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The mRNA-LNP vaccines – the
good, the bad and the ugly?
Botond Z. Igyártó* and Zhen Qin

Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia,
PA, United States
The mRNA-LNP vaccine has received much attention during the COVID-19

pandemic since it served as the basis of the most widely used SARS-CoV-2

vaccines in Western countries. Based on early clinical trial data, these vaccines

were deemed safe and effective for all demographics. However, the latest data

raise serious concerns about the safety and effectiveness of these vaccines. Here,

we review some of the safety and efficacy concerns identified to date. We also

discuss the potential mechanism of observed adverse events related to the use of

these vaccines and whether they can be mitigated by alterations of this vaccine

mechanism approach.
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The standard and non-standard components of the
mRNA-LNP COVID-19 vaccines

Regulators approving the deployment of new therapeutic or prophylactic modalities insist

on strict purity criteria for the product. However, the new mRNA vaccine platform offers

some novel, untested, and previously unregulated aspects of impurities during manufacture.

The mRNA vaccines consist of mRNA coding for the protein-of-interest complexed with and

protected by a mixture of different lipids that form nanoparticles of around 100 nm in

diameter (1). The mRNA is synthesized in vitro using an RNA-polymerase from an E. coli-

derived DNA plasmid serving as a template. Ideally, the plasmid and other components are

eliminated during the mRNA purification step (2). However, a recent preprint study using

multiple sequencing assays reported levels of DNA contamination in both Moderna and

Pfizer bivalent mRNA vaccines that exceeded the levels set by the European Medicines

Agency (EMA) and The United States Food and Drug Administration (FDA) (3). Whether

the contaminating plasmid DNA fragments can affect human health remains to be defined.

Low levels of double-stranded RNAs (dsRNA) that can form during the production process

and can activate innate immune sensors and induce inflammation (4), have also been

reported for both Pfizer and Moderna mRNA vaccines (5, 6). The presence of physiologically

relevant levels of the dsRNA in the Pfizer COVID-19 vaccine has also been confirmed

experimentally, indicating that the adaptive immune responses induced by this vaccine in

mice partially depend on MDA5 protein, a dsRNA-sensor (7).
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The nucleoside modifications and removal of dsRNA using

HPLC were initially introduced by Karikó et al., to circumvent the

activation of innate immune sensors, a characteristic of unmodified

mRNAs, and the production of inflammatory cytokines, such as type

I interferon, that would limit protein translation from the mRNA (4,

8, 9). The long in vivo half-life was desirable because the mRNA

technology was initially meant to replace or deliver a therapeutic

protein (10). Nevertheless, the nucleoside modification was touted as

a breakthrough discovery that allowed the human use of mRNA-

based vaccines (11). The importance of the inflammatory

components in the mRNA-LNP platform is highlighted by the fact

that highly purified mRNA (no detectable dsRNA) combined with

lipid nanoparticles (LNPs) that do not contain the inflammation-

inducing ionizable lipid is unable to induce innate and adaptive

immune responses in vivo, while the LNP containing the ionizable

lipid mixed with protein or mRNA supported similar adaptive

immune responses (12, 13). The contaminating dsRNA in the

mRNA-LNP vaccines (7), in combination with the highly

inflammatory nature of the LNPs (12, 14), might essentially obviate

the need for nucleoside modification from the immune sensing

perspective. Thus, the critical component that transformed the

mRNA into an immune response-inducing vaccine is the

inflammatory LNP – initially thought to be an inert carrier/delivery

vehicle for mRNA (10) – and not the nucleoside modifications.

Different levels of contaminants between vaccine lots, besides

storage, transportation, and clinical handling, might explain a

recent finding from Denmark that different lots of the mRNA

Pfizer vaccines induced distinct levels of adverse events. Some lots

caused almost no side effects, while others were associated with a

medium or very high incidence of adverse events (all suspected side

effects, -serious and -related deaths) (15). It would be important to

determine how the same vaccine lots behaved across different

countries and demographics to define whether these findings can

be generalized. While contaminants likely contribute to the

inflammatory nature of this platform and induction of adverse

events, the LNPs’ ionizable lipid component of the mRNA-LNP

vaccine is highly inflammatory (12), and as we already discussed

above, it is key for the reactogenicity and immunogenicity of this

platform (12, 13). Thus, hypothetically, another potential

explanation for the distinct lots triggering different levels of

adverse events could be that the amounts of mRNA-LNP or the

mRNA : LNP ratio differed between lots (16). To assess different

possibilities, it would be essential to determine the level of adaptive

immune responses triggered by the different vaccine lots and if any

properly stored vaccine leftovers are still available to test them for

impurities and the levels of therapeutic agents. In summary, these

findings highlight the need for a strict assessment of purity criteria

and allowable limits for this novel vaccine class.
Concerning assumptions made
regarding the mRNA-LNP platform

Different experts and officials have made several assumption-

based public statements regarding the mRNA-LNP vaccines. One of

the most publicized ones was that the vaccine mRNA cannot be
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reverse transcribed into DNA; thus, there is no risk of insertion into

the human genome (17–20). New DNA insertion into the human

genome would be a serious concern if it happens on the level of stem

cells of the reproductive system. In support of their statement, a

modified version of Francis Crick’s central dogma of molecular

biology (21) has often been cited that the information flow in

eukaryotic cells is unidirectional, from DNA to RNA to protein.

While the information flow in eukaryotic cells, in general, indeed is

DNA to RNA to protein, in particular instances, RNA can be

reverse transcribed into DNA. This process is mediated by reverse

transcriptase, enzymes that are naturally associated with

retroviruses. However, eukaryotic cells, including human cells, use

reverse transcription-like processes to replicate telomeres and

retrotransposons (22–25). With the Pfizer mRNA-LNP vaccine, it

has been shown experimentally that the vaccine mRNA can be

reverse-transcribed into DNA in an immortalized human

hepatocyte cell line. Exposure to the mRNA-LNP vaccine also

correlated with an increase in overall LINE-1 retrotransposon

expression levels and localization to the nucleus (26). It has been

proposed that the sequence features of the vaccines’mRNA meet all

known requirements for retroposition using LINE-1 (25). Whether

these have any in vivo relevance remains to be determined (27).

Spike protein localization to the nucleus was previously reported

(28, 29). In support of studies revealing nuclear localization of the

spike protein, a recent preprint study reported that the spike protein

of the SARS-CoV-2, unlike other SARS viruses, contains a nuclear

localization signal (NLS). The NLS allowed the transport of the

spike protein to the nucleus, and it seems that the spike protein also

shuttled the spike mRNA to the nucleus (30). A study also showed

that SARS-CoV-2 RNA can be reverse-transcribed and integrated

into the genome of cultured human cells, a process potentially

mediated by LINE-1 elements, and can be expressed in patient-

derived tissues. The authors propose that these findings could also

possibly explain why some patients test PCR positive for SARS-

CoV-2 even after clearance of the virus (31). These results, however,

have been criticized as not reproducible (32, 33), infrequent and

artefactual (34). While, to our knowledge, similar studies have not

been performed with COVID-19 mRNA vaccines that code for full-

length pre-fusion fixed form of SARS-CoV-2 spike protein,

comparable transport of spike protein/mRNA to the nucleus

could be expected. Because the mRNA can enter the nucleus,

where it might be reverse-transcribed into DNA, this increases its

potential to integrate into the genome. Furthermore, the mRNA-

LNP diffuses throughout the body and can accumulate in both the

testes and ovaries (5, 6) and is reported to alter the menstrual cycle

in women (35, 36). Therefore, it could potentially be reaching the

stem cells of the reproductive organs. These findings highlight the

need to take these data and concerns seriously and conduct specific

experiments to address them (25).

Another often touted feature of the vaccine mRNA is that it is

degraded in vivo in hours or a few days, thus further limiting its

potential to disrupt normal cell biology (17–20). This assumption

likely arose since unmodified mRNAs have, in general, short in vivo

half-life (37). However, human lymph node biopsies taken at

different time points post-exposure to the mRNA-LNP revealed

detectable levels of vaccine mRNA and spike proteins up to eight
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weeks (38). Circulating vaccine mRNA and spike protein have been

detected in the plasma from a few weeks to several months post-

vaccination (39–42). A recent post-mortem study also found

vaccine mRNA in the lymph nodes of most subjects 30 days post-

exposure and less frequently in their heart tissue but not in the liver

and spleen (43). Thus, in light of these, we should admit to our

limited understanding when it comes to how different modifications

to the mRNA (5’ and 3’ modifications, the use of unique

nucleotides, etc.) affect its in vivo half-life in the human body

because no specific studies have been conducted to address this.

Modified ribonucleotides are commonly incorporated into the

mRNAs of the COVID-19 vaccines to decrease their innate

reactogenicity (8). However, unfortunately, their effects on mRNA

translation fidelity were not defined until recently. Incorporation of

N1-methylpseudouridine into mRNA resulted in +1 ribosomal

frameshifting in vitro and cellular immunity in mice and humans

to +1 frameshifted products from BNT162b2 vaccine mRNA

translation occurred after vaccination (44). The presence of

frameshifted products and associated adaptive immune responses

were specific to this platform since they were not detectable with the

adenovirus-based ChAdOx1 nCoV-19 vaccine (44). Whether the

frameshifted products overlap with endogenous protein sequences

and can contribute to developing autoimmune responses remains to

be addressed.

Overall, this section highlights the danger when we assume and

extrapolate in science and apply existing paradigms to new,

untested platforms. Since the above issues concerning deploying

this novel vaccine are particular to this platform, they must be better

addressed for its future use in humans.
How safe and effective are the mRNA-
LNP vaccines?

The mRNA-LNP COVID-19 vaccines, based on early analysis

of the clinical trial data, were deemed safe and effective across

demographics (45, 46). However, recent peer-reviewed research

studies, a wide variety of continuously increasing case reports, and

publicly available adverse events databases cast doubts on the safety

and effectiveness of these products.
Safety

Careful analysis and re-analysis of the Pfizer and Moderna

clinical trial data led by Dr. Doshi, an expert in clinical trials,

revealed excess risk of severe adverse events (SAEs) of special

interest with both the Pfizer and Moderna COVID-19 vaccines.

Combined, there was a 16% higher risk of SAEs in mRNA vaccine

recipients (47, 48). This concurs with a recent admission from the

German Health Minister to ~1 in 10,000 severe/permanent damage

events (49). The Countermeasures Injury Compensation Program

(CICP) data show that out of a total of 13,406 CICP claims ever

filed, 12,854 were COVID-19 countermeasure claims, out of which

9,682 allege injuries/deaths from COVID-19 vaccines (50). Peer-
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reviewed case reports, including but not limited to severe

inflammatory/autoimmune events of bone marrow (51–55), liver

(56–58), skin (59–64), cardiovascular- (65–77), musculoskeletal-

(76, 78, 79), endocrine- (80–84), and nervous system (66, 84–87),

etc. that sometimes had been fatal, have been steadily increasing.

However, the incidence of SAEs is hard to judge based on the

number of these reports alone (88). To supplement the case report

data, we performed a limited analysis of the publicly available data

from the Vaccine Adverse Event Reporting System (VAERS), co-

managed by the Centers for Disease Control and Prevention (CDC)

and FDA (89). According to VAERS, all death reports and selected

serious events of interest are investigated (89). The analyses mirror

the diverse adverse effects of these therapeutics reported in the

literature and might provide some information on incidence

(Figure 1). Compared to all other non-COVID-19 vaccines

combined, the incidence of adverse events is far higher for the

mRNA-LNP-based COVID-19 vaccines per million doses

administered (Figure 1A). Deaths and SAEs also often occurred

soon after injection (Figure 1B), making it more likely to be the

consequence of the vaccine and not just a random event.

Nevertheless, it is essential to emphasize that one cannot establish

causation simply by looking at VAERS reports. The causative

relationship between the mRNA-LNP vaccine and SAEs has only

been officially recognized by the regulatory agencies for peri- and

myocarditis affecting primarily young males (90). While most

symptomatic patients might be young males, recent, in vivo

physiological tests, such as heart glucose uptake, showed a 40%

increase in asymptomatic vaccinated patients irrespective of gender

and demographics (91), potentially suggesting a much broader

impact. These findings are also supported by a postmortem study,

in some of which an autopsy revealed heart inflammation and the

presence of vaccine RNA (43). Whether the increase in heart attacks

and death in young people (92, 93) might be linked to these vaccines

remains to be determined.
Efficacy

The effectiveness of these therapeutics in preventing infections

and limiting the spreading of the virus has been highly eroded from

the early reports (94), and nowadays, their efficacy is mainly limited

to potentially decreasing the disease severity and death in

susceptible people (95). Excess inflammation caused by an

overreacting immune system (cytokine storm) is one of the major

pathological features in patients with severe COVID-19 (96). Thus,

hypothetically, if exposure to the mRNA-LNP vaccine leads to a

dampened systemic inflammatory response, that may explain why

vaccination also reduced disease severity in the case of the delta and

omicron variants, in which case the antibodies induced by the

original vaccines were not (97), or minimally neutralizing (98). In

support of this hypothesis, Dr. Netea’s group reported dampened

transcriptional reactivity of the immune cells and decreased type I

interferon responses in vaccinated individuals to secondary viral

stimulation (97), while our group described inhibition of adaptive

immune responses and alteration in innate immune fitness in mice
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with this platform (99). The immune-tolerant environment induced

by these vaccines is further supported by recent studies that have

discovered a correlation between an increased number of prior

mRNA vaccine doses and a higher risk of catching COVID-19

(100–102). Thus, these data suggest that these vaccines’ efficacy in

decreasing disease severity and death might lie with their previously

undiscovered immune suppressive characteristics. These findings

further highlight the need for rigorous pre-clinical studies to limit

potential unexpected consequences for novel platforms.
Frontiers in Immunology 04
mRNA-LNP-associated adverse
events – both inflammatory
and inhibitory

The SAEs reported with the mRNA-LNP platform are very

diverse. The SAEs are likely caused by the combination of the

mRNA-LNP vaccine components (103) and potentially by direct

toxicity and biological action of the spike protein itself (104–108).
B

A

FIGURE 1

COVID-19 mRNA vaccines are associated with higher incidence of adverse events compared to other vaccines. (A). Data derived from CDC VAERS
and National Vaccine Injury Compensation Program (NVICP) were depicted as Lg (events/million doses) in the bar chart. The data for COVID-19
mRNA vaccine and other vaccines were from December 2020 to September 2023 and January 2006 to December 2021, respectively. The fold
change was calculated as the Lg (events/million doses) ratio of COVID-19 mRNA vaccine to other vaccines or influenza vaccines.(B). Adverse events
of concern associated with COVID-19 mRNA vaccines. Data derived from CDC VAERS were analyzed, adverse events of concern (including AESI,
adverse events of special interest, defined by CDC) were displayed as symptoms and their # of events, gender proportion and onset interval of
each symptom.
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Here, we will focus on SAEs likely mediated by the immune system.

The SAEs can be divided into inflammatory and anergic/inhibitory

categories from an immunological perspective. Inflammatory side

effects include acute reactogenicities (fever, headache, fatigue,

myalgia and arthralgia, chills, etc.) (45, 46), inflammatory/

autoimmune, anti-PEG mediated CARPA (109), and other related

events that involve activation of the innate and adaptive immune

systems. Anergic side effects, i.e., immune suppression, are

presented as virus reactivation where viruses like varicella-zoster

virus (VZV) (110, 111) and hepatitis C virus (112) reoccur

following COVID-19 mRNA vaccine injection. Furthermore, have

also been reported to likely increase the risks in sensitivity to

infections (100, 101, 113) and potentially disturbance of cancer

immunosurveillance (114–117). How can a platform both activate

and suppress immune responses?
Inflammatory responses

As discussed above, the inflammatory nature of this therapeutic

is linked to the ionizable lipid component of the LNPs (12), which,

in effect, might further be accentuated by potential pro-

inflammatory contaminants, such as dsRNA (7). The acute

reactogenicity responses observed with these therapeutics, such as

fever, headache, fatigue, myalgia, arthralgia, chills, etc., are likely

triggered by the release of a variety of high amounts of innate

inflammatory cytokines, such as IL-1b, IL-6, GM-CSF and type I

interferon (7, 12) upon exposure. This inflammatory environment

induced by this therapeutic, and that the mRNA-LNP has additive

effects with other inflammatory agents, such as LPS (118), could

potentially support flareups with pre-existing autoimmune

conditions and/or create conditions for novel autoimmune

responses to develop in susceptible people. Since the mRNA-LNP

diffuses throughout the body (6, 10, 41, 42), and LNPs can deliver

mRNA into any cell type and enable its translation, it is reasonable

to consider an off-target translation of protein-of-interest in non-

APCs, which then could be under attack by the antigen-specific

adaptive immune responses (103). Therefore, the destruction of

spike protein- or frameshifted-protein-expressing cells by the

immune system throughout the body might be responsible for

some of the SAEs reported with this platform, such as COVID

arm, peri/myocarditis, and inflammatory responses affecting the

brain, liver, bone marrow, etc.
Tolerogenic responses

The observation that protection against omicron infection

waned gradually by month after the booster and seventh month

and thereafter, the incidence of infection was higher among people

who had the booster compared to those with only the primary series

(119), and COVID-19 incidence increases with the number of shots

(100–102) and immunoreactivity decreases (97), and viruses can

reactivate (110, 112), and cancer patients relapse or new cancer

develop (114–117, 120), seems to indicate that exposure to the

mRNA-LNP platform puts people or certain people into a semi-
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immunodeficient/immunosuppressed state. In line with this, mouse

studies have shown that even one-time exposure to mRNA-LNP or

LNP can inhibit adaptive immune responses and alter innate

immune fitness in an inheritable fashion (99). While one-time

exposure decreased susceptibility to subsequent influenza

infection, the mice became significantly less resistant to systemic

yeast infection. Whether the increase in sepsis- (121), nosocomial-

(113, 122), and certain fungal infections (123–126) incidence are

related to the vast exposure to the mRNA-LNP platform or

COVID-19 and or other pandemic-related measures remains to

be addressed.

The ionizable lipids of the LNPs are synthetic and are estimated

to have a 20-30 day in vivo half-life (5). Thus, exposure to these

vaccines may lead to an early high level of inflammation followed by

a long-lasting low level of chronic inflammation. Chronic

inflammation can lead to non-responsiveness and anergy of the

immune system (127), thus potentially contributing to some of the

viral reactivation and increased susceptibility to infections reported

in association with this platform. Furthermore, as presented above,

evidence suggests that contrary to expectations, spike mRNA can

also remain intact for months following mRNA vaccination,

allowing long-term spike protein expression. This correlates with

the presence of germinal centers that last for months. Continuous

stimulation with antigens can lead to aberrant T and B cell

responses. Continuous antigen exposure might promote the

isotype switch to IgG4 recently observed in roughly half of the

individuals receiving three doses of an mRNA vaccine but not by

adenovirus vaccines (128, 129). Prior exposure to natural SARS-

CoV-2 infection prevented the mRNA vaccines from inducing IgG4

switching (130), indicating that the initial priming of the immune

system imprints and determines the subsequent humoral immunity.

IgG4 is generally considered anti-inflammatory and known to

poorly facilitate opsonization, complement fixation, and antibody-

dependent cellular toxicity. Still, it can also be pathogenic in the case

of the autoimmune disease pemphigus vulgaris and some forms of

myasthenia gravis (131). IgG4-related disease also appears to have a

higher risk of overall cancer (132). The induction of IgG4-

producing B cells relies on help from a subset of T follicular

helper (Tfh) cells characterized by the production of high

amounts of IL-10 (133). These IL-10-producing Tfh cells are

generated in the presence of continuous antigen stimulation and

were first identified in chronic viral infection (133), and were later

shown to be present in IgG4-related human diseases (134). Whether

the mRNA-LNP platform induces this unique type of Tfh cells and

the in vivo relevance of the observed switching to IgG4 isotype with

the mRNA-LNP platform remain to be determined (135).

Our laboratory has recently proposed another potential

complementary mechanism to immune suppression (99).

Activation and differentiation of T cells into effector cells are

thought to rely on three signals received from antigen-presenting

cells (APCs), such as dendritic cells (DCs). The first signal is in the

form of peptide-MHC, the second signal is membrane-bound co-

stimulation, and the third signal is in the form of soluble cytokines. If

the T cells receive the third signal before the first one, it is called out-

of-sequence stimulation, which can lead to the T cells’ death or render

them anergic and non-responsive (136, 137). Exposure to mRNA-
frontiersin.org
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LNP or LNP leads to a rapid release of inflammatory cytokines (12),

including type I interferons (7) that are known to induce out-of-

sequence stimulation, which likely exposes the adaptive immune cells,

including the T cells, to an inflammatory environment before the

mRNA is translated into protein and presented on DCs. Thus, with a

high likelihood, one of the potential flaws of the mRNA-LNP

platform, unlike the old-school vaccines where the antigen

presentation and inflammation coincide, is that it exposes the

adaptive immune cells to an out-of-sequence stimulation, which

might worsen upon further exposure. To bring experimental

evidence that out-of-sequence stimulation might exist with the

mRNA-LNP platform, we transferred naïve congenically marked

Ea-specific CD4 T cells into WT B6 mice, and then we exposed

the mice tomRNA-LNP or LNP or PBS. Two weeks later, some of the

mice were left untreated while others were immunized with Ea
antigen to trigger the proliferation of the transferred T cells. Four

days later, the analysis of the skin-draining lymph nodes revealed a

roughly tenfold decrease in the adoptively transferred T cell numbers

in animals exposed to mRNA-LNP or LNP, irrespective of their

immunization status (99). Thus, these data suggest that the

inflammatory environment created by the LNPs is detrimental to

naïve T cells. In another set of experiments, we compared the effect of

mRNA-LNP and LNP to IFNa, or factors that induce inflammation

or influenza infection, on the survival of adoptively transferred naïve

CD4 T cells. Similar to mRNA-LNP and LNP, we found a decrease in

T cell precursor numbers if we treated the mice with type I interferon

(IFNa and poly (I:C) (triggers type I interferon secretion) (Figure 2).

The high dose of LPS led to an intermediate phenotype, while sub-

lethal influenza exposure had no significant effect on the adoptively

transferred CD4 T cells (Figure 2). The effect was not limited to TEa
cells since OT-II CD4 T cells responded similarly (data not shown).

Whether endogenous T cells are similarly affected remains to be

determined. Notably, the observed changes were likely systemic since

the direct draining organs, the skin-draining lymph nodes, and the

distant spleen showed similar trends. These data align with our

previous findings that exposure to mRNA-LNP or LNP leads to

systemic inhibition of adaptive immune responses (99). All the

treatments used, except exposure to influenza, led to a significant

decrease in the transferred naïve T cell numbers. The absence of an

effect with influenza was not due to a lack of infection since mice

exposed to the virus lost significant weight (data not shown). The LPS

exposure, while at a lower degree, also reduced the naïve T cell

numbers. Whether the effect in this case was mediated by other

cytokines than type I interferon or by indirect induction of type I

interferon, or the effect might be limited to the high dose of LPS that

we used, remains to be determined. Overall, these data support the

potential existence of a type I interferon-mediated out-of-sequence

stimulation with the mRNA-LNP platform. However, further studies

will be needed to identify the inhibition’s mechanistic details and

determine whether these data are translatable to humans.
Quo Vadis mRNA-LNP?

Several severe side effects have been reported with the mRNA-

LNP platform, which, to preserve human health, should be carefully
Frontiers in Immunology 06
investigated and addressed before further use. We think that

making the ionizable lipid biodegradable, thus decreasing its in

vivo half-life, could potentially solve or limit the presence of chronic

inflammation, which is detrimental to adaptive immune responses.

Along the same line, the half-life of the mRNA should also be

carefully adjusted to prevent chronic antigen stimulation of T and B

cells. Whether the ionizable lipid component of the LNPs, similar to

LPS (138, 139), can promote innate tolerance upon multiple

exposures must be defined. When designing vaccines, especially

booster shots targeting potential new variants, basic immunology

on how antigen dose, pre-existing antibodies, and original antigenic

sin (140) might affect the outcome should be considered. The out-

of-sequence stimulation with the mRNA-LNP platform could be

decreased using an “intelligent” design that would trigger

inflammation only after the antigen has been translated from

mRNA and it is ready to be presented on the surface of APCs.

The present formulation of LNP makes them accumulate in specific

organs more than in others, a characteristic that will persist

regardless of the RNA cargo. Thus, to decrease the chance of

inducing autoimmune responses and killing self-cells, the mRNA-

LNP should be targeted to DCs to limit the expression of antigens to

only APCs (103). The generation of frameshifted products due to

the use of specific non-standard nucleotides should be remedied as

proposed (44). To put people’s concerns to rest regarding the safety

of the mRNA, studies should be conducted in NHPs and humans

on the mRNAs’ in vivo half-life and whether there is any in vivo

transcription into DNA and potential genomic insertion. Finally,

since real-life data revealed potential severe gaps in quality control,

stricter oversight of pharmaceutical companies from independent

health officials is desirable and should be implemented

without delay.
Brain bites

Several fundamental questions persist surrounding the

pandemic measures and the adoption of this new vaccine

platform. Rather than advocating for retraction and censorship

(141), fostering open dialogue, considering all perspectives, and

employing logic and reasoning for better future preparedness is

crucial. While some, despite the concerns presented above or

discussed elsewhere (142, 143), would likely argue that the

measures were justifiable, citing lives saved, the robustness of

supporting data raises important inquiries. Estimates relying on

mathematical modeling (144) necessitate scrutiny, particularly

concerning the quality of input data. For instance, reliance on

official death toll statistics and not accounting for demographic

variations in the virus infection fatality rate (IFR; the likelihood of

death if you become infected) prompt questions about the

accuracy of reported figures. Why did official statistics include

both individuals who died from and with COVID-19? Why does

the CDC estimate the flu-associated hospitalization and death for

the adult population, arguing that it cannot be accurately

determined (145) but can give us exact numbers for COVID-19?

Does the IFR data (146, 147) support the official death

toll numbers?
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Igyártó and Qin 10.3389/fimmu.2024.1336906
The unprecedented mass vaccination with a vaccine that

minimally protects from getting infected and spreading the virus

(94) during a pandemic prompts critical reflections: Was it a sound

strategy? Was herd immunity a realistic expectation? Did this

strategy inadvertently accelerate virus mutations, and could a

more targeted focus on vulnerable populations have yielded better

results? (148–156) The decision to opt for the mRNA-LNP platform

over traditional methods requires scrutiny, considering both its

advantages (speed of production, ease of updating) and limitations

(patents, production constraints, affordability, unknown short- and

long-term side effects). Why focus on a single virus protein with a

high mutation rate? Was the vaccines’ ease of updating feature

critical to fighting against variants? Why was basic immunology
Frontiers in Immunology 07
knowledge on how antigen dose, repeated boosters, pre-existing

antibodies, antigenic sin, etc., affect the immune system mostly

ignored during the pandemic?

Amidst a shared pool of scientific knowledge, divergent

decisions by countries like Sweden, which chose not to

recommend vaccinations for specific age groups (157), kept

schools open and reported that no child with COVID-19 died

(158, 159), underscore the need for a deeper understanding of

varied perspectives. Why censor the “Great Barrington

Declaration,” (160) which advocated a model similar to Sweden’s,

emphasizing the protection of the vulnerable? (161) This ongoing

list of inquiries highlights the nuanced complexity of these issues,

urging a thorough examination.
FIGURE 2

Exposure to mRNA-LNP and other type I IFN-producing reagents potentially induce out-of-sequence stimulation. Experimental design. Mice were
adoptively transferred with TEa cells through tail vein one day before exposure to different types of inflammatory reagents at indicated routes. Two
weeks later, draining and non-draining lymph nodes and spleens were harvested for detection of TEa cells by flow cytometry. Representative flow
plots showing TEa cells (CD4+CD90.1+, gated from live CD3+ population) from different organs under each treatment condition, and
corresponding summarized bar chart (bottom). Data were pooled from at least two independent experiments. Each dot stands for one mouse. The
relative level of TEa cells was normalized to PBS group. Comparisons between PBS group and treatment groups were made by One-way
ANOVA test.
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Going forward

Numerous discussions have centered around the impact of

influential scientists who advocate for drastic measures to address

vaccine hesitancy and public trust erosion, potentially compromising

academic freedom through censorship and intimidation. However,

during the pandemic, actions like silencing dissenting voices, coupled

with policy decisions often reliant on assumptions rather than robust

experimental data, may have inadvertently undermined both science

and public confidence. To rebuild trust, it is crucial to return to the

fundamental principles of scientific inquiry. Scientists should embrace

their training and be committed to questioning every assertion,

regardless of the source. This approach guards against groupthink

and herd mentality. Rigorous analysis of all available data using critical

thinking and reasoned judgment, unaffected by conflict of interests, is

essential to formulate a well-rounded perspective. Communicating

transparently and honestly with society is equally vital. Acknowledging

the inherent uncertainties in biology, our representatives should

convey both what is known and what remains uncertain. Science is

inherently dynamic, perpetually evolving as new knowledge emerges. It

is imperative to emphasize that nothing in biology is absolute, and

pursuing knowledge demands ongoing questioning and exploration.

By adhering to these principles, we can foster a renewed trust in the

scientific process and its capacity for growth and refinement.
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4. Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for

therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-
modified, protein-encoding mRNA. Nucleic Acids Res (2011) 39:e142–2. doi: 10.1093/nar/gkr695
frontiersin.org

https://www.niaid.nih.gov
https://www.niaid.nih.gov
https://www.cancer.gov
https://www.cancer.gov
https://doi.org/10.3390/vaccines9010065
https://doi.org/10.1038/nrd.2017.243
https://doi.org/10.31219/osf.io/b9t7m
https://doi.org/10.1093/nar/gkr695
https://doi.org/10.3389/fimmu.2024.1336906
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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Sánchez-González B, Jiménez-Bárcenas R, et al. COVID-19 vaccines and autoimmune
hematologic disorders. Vaccines (2022) 10:961. doi: 10.3390/vaccines10060961

53. Gadi SRV, Brunker PAR, Al-Samkari H, Sykes DB, Saff RR, Lo J, et al. Severe
autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine.
Transfusion (2021) 61:3267–71. doi: 10.1111/trf.16672

54. Röth A, Bertram S, Schroeder T, Haverkamp T, Voigt S, Holtkamp C, et al.
Acquired aplastic anemia following SARS-CoV -2 vaccination. Eur J Haematol (2022)
2:186–94. doi: 10.1111/ejh.13788
frontiersin.org

https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf
https://doi.org/10.1038/s41590-022-01163-9
https://doi.org/10.1016/j.immuni.2005.06.008
https://doi.org/10.1038/mt.2008.200
https://doi.org/10.1016/j.jconrel.2015.08.007
https://doi.org/10.1038/D41586-023-03119-X
https://doi.org/10.1016/j.isci.2021.103479
https://doi.org/10.1016/j.immuni.2021.11.001
https://doi.org/10.1038/s41590-022-01160-y
https://doi.org/10.1111/eci.13998
https://doi.org/10.1136/bmj.n627
https://web.archive.org/web/20220722133644/https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
https://web.archive.org/web/20220722133644/https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
https://doi.org/10.7150/ijbs.59233
https://www.nebraskamed.com/COVID/where-mrna-vaccines-and-spike-proteins-go
https://www.nebraskamed.com/COVID/where-mrna-vaccines-and-spike-proteins-go
https://www.genome.gov/about-genomics/fact-sheets/Understanding-COVID-19-mRNA-Vaccines
https://www.genome.gov/about-genomics/fact-sheets/Understanding-COVID-19-mRNA-Vaccines
https://www.genome.gov/about-genomics/fact-sheets/Understanding-COVID-19-mRNA-Vaccines
https://doi.org/10.1038/227561a0
https://doi.org/10.1126/sciadv.abf1771
https://doi.org/10.3389/fchem.2016.00006
https://doi.org/10.1007/BF01435251
https://doi.org/10.3390/genes13050719
https://doi.org/10.3390/cimb44030073
https://doi.org/10.3390/cimb44040113
https://doi.org/10.1038/s41392-020-00372-8
https://doi.org/10.3390/v13102021
https://doi.org/10.3389/fmicb.2023.1073789
https://doi.org/10.1073/pnas.2105968118
https://doi.org/10.1073/pnas.2109066118
https://doi.org/10.1016/j.celrep.2021.109530
https://doi.org/10.1128/JVI.00294-21
https://doi.org/10.1002/ijgo.14356
https://doi.org/10.1136/bmjmed-2022-000297
https://doi.org/10.1101/gr.1272403
https://doi.org/10.1016/j.cell.2022.01.018
https://doi.org/10.3390/biomedicines10071538
https://doi.org/10.1093/cid/ciab465
https://doi.org/10.4049/jimmunol.2100637
https://doi.org/10.1038/s41467-019-12275-6
https://doi.org/10.1038/s41467-019-12275-6
https://doi.org/10.1038/s41541-023-00742-7
https://doi.org/10.1038/s41586-023-06800-3
https://doi.org/10.1056/NEJMoa2035389
https://doi.org/10.1056/NEJMoa2034577
https://doi.org/10.1016/j.vaccine.2023.06.035
https://doi.org/10.1016/j.vaccine.2022.08.036
https://doi.org/10.1016/j.vaccine.2022.08.036
https://unherd.com/thepost/Germanys-health-minister-changes-tune-on-vaccine-injuries/
https://unherd.com/thepost/Germanys-health-minister-changes-tune-on-vaccine-injuries/
https://www.hrsa.gov/cicp/cicp-data
https://doi.org/10.14740/jh954
https://doi.org/10.3390/vaccines10060961
https://doi.org/10.1111/trf.16672
https://doi.org/10.1111/ejh.13788
https://doi.org/10.3389/fimmu.2024.1336906
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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