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Introduction: Chemoresistance constitutes a prevalent factor that significantly

impacts thesurvival of patients undergoing treatment for smal-cell lung cancer

(SCLC). Chemotherapy resistance in SCLC patients is generally classified as

primary or acquired resistance, each governedby distinct mechanisms that

remain inadequately researched.

Methods: In this study, we performed transcriptome screening of peripheral

blood plasma obtainedfrom 17 patients before and after receiving combined

etoposide and platinum treatment. We firs testimated pseudo-single-cell analysis

using xCell and ESTIMATE and identified differentially expressed genes (DEGs),

then performed network analysis to discover key hub genes involved in

chemotherapy resistance.

Results:Our analysis showed a significant increase in class-switchedmemory B cell

scores acrossboth chemotherapy resistance patterns, indicating their potential

crucial role in mediatingresistance. Moreover, network analysis identifed PRICKLE3,

TNFSFI0, ACSLl and EP300 as potential contributors to primary resistance, with

SNWl, SENP2 and SMNDCl emerging assignificant factors in acquired resistance,

providing valuable insights into chemotherapy resistancein SCLC.

Discussion: These findings offer valuable insights for understanding

chemotherapy resistance and related gene signatures in SCLC, which could

help further biological validation studies.
KEYWORDS

SCLC, chemotherapy resistance, primary resistance, acquired resistance, gene
expression, network analysis
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Introduction

Lung cancer ranks among the most prevalent malignancies

worldwide, with the highest incidence and mortality rates among all

tumor types. It is usually classified as non-small-cell lung cancer

(NSCLC) and small-cell lung cancer (SCLC) (1). SCLC constitutes

approximately 15% of lung cancer cases and is characterized by poor

prognosis and high chemotherapy resistance (1). Approximately two-

thirds of individuals with SCLC receive a diagnosis of extensive-stage

SCLC (ES-SCLC), indicating that the disease has advanced beyond a

field tolerable to radiation. As a result, treatment options for nearly 80%

of patients are primarily limited to platinum-based chemotherapy (2).

Based on genetic analysis, TP53 and RB1 have been identified as two

frequently mutated genes in SCLC, exhibiting substantially lower

subclonal diversity compared to NSCLC (3–5).

In recent decades, the combined etoposide-platinum (EP)

regimen has become the standard first-line therapy for SCLC

patients. Platinum-based doublet chemotherapy shows efficacy in

60% ~ 80% of ES-SCLC patients, but responses are typically short-

lived (6). Many patients experience relapse within the first year of

EP treatment, upon which a patient’s response to platinum-based

chemotherapy is categorized. If relapse occurs during treatment, it

is labeled as primary resistance (PR); within 90 days after treatment,

it is referred to as acquired resistance (AR); and beyond 90 days, it is

classified as platinum-sensitive (7). In SCLC, acquired resistance

almost always leads to relapse, and there are no effective second-line

treatments currently available. With the increase in the use of

immune checkpoint inhibitors (ICIs) in cancer treatment,

immune combination therapy has been approved as a first-line

treatment for ES-SCLC. Nevertheless, this advancement has only

resulted in a marginal extension of overall median survival time

(12.3–13.0 months) (8, 9). Many studies have explored the

molecular mechanisms underpinning chemotherapy resistance in

SCLC, predominantly using cell lines and preclinical models.

However, direct investigations of human SCLC trials remain rare,

primarily due to limited datasets and insufficient patient follow-up

regarding relapse time. RNA present in plasma harbors the

potential to elucidate systemic responses to tumor progression

and provide insights into the specific type of tissue from which

tumors originate, particularly stratified by cancer type (10). This

underscores the urgent need to accurately detect blood-based

biomarkers of chemotherapy resistance in patients, thus providing

a relatively non-invasive and real-time monitoring approach for

assessing drug treatment responses. Gay et al. categorized SCLC

patients into four subtypes based on expression profiles of

transcriptional factors (ASCL1, NEUROD1, POU2F3, and YAP1),

with each type exhibiting a distinct expression pattern and

sensitivity to different therapeutic drugs (11). Based on these

findings, we hypothesize that differences in transcriptome profiles

between SCLC patients with primary and acquired resistance may

be associated with chemotherapy resistance. Given the limited

chemotherapy options available for SCLC patients, detecting

chemotherapy resistance in SCLC remains an important challenge

in clinical practice and management. As a result, a systematic

investigation into how distinct genes and cell types contribute to

chemotherapy resistance in SCLC is essential. Such research could
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yield valuable insights into potential targets for novel and effective

treatment strategies.

In this study, we examined the potential mechanisms underlying

primary and acquired resistance in SCLC patients. We collected 34

peripheral blood plasma samples from 17 SCLC patients before and

after EP treatment, and performed gene expression screening and

analysis to identify potential gene signatures and cell types associated

with platinum-based chemotherapy resistance. Furthermore, weighted

correlation network analysis (WGCNA) (12) was employed to

construct a co-expression network of differentially expressed cancer-

related genes, with minimum spanning tree (MST) analysis of the

network then performed to identify key hub genes in chemotherapy

resistance. We also performed pseudo-single-cell analysis of the

samples using xCell and ESTIMATE to study the influence of

immune cell composition on chemotherapy resistance.
Materials and methods

Patient sample collection

We collected 34 cryopreserved peripheral blood plasma samples

from 17 SCLC patients before and after combined cisplatin and

etoposide treatment at the Yunnan Cancer Hospital (China). All

patient information is presented in Supplementary Tables S1 and S2.

The patients were divided into four groups based on their response to EP

treatment: pre-treatment primary resistance (PR_pre), post-treatment

primary resistance (PR_post), pre-treatment acquired resistance

(AR_pre), and post-treatment acquired resistance (AR_post). All

patients provided informed consent in accordance with the Helsinki

Declaration. All research protocols were approved by the Ethics

Committee of the Yunnan Cancer Hospital (KYLX202123).
Gene expression screening, differential
gene expression, and enrichment analysis

Total RNA from the plasma was extracted and purified using a

Qiagen plasma kit (Cat. #217184, Qiagen) following the manufacturer’s

standard instructions. RNA quantity and purity were then assessed

using a NanoDrop ND-2000 spectrophotometer. Subsequently, the

gene expression profiles of total RNA were screened using the Agilent

Technologies platform. All experimental steps were conducted

according to the standard instructions provided. Sequencing was

conducted using the Agilent array, with samples from the same

batch. The raw gene expression data were normalized using the

quantile algorithm implemented in the limma package (v1.10.1) in R

(4.1.3) (13).

Differentially expressed genes (DEGs) were estimated using the

limma package based on a Benjamini-Hochberg-adjusted p-value ≤

0.05 and |log2fold-change (FC)| > 0.3. Functional enrichment

analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways and Gene Ontology (GO) terms was conducted using

KOBAS (http://kobas.cbi.pku.edu.cn/) (14). The gene interaction

network associated with cancer-related KEGG pathways was

visualized using Cytoscape (v3.8.0) (15).
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Immune cell type deconvolution

Immune cell type deconvolution was analyzed via xCell (v1.1.0)

(16) and ESTIMATE (v1.0.13) (17). The ESTIMATE dataset

calculated the pseudo-immune score of each sample as a novel

biomarker of immune cell infiltration in cancer. The xCell datasets

provided immune cell indices derived from the gene expression

profiles of the samples. Pearson correlation analysis was used to

compute correlation coefficients between immune infiltration

scores and expression levels of hub genes. All correlation results

were visualized using ggplot2 (v3.4.4) package.
Construction of cancer-related gene co-
expression network and identification of
hub genes

WGCNA (v1.72.1) was used to construct a co-expression

network and expression patterns of cancer pathway-related genes

across the 34 samples. In the network, edge weights were filtered for

edges with a threshold greater than 0.01, and only top the 30% of

edges for each gene were included to generate the final network.

Hub genes were identified through MST analysis of the final

network, as applied in our former study (18). All networks were

visualized with Cytoscape (v3.8.0).
Gene set variation analysis of
chemotherapy resistance genes

GSVA (v1.42.0) (19) was used to identify signaling pathways

associated with candidate genes. Specifically, samples were divided

into high and low expression groups based on the median expression

values of the candidate genes and analyzed accordingly. A reference

gene set for GSVA was selected with “h.all.v7.4.symbols.gmt”.
Kaplan‐Meier survival analysis of candidate
progression-associated genes

Samples were divided into high and low expression groups

based on the median expression values of the candidate genes and

analyzed. Survival curves, representing the time to tumor

progression, were generated using the Kaplan-Meier method. To

compare the survival curves between two groups, log-rank tests

were applied in the survival package (v3.2.13) (20).
Results

Gene expression landscape and pseudo-
single-cell profiles in SCLC patients before
and after EP treatment

We collected 34 peripheral blood plasma samples from 17

SCLC patients before and after EP treatment for gene expression
Frontiers in Immunology 03
array screening (Supplementary Table S2). The SCLC patients

before and after EP treatment were designated as the pre-group

and post-group, respectively. All analysis workflows are depicted

in Supplementary Figure S1. Paired DEG analysis of the pre- and

post-treatment patients was performed using the limma package,

with significance threshold set at |log2FC| > 0.3 and p ≤ 0.05. A

total of 594 DEGs were identified, including 336 up-regulated

genes and 258 down-regulated genes. Genes with |log2FC| ≥ 1 are

annotated in Figure 1A and Supplementary Figure S2A, B.

To assess tumor pseudo-single-cell changes between the pre-

and post-groups, we employed xCell to compute cell scores

for 64 distinct cell types (Figure 1B). The xCell results

showed no significant differences in immune, stromal, and

microenvironment scores between the pre- and post-groups,

although there were observable declining trends in variation

(Supplementary Figure S2C–E). ESTIMATE was also applied to

compare changes in the blood microenvironment between the

pre- and post-groups, showing results in line with the xCell

findings (Supplementary Figure S2F–H). The immune cell

scores estimated using xCell showed no significant differences

among immune cells, including CD4+ T memory cells, natural

killer (NK) T cells, and regulatory T cells, but exhibited a

decreasing trend in variation (Supplementary Figure S2–I).

GO term enrichment analysis demonstrated that genes

influenced by EP treatment were predominantly associated with

“protein binding”, “RNA binding”, and “nucleus” (Figure 1C).

Among the genes influenced by EP treatment, EP300 is widely

expressed and regulates several essential biological processes,

including proliferation and differentiation, through its paralogous

domains, with mutations in EP300 known to accelerate tumor

development in SCLC mouse models (21). KEGG enrichment

analysis revealed that genes influenced by EP treatment were

highly associated with various pathways, including “RNA

degradation”, “Platinum drug resistance”, and “IL-17 signaling

pathway” (Figure 1D). Elevated levels of IL-17 in hepatocellular

carcinoma, colorectal cancer, and NSCLC are indicative of poor

prognosis (22, 23). Furthermore, IL-17 promotes angiogenesis by

up-regulating various post-angiogenic factors in tumor cells and

fibroblasts and contributes to tumor resistance against VEGF

therapy (24, 25). Thus, the KEGG and GO enrichment analyses

revealed that the DEGs were associated with drug resistance,

immune response, and epigenetic regulation.

Patients underwent CT imaging assessment every two

treatment cycles, strictly following RECIST1.1 criteria for

efficacy evaluation. Patients who experienced partial remission

followed by progression were defined as having acquired

resistance, while disease progression occurring after stability or

initial assessment was defined as primary resistance. Based on

these criteria, we classified the 17 patients into two distinct groups.

Notably, five patients exhibited minimal changes in tumor size

before and after treatment, indicating primary resistance

(Figure 1E), while 12 patients exhibited tumor relapse after EP

treatment, with the emergence of new tumors within three

months, indicating acquired resistance (Figure 1F). We

compared the expression levels of transcription factors (ASCL1,

NEUROD1, POU2F3, and YAP1) in the four pre-defined subtypes
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of SCLC among these patient groups (Figures 1G–J). Although

group differences in the expression levels of transcription factors

did not reach statistical significance, possibly due to the small

sample size, the primary resistance patients exhibited low

NEUROD1 and ASCL1 expression before treatment, while the
Frontiers in Immunology 04
acquired resistance patients exhibited low NEUROD1 expression

and high ASCL1 expression before treatment, with contrasting

expression patterns after treatment.

Overall, these findings highlight the distinct expression patterns

of NEUROD1 and ASCL1 in primary and acquired resistance
B

C D

E F

G H I J

A

FIGURE 1

Gene expression profiles and pseudo-single-cell analysis of 17 patients with SCLC before and after combined cisplatin and etoposide treatment. (A) Heatmap
analysis of DEGs between pre- and post-EP treatment groups. (B) Heatmap comparing expression levels of 64 cell components from xCell between pre-
and post-EP treatment groups. (C) GO functional enrichment analysis, showing 30 most enriched GO terms. (D) KEGG enrichment analysis, showing 30
most enriched KEGG pathways. (E) Radiographic images of patients with acquired resistance before, during, and after EP treatment. (F) Radiographic images
of patients with primary resistance before and after EP treatment. (G-J) Expression levels of ASCL1, NEUROD1, POU2F3, and YAP1 in PR_pre, PR_post,
AR_pre, and AR_post groups.
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patients before and after EP treatment, suggesting a potential

association with primary and acquired resistance.
Gene signature variation between primary
and acquired resistance in pre-patients

To identify possible genes involved in primary resistance, we

compared the transcriptome profiles of the pre-treatment primary

resistance group (PR_pre, five cases) with the pre-treatment

acquired resistance group (AR_pre, 12 cases). Genes with |

log2FC | > 0.3 and p ≤ 0.05 were identified as DEGs. Volcano

plots and heatmaps were generated to visualize the DEGs in the

PR_pre group versus the AR_pre group. In total, 664 DEGs were

identified, including 130 up-regulated genes and 534 down-

regulated genes (Figure 2A, Supplementary Figure S3A). Among

the down-regulated genes, ACSL1 encodes the long-chain fatty acid

CoA synthetase and is associated with an increased risk of

hepatocellular carcinoma (26). The DEGs displayed varying

expression patterns between primary and acquired resistance

(Supplementary Figure S3B). For instance, TRPC3 showed the

opposite pattern in the PR_pre and AR_post groups but

demonstrated a similar expression pattern in the AP_pre and

AR_post groups. TRPC3 is a high-calcium permeable cation

channel that regulates calcium-dependent signaling pathways

involved in the proliferation and metastasis of ovarian cancer

(27). KEGG and GO enrichment analysis revealed that the DEGs

between the PR_pre and AR_post groups were predominantly

associated with “protein binding”, “integral component of

membrane”, and “plasma membrane” (Figure 2C), as well as the

“NF-kB signaling pathway”, “Cell cycle”, and “Th17 cell

differentiation” (Figure 2D). Activation and interaction between

STAT3 and the NF-kB signaling pathway play a crucial

communication role between cancer cells and inflammatory cells.

This interaction regulates various aspects of tumor biology,

including tumor initiation, resistance of malignant cells to

apoptosis-based tumor surveillance, tumor angiogenesis, and

invasive capabilities (28).

We further compared immune and stromal scores between the

two groups using xCell and ESTIMATE analysis, with no significant

differences observed (Figure 2B, Supplementary Figures S3C–H).

However, compared to the AR_pre group, the PR_pre group

exhibited an increasing trend in class-switched memory B cells

and CD4+ T cells among immune cell types, as well as a decreasing

trend in pro B cells (Figure 2E). Class-switched memory B cells are a

crucial component of reactive humoral immunity, ensuring the

rapid production of high-affinity antigen-specific antibodies during

antigen challenge. Smokers have a higher proportion of class-

switched memory B cells compared to ex-smokers and never-

smokers, regardless of whether they have chronic obstructive

pulmonary disease (COPD) (29). CD4+ T cells can target tumor

cells through various mechanisms, either by directly eliminating

tumor cells through cytotoxicity or by indirectly eliminating tumor

cells by regulating the tumor microenvironment (30). Furthermore,

within secondary lymphoid organs, CD4+ T cells can enhance the
Frontiers in Immunology 05
intensity and quality of B cell and cytotoxic T lymphocyte responses

(31). These findings suggest that patients with primary resistance

exhibit a heightened immune response. These findings suggest that

primary resistance is closely associated with cellular immunity and

may be influenced by immune responses.
Network analysis discovered key hub
genes in primary resistance

To further identify key genes associated with primary resistance

in SCLC, we performed KEGG pathway enrichment analysis of

DEGs between the PR_pre and AR_pre groups (Figure 3A). A co-

expression network consisting of 95 cancer-related genes was

constructed based on WGCNA. After filtering out the top 30% of

edges, the final network contained 95 nodes with 1 499 edges

(Supplementary Figure S4A). Furthermore, MST analysis of the

network identified seven hub genes (node degree > 4), i.e., PI4KB,

HLA-DMA, PRICKLE3, TNFSF10, ACSL1, EP300, and STAT3

(Figure 3B). Subsequently, correlation analysis was performed

between the seven hub genes and cell scores derived from the

xCell. These results showed a strong correlation between these

genes and immune cell types, particularly CD4+ T cells, which

exhibited an increasing trend in the PR_pre group (Figure 3C).

Therefore, these genes may play a role in immune suppression

among patients with primary resistance. Comparative analysis of

the seven hub genes among the PR_pre, AR_pre, and AR_post

groups showed that STAT3 was notably down-regulated in the

PR_pre group, whereas PI4KB, HLA-DMA, PRICKLE3, TNFSF10,

ACSL1, and EP300 were up-regulated in the PR_pre group

compared to the AR_pre group. Interestingly, EP300 did not

show a significant difference in expression between the AR_pre

and AR_post groups but displayed a nearly 1.5-fold higher

expression in the Pre_post group (Figure 3D). Compared to the

AR_pre group, PI4KB, HLA-DMA, PRICKLE3, and TNFSF10

showed a similar increased trend in the AR_post and PR_pre

groups (Figure 3D).

We tracked and analyzed the relationship between the seven

hub genes and disease progression for each patient and revealed a

significant correlation between PRICKLE3, TNFSF10, and ACSL1

and disease progression (Figures 4A–D, Supplementary Figure

S4B–D). We collected gene expression and clinical information of

tumor tissues obtained from 73 patients in George et al. (3), which

revealed a significant correlation between the EP300 gene and

survival prognosis (Figures 4E–H). To predict the functions of the

seven genes, we conducted GSVA based on gene sets from the

MSigDB database v7.1 (Figures 4I–L, Supplementary Figure S4E–

G). Results showed a negative correlation between ACSL1

expression and the pathway score of “IL6 JAK STAT3

SIGNALING” (Figure 4I), a positive correlation between

TNFSF10 expression and the pathway score of “TGF BETA

SIGNALING” (Figure 4J), a positive correlation between

PRICKLE3 expression and the pathway score of “APOPTOSIS”

(Figure 4K), and a negative correlation between EP300 expression

and the pathway scores of “GLYCOLYSIS” , “NOTCH
frontiersin.org
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SIGNALING”, and “P53 PATHWAY” (Figure 4L), suggesting

these genes may play a role in immune regulation and cellular

apoptosis. Previous research has demonstrated that the tumor

necrosis factor (TNF) superfamily, comprised of 19 cytokines,

triggers a wide range of cellular responses via homologous

receptors and two principal signaling pathways. These pathways
Frontiers in Immunology 06
encompass the initiation of apoptosis through caspase activation,

along with the stimulation of inflammation and cellular

differentiation programs (32, 33). In conclusion, these results

suggest that PRICKLE3, ACSL1, TNFSF10, and EP300 may

induce primary resistance in SCLC patients by modulating

immune function and cellular apoptosis.
B

C D

E

A

FIGURE 2

Changes in expression between primary and acquired resistance patients before cisplatin and etoposide treatment. (A) Heatmap analysis of DEGs
between PR_pre and AR_pre groups. (B) Heatmap comparing expression levels of 64 cell components from xCell between PR_pre and AR_pre
groups. (C) GO functional enrichment analysis, showing 30 most enriched GO terms. (D) KEGG enrichment analysis, showing 30 most enriched
KEGG pathways. (E) Boxplot showing xCell enrichment scores of 33 immune cells between PR_pre and AR_pre groups, where * indicates p-value
< 0.05 and ns indicates not significant.
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Gene signature variation before and after
EP treatment in acquired
resistance patients

To elucidate the molecular mechanisms of acquired resistance

to EP treatment, we compared the transcriptome profiles of

acquired resistance patients before and after treatment. Paired

differential transcriptional expression analysis was performed on

the AR_pre and AR_post groups using limma, and gene signatures

were selected based on genes with |log2FC| > 0.3 and p ≤ 0.05.
Frontiers in Immunology 07
In total, 745 DEGs were identified, including 486 up-regulated

genes and 259 down-regulated genes, with genes showing |log2FC|

≥ 1 annotated and plotted (Figure 5A, Supplementary Figure S5A).

We compared the expression patterns of the DEGs across the four

groups. The gene expression profiles showed variation in the

AR_post and PR_pre groups, further confirming that the

mechanisms underlying primary and acquired resistance are not

identical (Supplementary Figure S5B). For example, ESS2 exhibited

opposite expression levels in the PR_pre and AR_post groups. ESS2,

also known as DGCR14, is a transcriptional co-regulator in CD4+ T
B

C

D

A

FIGURE 3

Network analysis of key hub genes in primary resistance. (A) Network plot showing DEGs between PR_pre and AR_pre groups associated with
cancer-related KEGG pathways. (B) Network depicting co-expressed DEGs between PR_pre and AR_pre groups within cancer-associated KEGG
pathways following WCGNA and MST analysis. (C) Correlation analysis between PI4KB, HLA-DMA, PRICKLE3, TNFSF10, ACSL1, EP300, and STAT3
expression and immune cells. (D) PI4KB, HLA-DMA, PRICKLE3, TNFSF10, ACSL1, EP300, and STAT3 expression between PR_pre, AR_pre and
AR_post groups.
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cells and plays a critical role in thymocyte survival through theMYC

and IL-7 signaling pathways (34). GO enrichment analysis revealed

that the genes influenced by EP treatment were predominantly

associated with “protein binding”, “nucleus”, and “plasma

membrane” (Figure 5C). KEGG enrichment analysis revealed that
Frontiers in Immunology 08
resistance-biased genes were highly associated with “Proteasome”,

“Nitrogen metabolism”, and “TGF-beta signaling pathway”

(Figure 5D). The transforming growth factor-beta (TGF-b)
signaling pathway functions to suppress tumors in healthy cells

and early-stage cancer cells by inducing cell cycle arrest and
B C D

E F G H

I J K

L

A

FIGURE 4

Progression, survival and GSVA analysis of hub genes in primary resistance. (A-D) Kaplan-Meier curve of PRICKLE3, ACSL1, TNFSF10 and EP300 with
progression time. (E-H) Kaplan-Meier curve of PRICKLE3, ACSL1, TNFSF10 and EP300 with overall survival time. (I-L) GSVA of PRICKLE3, ACSL1,
TNFSF10 and EP300.
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apoptosis, but can promote tumor progression, including metastasis

and chemotherapy resistance, when activated in advanced-stage

cancer (35).

We next compared the immune and stromal scores between the

AR_post and AR_pre groups based on xCell and ESTIMATE

analysis (Figure 5B, Supplementary Figure S5C–H). Results

revealed that the AR_post group exhibited a significant increase

in class-switched memory B cells among immune cell types

compared to the AR_pre group (Figure 5E). We mainly focused

on the molecular profiles of acquired resistance, excluding SCLC
Frontiers in Immunology 09
patients with primary resistance, and discovered that acquired

resistance may be exerted through pathways involving immune

regulation, metabolism, and protein degradation.
Network analysis of key hub genes in
acquired resistance

To further identify key genes associated with acquired

resistance in SCLC, we identified DEGs between the AR_pre and
B

C D

E

A

FIGURE 5

Changes in expression in acquired resistance patients before and after cisplatin and etoposide treatment. (A) Heatmap analysis of DEGs between AR_pre and
AR_post groups. (B) Heatmap comparing expression levels of 64 cell components from xCell between AR_pre and AR_post groups. (C) GO functional
enrichment analysis, showing 30 most enriched GO terms. (D) KEGG enrichment analysis, showing 30 most enriched KEGG pathways. (E) Boxplot showing
xCELL enrichment scores of 33 immune cells between AR_pre and AR_post groups, where * indicates p-value < 0.05 and ns indicates not significant.
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AR_post groups and performed KEGG pathway enrichment

analysis of cancer-related pathways (Figure 6A). The expression

matrix of the 92 genes enriched in these pathways was used to

construct a co-expression network via WGCNA. After filtering out

the top 30% of edges of each node, the core constructed network

contained 92 nodes and 2 582 edges (Supplementary Figure S6A).
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In total, 11 hub genes (node degree > 4) were identified via MST

analysis including SENP2, TBL1X, DCPS, PBMXL1, SMNDC1,

ECD, SNW1, CYP11A1, SDS, PSMD4 and PSMD1 (Figure 6B).

Subsequently, correlation analysis was performed between the 11

hub genes and cell scores derived from the xCell, which showed a

strong positive correlation between SDS and macrophage M1 cells,
B

C

D

A

FIGURE 6

Network analysis of key hub genes in acquired resistance. (A) Network plot showing DEGs between AR_pre and AR_post groups associated with
cancer-related KEGG pathways. (B) Network depicting co-expressed DEGs between AR_pre and AR_post groups within cancer-associated KEGG
pathways following WCGNA and MST analysis. (C) Correlation analysis between PSMD4, SENP2, TBL1X, DCPS, PBMXL1, SMNDC1, ECD, SNW1,
CYP11A1, SDS, and PSMD1 expression and immune cells. (D) PSMD4, SENP2, TBL1X, DCPS, PBMXL1, SMNDC1, ECD, SNW1, CYP11A1, SDS, and PSMD1
expression between PR_pre, AR_pre and AR_post groups.
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and SNW1 and megakaryocyte cells (Figure 6C). SNW1 is a nuclear

matrix-associated coactivator that can interact with the vitamin D

receptor to mediate transcription and RNA splicing (36) and is

essential for TGF-b1-induced epithelial-mesenchymal transition

and invasion (37). These findings suggest that both SNW1 and

megakaryocyte cells play important roles in tumor invasion,

consistent with the strong correlation observed between SNW1

and megakaryocyte cells in our study. We further conducted a

comparative analysis of the expression patterns of the 11 genes

among the AR_pre, AR_post, and PR_pre groups. Notably, SENP2,

PBMXL1, TBL1X, SMNDC1, SDS, PSMD1, and CYP11A1 were up-

regulated, while ECD, DCPS, and SNW1 showed down-regulated

expression in the AR_post group compared to the AR_pre group.

Although there was no significant difference in the expression levels

of CYP11A1 and SENP2 between the two groups, an upward trend
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was observed in the AR_post group (Figure 6D). SDS, ECD,

CYP11A1, DCPS, TBL1X, and SENP2 showed similar trends in

the AR_post and PR_pre groups compared to the AR_pre

group (Figure 6D).

We also tracked and analyzed the relationship between the 11

hub genes and disease progression for each patient and

demonstrated a significant correlation between SNW1 and SENP2

and disease progression (Figures 7A–C, Supplementary Figure S6B–

I). Furthermore, in the dataset obtained from George et al., a

significant correlation was observed between the SMNDC1 gene

and survival prognosis (Figures 7D–F). To predict the functions of

the 11 genes, we conducted GSVA based on gene sets from the

MSigDB database v7.1 (Figures 7G–I, Supplementary Figure S7A–

H). Results showed a negative correlation between SNW1

expression and the pathway score of “UV_RESPONSE_DN”
B C
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FIGURE 7

Progression, survival and GSVA analysis of hub genes in acquired resistance. (A-C) Kaplan-Meier curve of SENP2, SNW1, and SMNDC1 with
progression time. (D-F) Kaplan-Meier curve of SENP2, SNW1, and SMNDC1 with overall survival time. (G-I) GSVA of SENP2, SNW1, and SMNDC1.
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(Figure 7G) and positive correlations between SENP2 expression

and the pathway scores of “OXIDATIVE_PHOSPHORYLATION”,

“MYC_TARGETS_V1”, and “NOTCH_SIGNALING” (Figure 7H),

a negative correlation between SMNDC1 expression and the

pathway score of “UV_RESPONSE_DN” (Figure 7I). Studies have

shown that SENP2, DCUN1D1, DVL3, and UBXN7 participate in a

small protein-protein interaction network. Knockout of any of these

four genes results in suppressed growth of lung squamous cell

carcinoma with 3q26–29 amplification (36). Furthermore,

knockdown of SENP2 results in significant inhibition of cell

growth (38). The Notch signaling pathway and MYC targets play

broad roles in the promotion or inhibition of proliferation and cell

death (39, 40), related to the regulatory role of SENP2 in

tumor growth.

In summary, these findings suggest that SNW1, SENP2 and

SMNDC1 may regulate acquired resistance in SCLC patients by

modulating the Notch and MYC signaling pathways.
Discussion

SCLC is a highly invasive neuroendocrine tumor characterized

by rapid cell division, a high proportion of actively proliferating

cells, and early dissemination to distant sites in the body (41).

Earlier studies have shown that the expression of ASCL1 declines in

patients with SCLC and in SCLC cells following cisplatin treatment,

particularly in cases with acquired chemoresistance, in comparison

to untreated samples (42). In recent years, the consensus definition

of SCLC subtypes has transitioned from classical/variant

classification to neuroendocrine (NE)/non-neuroendocrine (non-

NE) classification, with further subgroup categorization based on

specific transcription factors, i.e., NE transcription factors ASCL1

and/or NEUROD1 (43, 44), non-NE variants associated with

POU2F3, and a hypothetical fourth subtype driven by the

transcription factor YAP1 (45). In the current study, we observed

that primary resistance patients displayed decreased expression of

ASCL1 and NEUROD1, while acquired resistance patients exhibited

increased expression of NEUROD1 and decreased expression of

ASCL1 following cisplatin and etoposide treatment. These findings

suggest that primary and acquired resistance patients belong to

distinct SCLC transcriptional subtypes, characterized by different

mechanisms of drug resistance, which need further research to

enhance our understanding of their unique features.

SCLC is closely associated with the tumor microenvironment,

typified by a high mutational burden, and induces paraneoplastic

autoimmune syndromes in up to a third of patients. In principle,

these attributes suggest that SCLC could potentially exhibit a positive

response to immune checkpoint blockade (46). However, the

combined use of chemotherapy and ICIs targeting programmed cell

death ligand 1 (PD-L1), such as durvalumab and atezolizumab, has

yielded only modest improvement in survival outcomes for SCLC

patients (9, 47). Similarly, the use of the programmed cell death protein

1 (PD-1) checkpoint blockade antibody nivolumab in SCLC patients

has also yielded disappointing results (48). Thus, there is a critical need

to establish a comprehensive understanding of the interactions between

the immune system and SCLC. Previous studies have shown that
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genetically modified mouse models lacking NK cells display a

heightened tumor burden under SCLC metastasis conditions (49). In

other words, NK cells possess the ability to activate interleukin-15 (IL-

15) to mitigate tumor mutational burden in SCLC models, indicating

that targeting NK cells within the SCLC microenvironment may

provoke a specific response. Here, we found a significant increase in

class-switched memory B cells in both primary and acquired resistance

patients after EP treatment. Prior studies have also reported that class-

switched memory B cell abundance is higher in poor prognosis

subtypes of hepatocellular carcinoma and contributes to the

prevalence of immune-related adverse events (IRAs) associated with

ICIs (50). Our findings suggest that class-switched memory B cells may

play a role in platinum treatment resistance in SCLC patients, which

warrants further research.

Certain genes have been identified as significant players of

platinum resistance in SCLC patients based on their mutation

status. Among these genes, COL11A1, which encodes the a1
chain of type XI collagen, ranks as the third most mutated gene,

following TP53 and RB1 (42). As a critical component of the

extracellular matrix, dysregulation of COL11A1 plays a key role in

mediating platinum-based chemotherapy resistance (51, 52). Leslie

et al. detected somatic copy number changes in ABCC1 in recurrent

SCLC, a membrane protein of the ATP-binding cassette family

capable of effluxing both physiological compounds and drugs from

the cytoplasm, thus suggesting a possible role in driving

chemotherapy resistance (53). Approximately 20% of SCLC cases

exhibit amplification of theMYC family oncogenesMYCL1,MYCN,

and MYC, which is associated with poorer survival outcomes (3,

54). Cell lines derived from patients under platinum treatment also

show approximately three times higher amplification rates ofMYC,

MYCN, and MYCL compared to those without platinum treatment

(55). Studies using genetically engineered mouse models with

combined Rb1 and Trp53 loss, coupled with MYCL or MYCN

overexpression, have also demonstrated the involvement of MYCL

and MYCN in platinum resistance (56).

In this study, we identified several genes related to primary

resistance, specifically PRICKLE3, TNFSF10, ACSL1 and EP300,

which exhibited significant correlation with SCLC progression.

PRICKLE3 encodes a highly conserved protein enriched in

mitochondria, with its Drosophila and Xenopus homologs

involved in planar cell polarity and visual function (57).

PRICKLE3 is also associated with susceptibility alleles and

mutations in Leber’s hereditary optic neuropathy (58, 59). The

TNFSF10 pathway constitutes an important component of the

innate host anti-tumor immune surveillance mechanism,

engaging in the selective activation of extrinsic cell death

pathways in cancer cells (33). Recent studies have demonstrated

significant up-regulation of ACSL1 and ACSL3 protein levels in

highly metastatic ovarian cancer cell lines, with gene expression

associated with increased metastatic capacity and poor survival

prognosis (60). However, despite extensive research on PRICKLE3,

TNFSF10, ACSL1 and EP300 in relation to cancer, immunity, and

metastasis, their precise involvement in primary resistance

mechanisms in SCLC remains unclear and requires further study.

Similarly, the key genes SNW1, SENP2 and SMNDC1 identified in

this study in the context of acquired resistance, have previously
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been implicated in cancer cell proliferation, death, and metastasis,

although their specific role in regulating platinum resistance

remains unknown. Consequently, our future research will focus

on investigating and validating the connections among PRICKLE3,

TNFSF10, ACSL1, EP300, SNW1, SENP2 and SMNDC1 in relation

to SCLC resistance.

In conclusion, we conducted integrative bioinformatics analysis

of the gene expression profiles of 34 blood samples collected from 17

SCLC patients before and after EP treatment. Our results suggest the

potential significance of class-switched memory B cells in both

primary and acquired resistance mechanisms. Notably, we

identified PRICKLE3, TNFSF10, ACSL1 and EP300 as potential key

gene regulators associated with primary resistance, and SNW1,

SENP2 and SMNDC1 as key gene regulators associated with

acquired resistance. These findings offer valuable insights for

understanding chemotherapy resistance and related gene signatures

in SCLC, which could help further biological validation studies.
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