provided by glycolytic favoring. Acidic tumor pHs suppress

lymphocytes including NK, innate, and T cells while

simultaneously promoting tumor-associated macrophages

(TAMs), Tregs, and MDSCs, and their immunosuppressive

properties, through a multitude of mechanisms (143, 145).

Acidosis also dysregulates intrinsic pathways building upon the

effects of hypoxia-regulated ones, prevents anoikis, and promotes

autophagy (141, 143).

An important recent study subjected melanoma tumors from 42

tumor infiltrating lymphocyte therapy-receiving patients and 74

immune checkpoint blockade-receiving patients to extensive

proteomic analysis. In therapy responders, the authors identified

crosstalk between mitochondrial activation pathways (including

fatty acid oxidation, ketone body metabolism, the TCA cycle, and

oxidative phosphorylation) and immune activation pathways (such

as antigen presentation and type I and II interferon signaling). Fatty

acid oxidation and ketone metabolism-related proteins promoted

HLA expression in vitro, and their knockouts accordingly

diminished T cell mediated cytotoxicity (146). Further, the high

oxidative phosphorylation indicative of normal mitochondrial

processes instead of hypoxic metabolism and glycolytic favoring

was shown to be associated with positive immunotherapy

outcomes. However, this study also suggested that the metabolic

changes related to immune response were often associated with

hypoxia (146). For instance, fatty acid oxidation can be increased by

hypoxia (147), and to survive, hypoxic cancer cells could enhance

fatty-acid metabolism and production (as reviewed in (148)). This

contradiction may be explained by the presence of oxidative

phosphorylation, which has been suggested to support the

energy-intensive process of antigen presentation (146). The

switch from oxidative phosphorylation to hypoxia could therefore

increase energy demand from other metabolic pathways, replacing

their potential pro-immune functions with pro-cancer ones. For

example, it was previously shown that hypoxic conditions switch

melanoma cells from using glucose to glutamine in the TCA cycle,

which fuels proliferation (149). Carnitine palmitoyltransferase 1A

(CPT1A) was identified as a key protein by the above discussed

proteomic study (146), capable of enhancing T cell susceptibility

and supporting antigen presentation. On the contrary, a recent

study found that CPT1A-knockout B16 melanoma tumors were

extremely susceptible with adoptive T cell therapy (150). However,

differences in the oxidative phosphorylation/hypoxia status between

these cases remains unknown. The relationship between hypoxia

and other metabolic pathways, and how hypoxia can potentially

reprogram these pathways to convert anti-tumor immune features

into pro-survival assets, remains an open area of investigation that

may further enhance the allure of targeting hypoxia.

Recent research also demonstrates that melanoma acidification

driven EMT is reversible upon returning to normal conditions

(139). The possibility to incapacitate, or even reverse, melanoma

progression through any of these echelons makes hypoxia and

acidosis alluring areas of study. Hypoxia and acidosis are prime

examples of the duality between metastasis and immune escape.
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Below, we summarize recent advances into these phenomena and

further highlight this congruency.
5.1 Recently revealed hypoxia and acidosis
driving factors

5.1.1 Ephrin type-B receptor-4
EPHB4 has been shown earlier to promote melanoma cell

migration through Rho signaling (151). However, a recent study

has shown that EPHB4 might function via regulating hypoxia. In

A375 melanoma xenografts, EPHB4 overexpression promoted

tumor growth but prevented vascularization. This effectively

created a hypoxic environment, especially in small tumors.

EPHB4 also increased expression of the immunosuppressant IL-8

and TGF-b2 (152, 153). In addition, TGF-b2 was shown to act as a

master regulator of EMT in acidosis adapted cells, in colorectal and

squamous cell carcinomas (154). Another study found EPHB4

activity inhibition in SCC resulted in attenuated TAM and Treg

populations while simultaneously enhancing T cell activity (155).

EPHB4 likely imparts similar effects in the melanoma immune

environment, in accordance with the effects of hypoxia generation.

5.1.2 Transcription factor 4
Transcription Factor 4 (TCF4) plays a role in Wnt/b-catenin

signaling and is upregulated in BRAF-inhibitor resistant melanoma

cells. In vemurafenib resistant cell lines, TCF4 knockdown

sensitized melanoma cells to vemurafenib in a Glucose

transporter 3 (GLUT3)-dependent manner, thereby decreasing

lactate production. TCF4 inactivity has also been shown to be

responsible for downregulation of metastatically-related genes

(156). Given the acidifying role of lactate in the TME, it is

unsurprising another study found TCF4 is enriched in

“mesenchymal-like” cells and a suppressor of antigen-

presentation programs. Targeting TCF4 in “mesenchymal-like”

melanoma increased immunogenicity and yielded a targeted

therapy benefit (157).

5.1.3 Monocarboxylate transporters
MCTs are known to contribute to proliferation, immune escape,

and are essential for glycolysis clearance (13). Diclofenac, a

nonsteroidal anti-inflammatory drug (NSAID), was found to

impair MCT function in a melanoma B16 mouse xenograft

model. This was found to result in increased anti-PD-1 blockade

efficacy, increased T cell activity during anti-PD-1 blockade,

decreased lactate secretion, and increased pH in the TME. In

vitro, upon diclofenac treatment, CD8+ T, CD3+ T, and NK cell

numbers increased alongside IFNg expression. Furthermore,

diclofenac selectively disabled the cancer glycolytic shield;

immune cell functions or glycolysis were not hindered to nearly

the same degree (13). In patient tumor samples, the fourth MCT

family member, MCT4, displays increased expression in the

progression from primary to metastatic melanoma and both

MCT4 and MCT1 expression predict poor patient survival (158).

Inhibiting the first MCT family member, MCT1, with a small

molecule inhibitor reduced circulating tumor cells in blood and
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overall metastatic burden in patient-derived melanoma xenografts.

Notably, as NSG mice were used, this indicates a metabolic

metastasis program operating separately from metastasis

originated from altered immune escape capabilities (159). These

recently exposed targets increase the allure of disabling acidosis and

hypoxia drivers. A variety of metastatically and immunologically

related benefits may be achieved by halting these progression

related processes.
5.2 Recently revealed factors driven by
hypoxia and acidosis

5.2.1 Hypoxia-inducible transcription factor-1a
HIF-1 is an oxygen sensitive master regulator responsible for a

vast number of the hypoxia-driven effects in melanoma and other

cancers (160, 161). The HIF-1 oxygen-regulated alpha subunit

(HIF-1a) is well studied in melanoma and its abilities to drive

metastasis and negate immune responses or immunosurveillance

(160, 162). HIF-1a has also been linked to upregulation of immune

checkpoint proteins and the release of immunosuppressants

including certain interleukins and TGF‐b (162). While these roles

are well established, recent studies continue to update the

importance of HIF-1a in melanoma immunity and metastasis.

In metastatic melanoma patients, Foxp3+ and Retinoic Acid

Receptor-related Orphan Receptor-g+ (RORg+) lymphocytes were

correlated with high HIF-1a expression (163). This is indicative of

T helper 17 (Th17) Tregs (160–162). Th17 Tregs have been

previously found to promote melanoma progression through

activation of the IL-6/STAT3 pathway (164). Further, STAT3 and

HIF-1a may regulate each other, potentially in self-amplifying

cycles (160, 163, 165, 166). In line with these results, B16-F10

mice injected in T cell specific HIF-1a knockout mice displayed

reduced growth compared to wild-type. Combinatorial treatment

using the HIF-1a inhibitor Acriflavine and the Treg depletion agent

Cytoxan improved CD8+ T cell responses and reduced tumor

growth when compared to Acriflavine or Cytoxan alone (167).

Another study using B16-F10 injection found tumor-specific HIF-

1a deletion enhanced CD4+, CD8+, and NK cell infiltration.

Acriflavine also provided benefit to an anti-PD-1 and Tyrosinase-

related protein-2 (TRP2) vaccination immunotherapy

combination (168).

The HIF-1a inhibitor, IDF-11774, achieved similar results in a

nude mouse B16-F10 model, diminishing tumor growth and

increasing CD8+ T cell infiltration. Additionally, IDF-11774

reduced expression of the EMT markers SNAIL and N-cadherin

(169). HIF-1a regulates melanoma VEGF expression, and

increasing evidence supports the HIF-1a/VEGF axis contributes

to metastasis and EMT (170–172). Another emerging HIF inhibitor,

64B, diminished liver metastasis rates and volumes, and diminished

lung metastasis in a 92.1 uveal melanoma model (173). Despite

these findings, contradictory studies have found HIF-1a is needed

for helper T cell differentiation (174), induces cytokine production

programs in CD8+ T cells (175), and encourages NK cell effector

function (176). Relatively uniform evidence backs up the immune-
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evasion and metastatic nature of melanoma-intrinsic HIF-1a
signaling, but additional research is required to understand the

context(s) altering HIF-1a function in T cell and NK cell biology.

HIF-1a can also contribute to melanoma phenotype switching.

Activation of HIF-1a has been shown to stimulate glucose

accumulation and induce MITF expression. However, this

response is transient and under prolonged hypoxia MITF will

repress itself (177). This process could contribute to intertumoral

heterogeneity across hypoxia gradients in different tumor locations,

and increase the prevalence of MITFlow populations. In line with

this idea, another report demonstrated tumor acidosis

reprogrammed melanoma into the MITFlow/AXLhigh phenotype

(178). Thus, HIF-1a can indirectly, via EMT induction, or

directly via MITF/AXL expression, shift melanoma phenotypes

towards immunosuppressive and metastatically-inclined states.

Taken together, HIF-1a plays key roles in regulating melanoma

signaling responsible for EMT, and ultimately metastasis, and

immune responses. Recent findings suggest a prominent role of

HIF-1a in regulating lymphocyte pacification, but further

clarification in this aspect is required. HIF-1a small molecule

inhibitors will be pivotal for future studies in this direction and

future therapeutic ventures building on our existing knowledge.

5.2.2 Ovarian cancer G-protein-coupled
receptor 1

OGR1 is a member of the proton-sensing G-protein-coupled

receptors (GPCRs), which emit responses dependent on

extracellular pH (143, 179). Past research has shown that

hypoxia-driven activation of these receptors promotes survival

and furthers glycolytic metabolic pathways (180). OGR1 is

upregulated in melanoma and expressed by both melanoma and

immune-involved cells. Depletion of OGR1 in a B16-F10 metastasis

model resulted in decreased migratory colony formation. OGR1

targeting also activated T cells and improved T cell killing,

stimulated IFNg and IL-18 release, and antigen processing and

presentation. T cells extracted from OGR1 deficient mice (spleen)

were better adapted to acidic environments (179). Another recent

study investigating OGR1, and the related GPCR T cell death-

associated gene 8 (TDAG8), found these receptors mediate pH-

dependent PD-L1 expression increases in B16-F10 melanoma cells.

PD-L1 expression was decreased and CD8+ T cell infiltration

improved by the addition of basic sodium bicarbonate (181). G-

Protein Coupled Receptor 4 (GPR4) is another acidosis activated

receptor. One study found its function is opposite to OGR1 and

TDAG8; its overexpression at an acidic pH prevented migration

and improved adhesion in B16-F10 cells through activation of the

Rho/ROCK pathway (182). Previous studies have also shown that

Rho/ROCK signaling is important in the regulation of melanoma

EMT and immune responses, demonstrating how acidic-driven

signals can manifest the malignant phenotype (128, 183, 184).

5.2.3 Brain and muscle arnt-like protein-1
BMAL1 is a master regulator of circadian clock-related genes

(185, 186). Previous studies evidence the importance of circadian

rhythm-related genes in metabolic activities (186). Furthermore,
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BMAL1 contributes to activation of pro-survival signaling pathways

in response to oxidative stress (187). In melanoma cell lines,

BMAL1 activities were found to oppose those of HIF-1a and

promote oxidative phosphorylation. BMAL1 macrophage

knockout increased HIF-1a activity and produced more lactate.

Furthermore, disruption of the glycolytic balance in macrophages

through BMAL1 increased their TAM likeness. BMAL1 loss has

been hypothesized as a contributor to reduced CD8+ T and NK cell

function (186). BMAL1 is involved in both hypoxic maintenance

and the cellular response to an impaired environment (186).

5.2.4 Leucine-rich repeats and immunoglobulin-
like domains 1

LRIG1 inhibits epidermal growth factor receptor (EGFR)

signaling and is downregulated in several forms of cancer. In

melanoma cell lines, hypoxia decreases LRIG1 expression,

favoring EMT. LRIG1 overexpression blunted hypoxia-driven

EMT and formation of vascular channels through EGFR/

Extracellular Signal-Regulated Kinase (ERK) signaling

inhibition (188).

5.2.5 Baculoviral IAP repeat-containing 2
BIRC2 is a ubiquitin-protein ligase involved in governing

proteasomal degradation and apoptosis (189–191). BIRC2

expression is activated in hypoxic conditions through multiple

HIFs. In B16-F10 cells, BIRC2 expression is shown to block

chemokine C-X-C motif (CXCL) 9 release, a chemokine

responsible for CD8+ T and NK cell recruitment. In B16-F10

mice, BIRC2 knockdown also decreased T cell immunoreceptor

with Ig and ITIM domains (TIGIT) and LAG-3 expression while

increasing DC levels (190). Another recent study using a B16-F10

murine model found BIRC2 deletion prevented lung tumor nodule

formation (191). In addition, BIRC2 has been identified as a

regulator of NF-kappaB, providing a further link between BIRC2,

metastasis and immune escape (192).

Altogether, hypoxia and acidosis are key developments

associated with tumor progression. Various mechanisms

contribute to the generation of a hypoxic and acidic

immunosuppressive microenvironment, including HIF-1a and

many other targets (Figure 2). Signals stimulated by this

environment then promote metastasis and further enable the

immune-resistant properties of melanoma. The observed

reversibility of pH-dependent effects and potential to break

powerful regulatory feedback systems is therapeutically appealing

for future melanoma treatment. Further research is required to

understand how melanoma cells utilize the hypoxic mechanism to

enhance their invasive abilities.
6 Immune escape and
early dissemination

The classical, or linear, model of cancer progression predicts

late-stage dissemination from the primary tumor site and

subsequent initiation of metastatic colonies genetically reflective
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of their origin. However, recent research suggests that melanoma

cells actually disseminate early to distant sites where they escape

immune recognition (23, 24). These cells exist in a dormant state

and can initiate metastatic colonies after signaling activation at a

later time (22–24). Eyles et al. delved deeper into the concept of

early tumor cell dissemination. In a RET.AAD (transgenic for the

human oncogene RET and the mouse/human chimeric MHC

antigen AAD), spontaneous melanoma mouse model, successful

dissemination was observed as early as 3 weeks after primary tumor

onset. 1.5 years later, metastatic colonies stemming from the initial

disseminations were observed. Disseminated tumor cells were

dormant for varying tissue-dependent periods of time, and this

led to staggered metastatic outgrowth. The authors suggested that

the dormant disseminated state arises from a flawed immune

response resulting in temporary cell cycle arrest rather than

apoptosis (22).

The genetic landscape of disseminated cancer cells also vastly

differed from their primary site; this also supports a model favoring

early dissemination as disseminated cells and primary tumor cells

will have large amount of time to acquire genetic differences. In the

melanoma progression model proposed by Werner-Klein et al.,

dissemination is an early phenomenon of melanoma in which 1)

immune-evasive and malignantly inept cells seed the body, 2)

disseminated cancer cells genetically differentiate, 3) stimulation

triggers colony formation and switching to a proliferative

phenotype (24). These results challenge the classical linear

progression model and show that tumor cells may disseminate

across the body early in disease progression. To prevent recurrence

and develop treatments targeting dormant disseminations, the

progressive mechanisms promoting early dissemination and

dormant melanoma states must be further researched. Here, we

summarize recent studies providing novel evidence in this area.
6.1 Hypoxia vs oxidative phosphorylation in
early dissemination and dormancy

The shift between hypoxia-induced metabolic shifts and

initially oxidatively sound states may provide insight into the

mechanisms allowing dissemination survival and dormancy. Past

research indicates dormant melanoma cells exist in a stem cell-like

state (193). In a murine model, mouse granulocyte-macrophage

colony-stimulating factor expressing B16-F1 cells were used to

develop immune-resistant dormant disseminations in various

organs while suppressing primary tumor development. These

quiescent populations lacked proliferative ability and expressed

the melanoma stem cell markers CD133 and CD24. Their

enhanced self-renewal properties compared to maternal

specimens also indicates an increased likeness to melanoma stem

cells. Furthermore, Glucocorticoid-induced Leucine Zipper (GILZ)

was identified as a regulator of the G0-to-G1 transition in these

dormant populations with quiescent cells lacking GILZ expression.

In a human melanoma model, GILZ downregulation promoted the

development of dormant stem-cell like states through FOXO3a

activation, increased G0 cells, promoted tumorigenicity, and

decreased expression of the differentiation marker tyrosinase. This
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provides evidence that beyond previously described immune-

selection models, intrinsic pathways inhibiting differentiation,

such as GILZ depletion, may develop stem-like states capable of

producing dormant and highly tumorigenic seeds (193).

The role of hypoxia (or lack of in this case) in dormancy

becomes more apparent through FOXO3a, which was recently

found to promote Sirtuin 6 (SIRT6) expression. SIRT6 then

represses Myc and HIF-1a while simultaneously deacetylating

glycolysis promoting genes (194). The role of SIRT6 in melanoma

proliferation or dormancy requires further investigation, as past

studies have shown a pro-proliferative role unsupportive of

dormant states (195, 196). This indicates FOXO3a serves as a

glycolytic suppressor; it is then likely that in the GILZ

downregulated melanoma models oxidative phosphorylation

prevails, although this remains unknown. In melanoma cells,

oxidative phosphorylation has been shown to be critical in

maintaining quiescence (197). In another recent report, quiescent

melanoma cell lines were identified by high and low p27 and Ki67

expression. Interestingly, oxidative phosphorylation was conserved,

and even enhanced, in dormant cells. Oxidation inhibition

promoted the return to cycling cell states. In the dormant cell

populations, cellular myelocytomatosis oncogene (c-Myc) was
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overexpressed and identified as a potent driver of oxidative

phosphorylation pathways (198). When taken with this possible

role of FOXO3a in the GILZ models, it becomes apparent that

maintenance of oxidative phosphorylation may be a conserved

mechanism across dormant, stem-like states with high tumor

initiation potential.
6.2 Proliferation inducing pathways in early
dissemination and dormancy

Studies have suggested that inhibition of PI3K/AKT signaling

deactivates the cell cycle in melanoma stem cells and promotes

dormancy (199). The PI3K/AKT pathway is also a downstream

target of GILZ, and PI3K/AKT activation halts FOXO3a activity

(193). In metastatic melanoma cell lines, PI3K/AKT inhibition

switched proliferative subsets to slower cycling stem cell like

states. Interestingly, this switch was accompanied by reduced

HIF-1a levels, however HIF-1a was still overexpressed in the

stem-like populations (199). One recent study found 5′AMP‐

activated protein kinase (AMPK) expression is increased in c-Myc

reliant melanoma cells (200). AMPK promoted c-Myc+ survival in
FIGURE 2

A hypoxic and acidic environment favoring immune escape and metastasis. In healthy cells HIF-1a and a microenvironment pH are tightly regulated.
During melanoma progression, increased expression of key genes (hypoxia driving factors) coordinate to generate a hypoxic and acidic
microenvironment that promotes immune escape, while also activating intrinsic programs enhancing metastatic capabilities. Feedback from the
microenvironment can subsequently activate surface sensors or other proteins (hypoxia driven factors), resulting in amplifying feedback loops that
continue this cycle. Treatment intervention in the microenvironment or targeting intrinsic signaling pathways controlling or being controlled by
hypoxia may halt melanoma progression or allow immune killing. Created with BioRender.com. BIRC2, baculoviral IAP repeat-containing 2; CXCL9,
chemokine (C-X-C motif) ligand 9; DC, dendritic cell; EPHB4, EPH receptor B4; EMT, epithelial to mesenchymal transition; EMT-TFs, epithelial to
mesenchymal transition transcription factors; GLUT3, glucose transporter 3; HIF-1 a, hypoxia inducible factor 1 alpha; IFNg, interferon gamma; IL,
interleukin; LRIG1, leucine rich repeats and immunoglobulin like domains 1; MCT, monocarboxylate transporter; MITF, melanocyte inducing
transcription factor; NK, natural killer; OGR1, ovarian cancer G protein-coupled receptor 1; PD-1, programmed cell death protein 1; PD-L1,
programmed death ligand 1; TAM, tumor associated macrophage; TCF4, transcription factor 4; Treg, regulatory T cell; TGF- b, transforming growth
factor beta.
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melanoma mouse models (200). AMPK functions as a buffer against

oxidative stress and stimulates catabolic ATP generation through

oxidative phosphorylation maximization (201, 202). AMPK also

acts to inhibit PI3K/AKT signaling (200). From these observations,

it seems a tight balance between oxidative phosphorylation

maintenance and PI3K/AKT signaling is necessary for

sustaining dormancy.

In a recent model utilizing tumorigenic melanoma tumor-

repopulating cells, high SOX2 (a member of the SOX transcription

factors) levels fueled growth, low levels of SOX2 put cells into a state

of dormancy, and a complete knockout of SOX2 exited the quiescent

state into a less stem-like phenotype (197). Another recent report also

finds SOX2 contributes to enhanced oxidative phosphorylation in

melanoma (203). However, acidosis accumulation promotes

stemness factors including SOX2 (139). Based on these reports, a

progression-related hypoxia and acidosis model of early

dissemination may be proposed. In early tumor formation, severe

hypoxia and acidosis are not present. The key to early dissemination

may rely on activation of factors promoting stemness without
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deterioration of oxidative phosphorylation (Figure 3). As

proliferation inducing pathways like PI3K/AKT are further

stimulated, this balance promoting dormancy is lost and replaced

with proliferation. Hypoxic conditions may still work to promote

EMT and metastatic phenotypes, but through different genetic

programs from the early oxidatively enhanced disseminations.
6.3 Neural crest stem cell related genes
and EMT overlap in early dissemination
and dormancy

Genes important for NCSCs that contribute to EMT are also

emerging as contributors to dormancy. SOX2 is important to neural

crest development but in melanoma it is a contributor to stemness

and invasive ability (204, 205). High Tet Methylcytosine

Dioxygenase 2 (TET2) expression was observed in multiple slow

cycling dormant-like tumor subsets. Tet family proteins have been

implicated in embryonic development and the neural lineage (206).
FIGURE 3

Oxidative phosphorylation and stem pathways govern early dissemination. As dormant stem-like cells face further dysregulation and
heterogenization proliferative programs and acidosis replace the delicate balance initially allowing early dissemination. In both cases, metastatic
colonies are formed with similar stem-like properties. Early disseminated cells remain dormant for long periods of time, and the mechanisms
causing growth re-initiation remain to be well studied. Created with BioRender.com. AMPK, 5′AMP‐activated protein kinase; c-MYC, myc; EMT,
epithelial to mesenchymal transition; FOXO3a, forkhead box O3; GILZ, glucocorticoid-induced leucine zipper; HIF-1a, hypoxia inducible factor 1
alpha; OXPHOS, oxidative phosphorylation; RXRG, retinoid X receptor gamma; SIRT6, sirtuin 6; SOX2, SRY-box transcription Factor 2; STAT3, signal
transducer and activator of transcription 3; TET2, tet methylcytosine dioxygenase 2.
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In a recent study using a melanoma mouse model, TET2 expression

promoted suppressive TAM genetic profiles and suppressive

myeloid cell activities (207). In another melanoma mouse model,

TET2 depletion increased AKT and proliferation marker

expression, decreased cell cycle inhibitors, and accelerated tumor

development (208).

Another study utilized MAPK-inhibition to develop quiescent

NCSC-like melanoma populations. The neural crest migration gene,

Retinoid X Receptor Gamma (RXRG), was overexpressed in these

cells and identified as a driver of NCSC states (135, 209). IFN-b can

also act as an effective inducer of dormancy, this is partially

attributed to its ability to induce STAT3 serine phosphorylation.

In this dormancy model, dual serine tyrosine phosphorylation

activated p53 to promote apoptosis (210). In the neural crest,

STAT3 regulates cell cycle progression and differentiation (211).

More research is required to understand what genetic prerequisites

control proliferative or dormant stem-like outcomes in NCSC

genes. While many genes important for NCSC maintenance have

been linked with EMT and stemness properties, their roles in

dormancy maintenance remain a lacking area of study.

In a recent study, Rapanotti and colleagues isolated circulating

melanoma cells from patients in varying stages of disease

progression. In early-stage patients, the authors utilized three

subsets of circulating cells including endothelial-like (CD45-

MCAM+), stem-like (CD45- ABCB5+), and hybrid-like (CD45-

MCAM+ ABCB5+). The endothelial population expressed

adhesive markers, but all three populations were found to exhibit

“stem-mesenchymal” like characteristics (212). Through NCSC

genes and EMT, mesenchymal and stem-like traits are conferred

to melanoma cells. This indicates that the same NCSC genetic

programs hijacked to drive EMT, may also drive early

dissemination as these cells display similar properties. A recent

study examining transcriptomes from melanoma cells found EMT/

invasive states and NCSC-like cells differ in their genetic

backgrounds, but both exist with low levels of MITF (135). These

findings support the idea of early progression NCSC genetic

manipulation and are in line with the stem-mesenchymal

properties of circulating melanoma cells. This is also supported

by various recently discovered roles of NCSC genetic programs in

promoting dormancy. It is likely that initial tumorigenic cells

possess high levels of stemness, allowing early dissemination to

occur before later progression-related changes and heterogenization

blunt the delicate genetic balance held in these cells. Late MITFlow

populations formed from EMT may reflect early dissemination,

however, varying mechanisms will have led to their final stem-like

states. The same drivers promoting metastasis and immune escape

through EMT likely act as initial stemness conveyors responsible for

early dissemination as tumors are initiated in a pre-hypoxic

environment. Overall, understanding the properties of early

disseminated or dormant cells as well as the mechanism behind

their formation is critical for reducing melanoma recurrence. More

NCSC markers and EMT programs need to be studied in the

context of early tumor progression and initiation so that novel

treatments to maintain/lock the stem state dormancy may

be developed.
Frontiers in Immunology 13
7 Therapeutic opportunities against
immune escape, EMT and
early dissemination

“Dual drivers” concomitantly contributing to immune escape

and metastasis are alluring therapeutic targets with the potential to

sensitize melanoma cells to immune attack while simultaneously

preventing disease progression. We have summarized therapeutic

opportunities and future directions related to this concept

in Figure 4.

Targeting EMT, either through pathways enabling the EMT

process, or characteristics of dedifferentiated post-EMT

phenotypes, is an alluring approach to manage melanoma

progression. However, tumor heterogeneity is a well-known

contributor of therapy resistance as reviewed in (213), making the

EMT process or products difficult targets. Applying tumor

evolution algorithms and looking for shared markers across sub-

clonal tumor populations may be able to overcome this problem in

a search for shared vulnerabilities. Alternatively, therapies directed

at different phenotypes could be employed in combination, or

sequentially, to account for EMT-induced phenotypic diversity.

Ectopic expression of NCSC-relevant genes in melanoma may

also provide therapeutic opportunity, as normal melanocytes and

many other healthy tissues do not express the proteins coded by

these genes. Additionally, expression of NCSC markers can

contribute to the EMT process, and immune escape and

metastasis through separate means. The same can be said for

hypoxia and acidosis driven or driver targets. In this case, pH

may be an opportunity to promote selectivity or deliver therapies.

As pseudohypoxia, or the induction of hypoxia-related genes

despite sufficient oxygen (177), is present in a wide-range of

melanomas, hypoxia-related genes could maintain therapeutic

potential in a wide range of patients. Overall, EMT initiators/

products, NCSC-relevant targets, and the hypoxic response serve

as points of therapeutic interference with potential to

simultaneously enhance melanoma immunity and prevent

metastatic progression. The expansion of single-cell RNA

sequencing techniques and vulnerability screens can better inform

what targets in these processes are most relevant, shared between

subclones within tumors, and even between tumors after

metastatic progression.

The role of early dissemination in contributing to clinically

presenting metastatic melanoma remains to be well documented.

The hypoxic properties characteristic of late-stage primary tumors

contrasts the potential oxidative phosphorylation favoring in

dormant disseminations, possibly complicating a shared

therapeutic approach focused on metabolism. However, both

cases display overlap in NCSC-relevant genes and EMT features.

Additional early dissemination mouse studies and parallel studies

using clinical specimens can demonstrate differences in secondary

tumors arising from early dissemination versus late-stage primary

spread. Separate therapeutic approaches may be required in these

cases, potentially prolonging dormancy or preventing dormancy

exit if dormant disseminations cannot be destroyed.
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It is worth noting that melanoma brain metastasis (MBM)

remains a critical clinical problem in melanoma management.

Further, 20-40% of melanoma patients experience brain metastasis,

with a median overall survival of only 8.9 months after diagnosis

(214). As an immune privileged site, MBM experience a unique TME

vastly different from other metastatic sites, characterized by resident

microglia immune cells that play a similar role to macrophages, the

central nervous system (CNS) constituents, such as astrocytes and

neurons, high vascular density, extracellular matrix differences, and a

blood-brain barrier that must be compromised to allow robust

immune infiltration. These factors can combine to generate a

deeply immunosuppressive environment that prevents success of

current therapies (as reviewed in (215)). The MBM TME can also

drive melanoma progression through unique crosstalk events. For

example, melanoma cells can alter astrocytes to promote monocyte

chemoattractant protein-1 (MCP-1) production, which in turn drives

MBM proliferation and invasion (216). Microglial JAK/STAT

activation from melanoma-secreted IL-6 can similarly enhance

MBM progression (217).
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MBM shares some of the metastatic features discussed above, such as

increased AXL and a NGFRhigh dedifferentiated state (214, 218). In the

brain, dedifferentiation is shown to be enhanced by astrocyte ormicroglia-

derived cytokines such as TGF-b. Similarly to the concept of reactivating

dormant programs important for neural crest stem cell function, MBM

cells can easily enter a neuronal-like state, which has been proposed to

enhance brain-melanoma compatibility. However, more differentiated

MBM E-cadherinhigh states have also been identified, potentially

dependent on high oxidative phosphorylation (214). Indeed, in sharp

contrast with the pro-metastatic role of hypoxia, oxidative

phosphorylation targeting in MBM-bearing mice greatly improved

survival (219), and MBM oxidative phosphorylation was shown to be

associated with worse immune cell infiltration (220). However, a recent

spatial single-cell transcriptomics study showed heterogeneous expression

of oxidative phosphorylation in treatment-naive MBM (218). MBM

oxidative phosphorylation variance could reflect observations in cases of

early dissemination or dormancy and represent stem-like states with high

tumorigenic potential, as described above. Just as separate therapeutic

approaches may be needed to successfully tackle early dissemination-
FIGURE 4

Comprehensive overview of therapeutic opportunities against immune escape, metastasis, and early dissemination. Targeting processes concurrently
driving immune escape and metastasis is therapeutically appealing and may lead to synergistic treatments. Disrupting these processes can
simultaneously halt multiple fronts of melanoma progression. Additionally, applying our understanding of early dissemination to future bioinformatic
tools and long-term mouse models may reveal more specific vulnerabilities and detection methods for these slow and silent killers. An enhanced
understanding of stemness programs and phenotype plasticity can help deter therapeutic resistance. Our current understanding of immune escape,
metastasis, and early dissemination can inform the future studies required to revolutionize metastatic melanoma treatment. Created with
BioRender.com. NCSC, neural crest stem cell; OXPHOS, oxidative phosphorylation.
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derived metastasis, a similar, multifaceted, approach may be needed to

conquer the unique brain TME.

As targeting the EMT, NCSC, or hypoxia/acidosis features of

melanoma will enhance melanoma immune responses,

combinations with current and upcoming immunotherapies

should be considered. Future research accounting for patient-

specific, or interpatient, heterogeneity can answer which features

in these programs are most therapeutically appealing should be

conducted. Additionally, differences between early dissemination

arising secondary tumors and those arising late in disease

progression must be investigated. Answering these questions in

the context of EMT, NCSC, and hypoxia/acidosis related genes will

provide therapeutic opportunities with the potential to augment

melanoma immunotherapy responses while preventing future

metastatic recurrence.
8 Conclusion

Melanoma immunotherapies have dramatically improved

patient treatment and survival, yet immunotherapy resistance and

disease recurrence remain prevalent. Shared mechanisms

simultaneously governing melanoma immune evasion and

metastases potentially influence both of these barriers, preventing

successful treatment. Specifically, the EMT process, genes involved

in NCSC maintenance, and hypoxia/acidosis contribute to both

immune evasion and metastatic development during melanoma

progression. These processes may also exert a relevant influence in

early dissemination. In the future, therapeutic focus may benefit

from examining dual drivers of immune evasion and metastasis.

Single cell transcriptomic studies focused on heterogeneity and

tumor evolution trajectories can reveal what factors relevant to

EMT, re-activated NCSC signaling, or hypoxia/acidosis are most

applicable, robust, and specific, across patients. A better

understanding of these factors will result in future combinational

approaches that take advantage of current immunotherapies to

prevent melanoma recurrence and resistance.
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