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Introduction: Sepsis represents a critical medical condition that arises due to an

imbalanced host reaction to infection. Central to its pathophysiology are cytokines.

However, observational investigations that explore the interrelationships between

circulating cytokines and susceptibility to sepsis frequently encounter challenges

pertaining to confounding variables and reverse causality.

Methods: To elucidate the potential causal impact of cytokines on the risk of

sepsis, we conducted two-sample Mendelian randomization (MR) analyses.

Genetic instruments tied to circulating cytokine concentrations were sourced

from genome-wide association studies encompassing 8,293 Finnish participants.

We then evaluated their links with sepsis and related outcomes using summary-

level data acquired from the UK Biobank, a vast multicenter cohort study

involving over 500,000 European participants. Specifically, our data spanned

11,643 sepsis cases and 474,841 controls, with subsets including specific age

groups, 28-day mortality, and ICU-related outcomes.

Results and Discussion:MR insights intimated that reduced genetically-predicted

interleukin-10 (IL-10) levels causally correlated with a heightened sepsis risk (odds

ratio [OR] 0.68, 95% confidence interval [CI] 0.52-0.90, P=0.006). An inverse

relationship emerged between monocyte chemoattractant protein-1 (MCP-1) and

sepsis-induced mortality. Conversely, elevated macrophage inflammatory protein

1 beta (MIP1B) concentrations were positively linkedwith both sepsis incidence and

associated mortality. These revelations underscore the causal impact of certain

circulating cytokines on sepsis susceptibility and its prognosis, hinting at the

therapeutic potential of modulating these cytokine levels. Additional research is

essential to corroborate these connections.
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Introduction

Sepsis, a severe medical condition characterized by an

exaggerated inflammatory response to infection, can result in

potential organ dysfunction and fatality (1). Globally, sepsis

remains a leading cause of death, accounting for millions of

fatalities each year (2). The pathogenesis of sepsis is complex and

involves intricate interactions between pro- and anti-inflammatory

cytokines (3). Yet, data from observational investigations

highlighting the relationships between circulating cytokine

concentrations and sepsis vulnerability are prone to issues of

confounding and potential reverse causality (4).

Mendelian randomization (MR) analysis employs genetic

variants as instrumental proxies to deduce causal associations

between amendable exposures and clinical outcomes (5). This

method effectively mitigates confounding, given that genetic

variants undergo random assortment at conception. Additionally,

concerns of reverse causation are alleviated since genotypes are

established prior to the manifestation of disease. Numerous

preceding MR investigations have delved into the causal

implications of inflammatory biomarkers in predisposition to

infectious diseases (6, 7). Nevertheless, comprehensive assessment

of whether circulating cytokines levels play a causal role in sepsis

predisposition is still lacking. Our overarching objective was to

glean novel etiological insights into the cytokine mediators integral

to sepsis pathogenesis.
Research design and methods

Study design

Figure 1 shown the overall design of this MR study. Briefly, we

selected instrumental variables (IVs) for the circulating level of

cytokines from the summary-level data including 8,293 Finnish

participants. We then assessed associations of the selected

instrumental variables with sepsis in summary-level data of a

GWAS meta-analysis of European ancestry. We excluded the

single nucleotide polymorphisms (SNPs) associated with two or

more phenotypes to assess the robustness of our findings. The

characteristics of the summary statistic data for cytokines and

sepsis, and further details of SNPs used as instrumental variables

were presented in the Supplementary Tables 1, 2.
Source of outcome

The UK Biobank study, conducted between 2006 and 2010,

gathered over 500,000 participants from various centers in the

United Kingdom. In this study, sepsis data and its subgroups

(including those under 75, 28-day death, Critical Care Units

(ICU) cases, and 28-day death in ICU cases) were collected from

the IEU Open GWAS using summary-level data sourced from the

UK Biobank. The dataset consisted of 11,643, 11,568, 1,896, 1,380,

and 347 sepsis cases, along with 474,841, 451,301, 484,588, 429,985,

and 431,018 controls, respectively. The analysis of the GWAS data
Frontiers in Immunology 02
was carried out using Regenie version 2.2.4, with adjustments made

for age, sex, chip type, and the first 10 principal components

(https://gwas.mrcieu.ac.uk/datasets/ieu-b-4980/).
Instrumental variables selection

As previously described, for circulating levels of cytokines,

summary-level data was drawn from Young Finns Study (YFS)

and FINRISK (1997 survey and 2002 survey), comprising a total of

8,293 participants from Finland (8). Participants in the FINRISK

study were older (60 years) compared to those in the YFS (36 years).

Blood samples for cytokine quantification were collected, with

plasma utilized in the FINRISK study and serum in the YFS. A

comprehensive analysis of 48 cytokines was conducted in this

GWAS study; however, seven cytokines were excluded due to the

presence of over 90% missing values. For MR analysis, there are

three assumptions that need to be satisfied. First, instrumental

variables should be strongly associated with exposure factors.

Hence, given the lack of genetic variants reaching genome-wide

significance for 13 cytokines, we selected 613 SNPs that reached

genome-wide significance (P < 5×10-8) of the 28 cytokines. In

addition, to avoid the influence of linkage disequilibrium and

ensure the independence of SNPs, we retained the SNP with the

lowest P-value at a linkage disequilibrium threshold of r2 < 0.01,

resulting in total of 183 SNPs (9). Second, IVs must not be

statistically associated with confounding factors that affected

relationship of exposure-outcome. Finally, genetic variants can

only influence outcome occurrence through exposure factors, and

we excluded the 16 SNPs associated with one or more cytokines.

Finally, we identified 167 SNPs associated with the remaining 28

cytokines, which were subsequently used in the MR analysis. After

excluding 19 SNPs missing in the outcome summary-level data, we

used the 148 SNPs as instrumental variables in primary MR

analyses (Supplementary Table 3).
Statistical analysis

For each cytokine, we determined the proportion of variance

explained by the associated primary instrumental variables and

assessed the strength of the selected instrumental variables using

F-statistics. Following extraction of the effect size and standard error

estimates for circulating cytokines and sepsis, we computed the

individual MR estimates with the Wald ratio and Delta method. To

gauge the connection between genetically determined circulating

cytokine levels and sepsis, we aggregated MR estimates across

individual SNPs using the inverse-variance weighted (IVW)

method. IVW yielded the accurate estimates of causal effects,

operating under the assumption that the polytropic effects of

genetic variants averaged to zero, and they were independent of

the genetic variant-exposure associations (10). The Cochran’s Q test

was utilized to measure heterogeneity among the instrumental

variables. During the IVW analysis, if significant heterogeneity

was detected among the instrumental variables (Cochran’s Q test

P-value < 0.05), we employed a random-effects model to assess
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causal associations; otherwise, a fixed-effects model was used. To

ensure the robustness of our findings, we conducted sensitivity

analyses, including the sample median method, weighted-median

method, MR-Egger regression, and maximum likelihood method.

Notably, the weighted median estimator provides reliable causal

effect estimates when less than 50% of the information is derived

from invalid instruments (11). Additionally, the intercept of the

MR-Egger regression was employed to assess the presence of

directional pleiotropy (a P-value for the intercept < 0.05 indicates

statistical significance). Besides, the Maximum likelihood method

estimates the causal effect by directly maximizing the likelihood,

assuming a linear relationship between the exposure and

outcome (12).

Al l MR analyses were done in R (vers ion 3.6 .3)

using the TwoSampleMR, MendelianRandomization and the

MRPRESSO packages.
Results

The F statistics for the instrumental variables of 28 cytokines

ranged from 28.56 to 789.2 (Supplementary Table 2), suggesting

that none of them suffer from weak instrument bias. As shown in

Figure 2, we totally found six cytokines were associated with sepsis

and its related traits in the IVW methods. In brief, genetically

predicted IL-10 dropped a 32% (OR, 0.68; 95% CI =0.52-0.90,

P = 0.006) risk of sepsis in the IVW method. We also found a

negative effect of MCP-1 level on sepsis (under 75) trait (OR, 0.83;

95% CI =0.73-0.96, P = 0.010), and this causality was kept

consistent in other approaches, such as Maximum likelihood and

Weighted median and simple median (Figure 3). The heterogeneity

test and pleiotropy test indicated that there no influence for the

casual effect. We also found that there was an inverse relationship

between MCP-1 and Sepsis (28 day death in critical care) (OR=0.42,

95% CI =0.19-0.95, P = 0.036). In addition, MIP1B was found

to be associated with a slightly increased risk in Sepsis (28-day

death in critical care) (OR=1.30, 95% CI=1.13-1.49, P<0.001),
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Sepsis (critical care) (OR=1.12, 95% CI=1.03-1.23, P=0.011) and

Sepsis (28-day death) (OR=1.09, 95% CI=1.02-1.15, P=0.006). The

more results of the association of cytokines with sepsis and its

related traits are shown in the Supplementary Tables 4-8.

In order to confirm the causal association discovered, we

performed a reverse MR analysis for the above statistically

significant results. We didn’t find any sepsis and its related traits

would influence the level of cytokines (Supplementary Table 9).
Discussion

In this two-sample MR study leveraging GWAS summary data

of European populations, we found evidence supporting causal

effects of genetically predicted circulating IL-10, MCP-1 and MIP1B

levels on sepsis risk and related outcomes.

Our results revealed a potentially protective effect of higher IL-10

levels against sepsis. As an important anti-inflammatory cytokine, IL-

10 inhibits immune cell function and curbs excessive inflammation

(13). The expression of costimulatory molecules by myeloid and

lymphoid cells are reduced through IL-10, which reduces the

secretion of inflammatory cytokines as well as the production of

MHC class II antigens (14). IL-10 further inhibits the synthesis of

pro-inflammatory cytokines such as TNF-a, IL-1b, IL-6, IL-8, and IL-

12, specifically in macrophages and dendritic cells (15). Diminished

production of IL-10 has been correlated with the severity and mortality

rates in patients with sepsis (16, 17). Enhancing IL-10 signaling could

represent a promising therapeutic approach. Recombinant human IL-

10 has shown efficacy in clinical trials for inflammatory conditions like

psoriasis, Crohn’s disease, and rheumatoid arthritis (18, 19). However,

timing and dosage of IL-10 administration need to be carefully titrated,

as sustained immunosuppressive effects can impair pathogen clearance

and exacerbate secondary infections.

The protective effects of IL-10 may be mediated through several

mechanisms. By limiting antigen presentation and co-stimulatory

molecule expression, IL-10 prevents excessive T cell activation

and proliferation, reducing tissue damage from uncontrolled
FIGURE 1

An overall design of the present study.
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inflammation (20). IL-10 also enhances phagocytosis of apoptotic

cells and downregulates nitric oxide production, promoting

resolution of inflammation (21, 22). Additionally, IL-10 can

directly suppress endothelial activation and leukocyte recruitment,

attenuating vascular permeability changes that underlie organ

dysfunction in sepsis (23, 24).

From a therapeutic perspective, clinical trials evaluating IL-10

supplementation in sepsis patients have yielded inconsistent results.

A small phase II trial of recombinant human IL-10 showed improved

survival and reversal of shock in subjects with high baseline IL-10 levels

(25). However, two subsequent large phase III trials failed to

demonstrate mortality benefit with IL-10 administration (26). Several

factors may account for the discordant findings. Heterogeneity in sepsis

etiology and differences in treatment protocols across studies could

influence outcomes. The biphasic temporal response of IL-10 in sepsis

should also be considered for optimal timing of IL-10 therapy (27).

Early administration may curb hyperinflammation, while later

supplementation when immunosuppression predominates can

increase secondary infections. IL-10 effects likely depend on the

prevailing cytokine milieu, and evaluation of dynamic patient

endotypes may help guide precision approaches (28). Overall, the

complexities of translating IL-10 modulation into effective sepsis

treatments warrant further mechanistic characterization.
Frontiers in Immunology 04
We also observed an inverse association of MCP-1 with sepsis

mortality, contrasting with the positive effect of MIP1B. MCP-1

(CCL2) and MIP1B (CCL4) both belong to the CC chemokine

family and are key chemoattractants regulating leukocyte recruitment

and activation (29). However, they trigger divergent downstream

pathways that may differentially impact sepsis outcomes. MCP-1

induces a phenotype switch in blood monocytes from an anti-

inflammatory IL-10-producing profile to a proinflammatory TNF-a/
IL-6-secreting one (30). Its blockade has shown protective effects in

animal models of sepsis (31). In contrast, MIP1B preferentially attracts

Th1 lymphocytes and stimulates production of interferon-gamma

over other proinflammatory cytokines (32, 33). The contrasting

effects of MCP-1 and MIP1B on sepsis prognosis warrant further

mechanistic characterization.

The mechanisms underlying the opposing effects of MCP-1 and

MIP1B on sepsis mortality remain to be fully elucidated. MCP-1 is a

major driver of classical monocyte recruitment, which mediate tissue

damage in sepsis through inflammatory cytokine production and

oxidative stress (34). MIP1B may recruit beneficial Th1 cells that

enhance pathogen clearance and resistance to secondary infections

(35, 36). MCP-1 also promotes polarization of alternatively activated

M2 macrophages, which exhibit impaired bactericidal capacity (37,

38). Differential effects on monocyte and macrophage functional
FIGURE 2

The primary MR analysis between cytokines and sepsis and related outcomes.
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phenotypes may thus contribute to the divergent sepsis outcomes.

Temporal dynamics may also be relevant, as early MCP-1-mediated

leukocyte infiltration exacerbates hyperinflammation, while sustained

MIP1B levels counter subsequent immunosuppression. Further

studies delineating cell type-specific mechanisms are warranted to

inform therapeutic targeting strategies.

Major strengths of our study include the large sample size, use

of multiple MR methods to ensure robustness of findings and

leveraging GWAS data to minimize confounding. We performed

sensitivity analyses using different statistical models which yielded

concordant results, further supporting the reliability of our

conclusions. However, we were unable to explore subtype-specific

effects as sepsis etiology can differ by infection source, host genetics,
Frontiers in Immunology 05
and comorbidities (39). Sepsis encompasses a heterogeneous

syndrome, and cytokine inflammatory responses likely vary

across clinical subtypes (40). Our findings warrant validation in

non-European populations as well as mechanistic studies to

translate genetic associations into clinical treatments.

Another limitation is that our analysis focused only on

circulating cytokine levels, whereas local tissue cytokine milieu

may better reflect relevant inflammatory responses in sepsis (41).

We were also unable to account for potential dynamic changes in

cytokine levels over the clinical course of sepsis. Serial measurement

of cytokines could provide further insights into their kinetic profiles

during sepsis progression and in response to treatment. Genetic

studies also have inherent constraints in inferring causality.
FIGURE 3

Forest plot of the Mendelian randomization analyses for the associations between circulating cytokines and sepsis and related outcomes.
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Pleiotropy of gene variants can violate MR assumptions, and we

applied several sensitivity analyses to minimize this potential bias.

Population stratification arising from ancestry differences between

cytokine and sepsis GWAS datasets could also confound results. We

restricted our analysis to European-only cohorts to mitigate this

issue. In addition, there was a challenge in sourcing a dataset that

offers sex-stratified or age- stratified information, thereby limiting

the ability to verify participants with distinct characteristics.
Conclusion

In conclusion, our MR study provides evidence for potentially

causal relationships of key circulating cytokines with sepsis risk and

prognosis. These results highlight modulation of cytokine responses as

a promising strategy for sepsis prevention and management. Overall,

our findings substantiate the pathogenic role of cytokine dysregulation

in sepsis and justify further exploration of immunotherapeutic targets.
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