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Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the

bonemarrow, which is tightly regulated by cues from themicroenvironment. The

gut microbiota, a dynamic community residing on the mucosal surface of

vertebrates, plays a crucial role in maintaining host health. Recent evidence

suggests that the gut microbiota influences HSCs differentiation by modulating

the bone marrow microenvironment through microbial products. This paper

comprehensively analyzes the impact of the gut microbiota on hematopoiesis

and its effect on HSCs fate and differentiation by modifying the bone marrow

microenvironment, including mechanical properties, inflammatory signals, bone

marrow stromal cells, and metabolites. Furthermore, we discuss the involvement

of the gut microbiota in the development of hematologic malignancies, such as

leukemia, multiple myeloma, and lymphoma.
KEYWORDS
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1 Introduction

Hematopoiesis is a complex and highly regulated biological process that produces a

variety of blood cells and specialized immune cells necessary for multiple bodily functions.

Additionally, hematopoiesis plays a critical role in immune regulation, including oxygen

transportation, hemostasis, and both innate and adaptive immunity (1, 2). It is widely

accepted that hematopoietic stem cells (HSCs) are at the top of the hematopoietic

hierarchy. HSCs are initially found in the yolk sac of the human embryo at two weeks of

gestation. As the fetus develops, HSCs migrate to hematopoietic organs, primarily the bone
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marrow, where they persist throughout life (3). HSCs possess two

distinct characteristics: self-renewal, which allows them to maintain

their own population, and multilineage differentiation, which

enables them to differentiate into various types of hematopoietic

cells. This process is tightly regulated by signals from the bone

marrow microenvironment, ensuring the balance of the blood

system and overall body functions (4). Disruption of the bone

marrow microenvironment, including stromal cells such as

fibroblasts, pericytes, and mesenchymal stem cells, can impact the

activity and function of HSCs.

The human body is inhabited by diverse microbiota, which

can be found in various parts such as the skin, oral cavity, alveoli,

gastrointestinal tract, and genitourinary tract (5). Among these,

the gastrointestinal tract harbors the highest number of

microorganisms, accounting for approximately 78% of the

total microorganisms in the human body. This collection of

microorganisms is known as the gut microbiota (6, 7).

Comprising bacteria, fungi, viruses, and protozoa, the gut

microbiota plays a critical role in regulating metabolism and

immune homeostasis (8). Gut Microbiota, also known as the

‘second largest genome’ of human beings, is the most complex

micro-ecosystem in the human body. It maintains a symbiotic

relationship with the host through various processes such as the

fermentation of dietary fiber, defense against pathogens, and

synthesis of metabolites like short-chain fatty acids (SCFAs).

The gut microbial homeostasis also influences the maturation

and function of the body’s immune system. For instance, SCFAs

play an immunomodulatory role in gut homeostasis for the host

(9). Studies have demonstrated that SCFAs can diffuse from the

gut into the bloodstream and reach the bone marrow, promoting

hematopoiesis (10). Germ-free mice, which lack microbiota,

exhibit immune system defects and alterations in the

hematopoietic environment, including reduced hematopoietic

progenitor cells in the basal metabolism (11, 12). Therefore,

manipulating the gut microbiota to enhance the activity and

differentiation of HSCs holds promise as a potential therapeutic

intervention for hematopoietic diseases. In this review, we focus

on the impact of the gut microbiota on the fate differentiation of

HSCs and its influence on the bone marrow microenvironment.

Additionally, we discuss the role of intervening in the gut

microbiota in the development of hematological malignancies.
2 HSCs and bone
marrow microenvironment

2.1 The fate of HSCs

HSCs are the apex of the hematopoietic system, possessing the

remarkable ability to self-renew and differentiate. This capacity

allows them to sustain blood regeneration and meet the increased

demand for immune cells during periods of stress (4). In humans,

HSCs are characterized by surface markers CD34, c-Kit (CD117),

and CD90. In mice, the purification protocol for HSCs involves

identifying and expressing (Lin-, c-Kit+, and Sca-1+) in conjunction
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receptors (CD150 and CD48) (13). To visualize the relationship

between HSCs and their progeny more clearly, a hierarchical model

called the HSCs tree has been established (14). This model

categorizes HSCs into two subpopulations based on CD34

expression: CD34- long-term-HSCs and CD34+ short-term-HSCs

(15). Long-term-HSCs remain in a quiescent state and have the

potential for long-term reconstitution (lasting beyond 3-4 months),

while short-term-HSCs exhibit a shorter reconstitution ability

(typically less than one month). Long-term-HSCs give rise to

short-term-HSCs, which differentiate into multipotent progenitors

(MPPs). These cells are hematopoietic stem and progenitor cells

(HSPCs) and share the expression of Lin-, Sca-1+, and c-Kit+

markers in mice. MPPs differentiate into common myeloid

progenitors (CMPs, with potential for myeloid, erythroid, and

megakaryocyte lineages) and common lymphoid progenitors

(CLPs, with potential for lymphoid lineages). CMPs further

differentiate into granulocyte-macrophage progenitors (GMPs)

and megakaryocyte-erythrocyte progenitors (MEPs). CLPs give

rise to T, B, NK, and dendritic cells. GMPs differentiate into

granulocytes and monocytes, while MEPs produce erythrocytes

and megakaryocytes (16, 17). All these populations form a

hierarchical and balanced structure resembling a tree (Figure 1).
2.2 Hematopoietic ecological niche - bone
marrow microenvironment

In vivo, stem cells reside in ecological niches, which are

fundamental microenvironments. These niches integrate various

factors to determine the fate of the stem cells. During embryonic

development, HSCs niches are present in different tissues at

different stages. In vertebrates, the hematopoietic system

originates from the yolk sac in early embryonic development.

Hematopoietic differentiation starts in the endothelium

of the aorta-gonad-mesonephros region16. After this stage,

hematopoietic cells migrate through the bloodstream to the liver

and spleen, eventually settling and establishing residence within the

bone marrow (18). In 1978, Schofield proposed the concept of the

HSCs niche in the bone marrow (19). These niches are complex

structures consisting of hematopoietic and non-hematopoietic cells.

bone marrow niches are multidimensional complex systems that

involve mechanical properties (stiffness and surface tension),

cellular composition (endothelial cells, mesenchymal stromal cells,

and osteoblasts), and biochemical signals (oxygen concentration,

hormones, growth factors, chemokines, and cytokines) that regulate

the fate of HSCs (Figure 1).

In the bone marrow, HSCs are constantly in a hypoxic state,

regardless of their ecological niche. Each bone marrow ecological

niche has unique physical spatial properties. The stiffness of the

matrix in the bone marrow niche varies due to its inhomogeneity.

Osteoclasts and osteoblast progenitors are densely located in the

endothelial ecotone and have a relative stiffness of approximately

35-40 kPa. On the other hand, the vascular niche, which is highly

populated by adipocytes and endothelial cells has a relative stiffness
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of roughly 3 kPa. The central bone marrow is the softest, with a

matrix stiffness of approximately 0.3 kPa (20–22).

The bone marrow niche is composed of various stromal cells.

Osteoblasts, which are responsible for bone formation, are located

in the endosteal niche along with HSCs. These were the first group

of bone marrow cells discovered to play a role in regulating HSCs

(23). Another type of stromal cell found in the bone marrow is

mesenchymal stem cells (MSCs), which have the ability to self-

renew and differentiate into adipocytes and chondrocytes. MSCs are

distributed around blood vessels and contribute to the formation of

the hematopoietic niche (24). The perivascular stromal cells

surrounding the blood vessels consist of various cell types,

including endothelial cells, CXCL12-abundant reticular (CAR)

cells, leptin receptor-positive (Lepr+) perivascular stromal cells,

Nestin+ MSCs, regulatory T cells (Tregs), and megakaryocytes.

All of these cell types are involved in maintaining HSCs (25).

Several biochemical signals, including cytokines, secreted by

stromal cells have an impact on the homeostasis of HSCs. The inner

layer of blood vessels contains endothelial cells that provide

nutrients and oxygen to various organs, including the bone

marrow (26). HSCs are positioned in close proximity to

endothelial cells, and these cells regulate HSCs by producing stem

cell factor (SCF) and Jag1. CAR cells, which co-express LepR+ and

Nes-GFP+, are primarily located around the blood sinuses.

Perivascular stromal cells found on small arterioles, expressing

NG2+ and Nes-GFP+, also secrete CXCL12, which controls the

mobilization pool of HSCs. However, in the vicinity of the blood

sinuses, CXCL12 secreted by perivascular stromal cells (CAR,

LepR+, Nes-GFP+ cells) contributes to the retention of HSCs.

Non-myelinating Schwann cells have the ability to activate latent

TGFb, which is crucial for maintaining HSCs. Additionally, mature

hematopoietic cells play a role in regulating HSCs function. CD169+
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bone marrow macrophages enhance HSCs retention by increasing

CXCL12 production from CAR cells, while megakaryocytes

maintain HSCs in a quiescent state through the secretion of

CXCL4, TGFb, and thrombopoietin (TPO) (4).
2.3 Bone marrow microenvironment
regulates the fate of HSCs

HSCs fate differentiation derives primarily from regulating bone

marrow microenvironmental, including mechanical properties,

inflammatory factors, and other stromal cells in the bone marrow.

2.3.1 Mechanical properties
HSCs lineage differentiation is heavily influenced by matrix

stiffness (27). The fate of HSCs is regulated by physical factors and

spatial properties in the bone marrow. Physical properties include

matrix stiffness and elasticity, while spatial properties refer to surface

topography and dimensionality (28). The variations in stiffness

determine whether HSCs will undergo self-renewal or

differentiation. HSCs exhibit greater adhesion and motility on hard

surfaces compared to soft surfaces, suggesting that long-term HSCs

are found in stiffer endothelial niches (29). Another study

demonstrated that substrate stiffness also impacts the differentiation

of HSCs. Stiffer substrates promote the differentiation of HSCs into

primitive myeloid progenitors, whereas softer substrates encourage

differentiation towards the erythroid lineage (27). To better maintain

and expand HSCs, three-dimensional (3D) scaffolds that mimic the

bone marrow environment have shown to be more effective than

conventional two-dimensional (2D) culture systems (30). Similarly,

MSCs have a greater positive impact on HSPC proliferation in 3D

polyethylene glycol (PEG) co-culture systems compared to standard
FIGURE 1

Hematopoietic hierarchical models and the bone marrow microenvironment. Top HSCs consist of diverse populations that possess the ability to
self-renew and differentiate in multiple directions. This process involves a binary branch point that separates the myeloid and lymphoid lineages. In
the middle and terminal stages, oligopotent cells further divide into distinct unipotent cells through discrete differentiation stages. The bone marrow
niches consist of various stromal cells and cytokines, with the areas near the endosteal niche being stiffer (40-50 kPa) and the perivascular areas
being softer (3 kPa). (Created with BioRender.com, academic licenses have been granted).
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2D culture systems (31). Combining stromal cells with biological

scaffolds provides a more accurate representation of the bonemarrow

microenvironment. Our research group investigated the impact of

matrix dimensions on HSC regulation. In the 3D system, HPC

formed “3D macrophage” clusters, which were not observed in the

2D culture. Single-cell sequencing analysis revealed that the 3D

matrix enhanced communication between these 3D macrophages

and other hematopoietic clusters, resulting in a significant increase in

Lin-, c-kit+ cells (32). Furthermore, several studies have demonstrated

that nanomorphology can influence the behavior of HSCs (33).

2.3.2 Inflammatory factors
Young HSCs are found in specialized ecological niches within

the bone marrow microenvironment. In these niches, HSCs remain

dormant and protected from external stresses. During homeostasis,

there are minor subpopulations of HSCs called MPP2 and MPP3,

which favor erythroid/megakaryocyte and granulocyte/macrophage

differentiation, respectively. The majority subpopulation, MPP4,

favors lymphoid differentiation. However, when inflammation

occurs, HSCs become activated and their self-renewal capacity is

reduced. This is due to an increase in MPP2/MPP3 and a shift in

MPP4 output towards the myeloid spectrum, leading to the

formation of GMP (34). This activation process is influenced by

various inflammatory cytokines that act at the early hematopoietic

level. For example, IL-1b (35), Granulocyte colony-stimulating

factor (G-CSF) (36), and type I and type II interferon (IFN) can

promote HSC proliferation and myeloid differentiation (37). These

cytokines also regulate the expression of key transcription factors

(TFs) involved in myeloid commitment, such as Pu.1 (38). TNFa,
IL-1b, and M-CSF can induce myeloid differentiation by

upregulating Pu.1 (39), while IFN stimulates the expression of

Batf2 and Cebpb , which promote myeloid spectrum

differentiation (40). Additionally, cytokines like IL-6 primarily

affect MPP4, redirecting its output from lymphatic to myeloid

lineage (41). Cytokines such as G-CSF regulate the formation of

GMP clusters (34). The combined effects of these inflammatory

signaling pathways result in changes to the differentiation profile of

HSCs and HSPCs, temporarily meeting the organism’s needs and

then restoring homeostasis in vivo.

2.3.3 Other matrix cells
The bone marrow microenvironment consists of various cell

types that have specific functions (42). These cells directly or

indirectly support the maintenance and regulation of HSCs (4).

MSCs release factors like CXCL12, SCF, and IL-7 (25), which play a

crucial role in regulating HSCs (43). Bone lineage cells are necessary

for the production of lymphoid tissue. Osteoblasts produce factors

like osteopontin and G-CSF, as well as release thrombopoietin

(TPO), which regulates HSCs production (44, 45). Adipogenesis

is an emergency response that enhances hematopoiesis when blood

cells decrease (46). Bone marrow adipocytes synthesize adiponectin,

which promotes HSCs regeneration after irradiation by stimulating

their proliferation. Adipocytes also secrete various factors that

influence the function of HSCs and stromal cells in the bone

marrow (47). Aging and obesity lead to the accumulation of

adipocytes in the bone marrow cavity, inhibiting HSCs activity
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and impairing hematopoietic regeneration (48, 49). Endothelial

cells may regulate HSCs maintenance and the activity of

perivascular cells. Macrophages are directly involved in HSCs

maintenance and indirectly control HSCs retention through other

microenvironment cells (50). Megakaryocytes promote HSCs

quiescence through feedback loops (51). T cells and neutrophils

interact with HSCs directly or through other immune cells and

stromal cells to regulate their behavior. Granulocytes also interact

directly with HSCs or control their behavior through other

immune cells and stromal cells (52). Despite numerous studies,

the regulation of HSCs populations in the bone marrow

microenvironment remains highly complex and elusive.
3 The correlation between gut
microbiota and hematopoiesis

3.1 Gut microbiota depletion and
antibiotics affect hematopoiesis

The complex gut microbial community has both local and

systemic effects on host immunity, including the regulation of

immune cell development and maturation (53, 54). In a steady-

state environment, signals from the gut microbiota are crucial for

maintaining normal hematopoiesis (55). In clinical settings, some

patients experience disruption of the gut microbiota following

antibiotic treatment, which is accompanied by hematological

abnormalities such as neutropenia, anemia, thrombocytopenia,

and leukopenia (56, 57). Mouse experiments have also shown that

oral administration of antibiotics depletes the gut microbiota and

inhibits hematopoietic function. Mice treated with broad-spectrum

antibiotics exhibit anemia, increased platelets in peripheral blood,

and decreased white blood cells and lymphocytes. However, when

HSPCs are directly co-cultured with antibiotics, no decrease in

progenitor cell activity is observed. The impact of antibiotic

treatment on bone marrow cells in germ-free mice is not further

observed (11). In germ-free mice, the absence of microbial signals

leads to a decrease in HSCs, MPPs, and bone marrow progenitor

cell numbers. NOD1 ligand administration can enhance

hematopoietic cytokines, which contributes to the expansion of

the HSPCs pool and hematopoietic maintenance (58). Co-housing

germ-free mice with conventionally raised mice modifies the

diversity of the gut microbiota, increases myeloid cell production

and T cell activation, promotes HSCs reconstruction, and alters the

expression of hematopoietic genes (59). These studies above

suggesting that antibiotics disrupt hematopoietic function by

affecting the balance and diversity of the gut microbiota (Figure 2).
3.2 Gut microbiota influenced
hematopoiesis beginning in the
embryonic period

Microbial colonization initiates with the transmission of

microorganisms from the mother to the infant during birth.

During early life, these microbial signals play a crucial role in
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shaping the development of hematopoietic stem and HSPCs in the

bone marrow. Metabolites produced by the maternal microbiota

can cross the placenta and be transferred to the fetus, suggesting

that the microbiota may have a potential impact on fetal HSPC

development (60). In zebrafish, it has been discovered that the

microbiota regulates the development of HSCs and HSPCs by

mediating inflammatory signals in their niche. Maintaining a

balanced microbiota is crucial for the proper development and

homeostasis of HSPCs during embryonic life. Specific bacterial

species have been found to influence the formation and

differentiation of HSPCs by modulating the local production of

inflammatory cytokines near these cells (61). Metabolites

containing microbial molecules, such as short-chain fatty acids

(SCFAs), can be transmitted to the fetus through breast milk,

where they regulate the immune system and inflammatory

responses in the offspring (62). Additionally, microbe-associated

molecular patterns (MAMPs) can enter the bloodstream from the

gut and reach the bone marrow, where they play a role in regulating

the proliferation and differentiation of HSCs, MPPs, and their

descendants (63). Following birth, the fetus can inherit HSCs and

other hematopoietic progenitor cells from the mother through

umbilical cord blood. Dysbiosis of the maternal microbiota can

impact the neonatal bone marrow environment by altering the

behavior of these maternal-derived progenitor cells. Microbial

signals have the ability to regulate the immune system of children

at various stages of development (64).
4 Gut microbiota influences HSCs fate
by modulating the bone
marrow microenvironment

HSCs undergo differentiation in the bone marrow with the

involvement of various progenitor cells in either the lymphoid or
Frontiers in Immunology 05
myeloid lineage. This process is regulated by multiple intrinsic and

extrinsic signals. It has been well-established that growth factors,

have an impact on hematopoiesis in the bone marrow. Moreover,

emerging evidence suggests that gut microbiota also play a role in

modulating the ability of HSCs to proliferate and differentiate by

influencing the microenvironment of the bone marrow (Figure 3).
4.1 Gut microbiota influences
hematopoiesis by modulating mechanical
properties in bone marrow

Studies in mice have demonstrated that the gut microbiota can

have an impact on bonemorphology and density in the bone marrow

(65, 66). Furthermore, gut microbiota influences the rate of bone loss

after sex hormone depletion, with germ-free mice being protected

against bone loss following ovariectomy (67). It has been observed

that germ-free mice exhibit increased bone mass compared to mice

with normal microbiomes (68), suggesting a connection between

alterations in the gut microbiota and changes in bone microstructure.

Antibiotic treatment, which disrupts the gut microbiota, has been

associated with changes in bone morphology and density, as well as

reduced bending strength and impaired material properties of bone

tissue. This disruption is also linked to a decrease in CD20+ B and

CD3+ T cell populations in the spleen (69). The regulation of HSCs is

influenced by signals from the bone marrow niche, and patients with

osteoporosis, characterized by decreased bone deposition and lower

levels of parathyroid hormone, exhibit reduced activity. Thalassemia

patients also show reduced HSC resting due to alterations in the

characteristics of the bone marrow matrix niche (70). Gut microbiota

can disrupt the balance between bone formation and resorption by

indirectly affecting the activity of osteoblasts and osteoclasts.

Additionally, gut microbiota influences bone metabolism by

modulating growth factors, altering bone immune status, and
FIGURE 2

The role of gut microorganisms in hematopoiesis. Depletion of gut microbiota leads to defects in the immune cell population in the blood, such as
neutrophils and monocytes, which in turn reduces HSCs and decreases myeloid and lymphoid differentiation. The complex gut microbiota and their
metabolites enter the bone marrow via the bloodstream and have a significant impact on hematopoiesis in multiple ways. (Created with BioRender.
com, academic licenses have been granted).
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impacting the metabolism of serotonin, cortisol, and sex hormones in

mice. The composition of the gut microflora, and consequently bone

health, can be altered by probiotics, antibiotics, and diet (71).

Osteocytes play a crucial role as matrix cells in the bone marrow

niche. In a recent study, researchers utilized a TLR9−/− C57BL/6

mouse model to demonstrate, for the first time, that the absence of

TLR9 in mice leads to trabecular bone loss. This bone loss is

attributed to an increase in osteoclastic activity. Further

investigations have revealed that chronic systemic inflammation,

caused by the altered gut microbiota due to TLR9 changes, is the

primary factor contributing to osteoclastic bone loss. Single-cell

RNA sequencing (scRNA-seq) analysis has also revealed that

HSPCs in TLR9−/− mice show a bias towards the myeloid lineage.

This bias is characterized by an upregulation of bone marrow

characteristic genes, activation of myeloid-related TFs, and

downregulation of lymphoid developmental genes (72).

In mice with obesity induced by a high-fat diet, the alteration of

gut microbiota leads to impaired functional niches of the bone

marrow microenvironment. Micro-CT analysis of bone structure

showed a reduction in bone volume and the number of bone

trabeculae in obese mice. Additionally, there was a decrease in LSK

cells and a conversion of lymphocytes to myeloid differentiation.

These changes were achieved by activating PPARg2, inhibiting the
Frontiers in Immunology 06
generation of osteoblasts, and simultaneously strengthening the

production of bone marrow adipocytes. The expression of genes in

the bone marrow niche, such as Jag-1, SDF-1, and IL-7, was highly

suppressed after the high-fat diet (HFD). Furthermore, changes in the

microbial community structure were associated with HFD-induced

bone marrow changes. Notably, antibiotic treatment was able to

rescue the effects of HFD-mediated damage to the bone marrow

niche (73). Overall, these findings suggest that manipulating the

diversity of gut microbiota could be a potential approach for

preventing inflammatory bone loss in the future.
4.2 Gut microbiota affects hematopoiesis
through inflammatory signals in
bone marrow

Inflammation has significant effects on the hematopoietic

hierarchy, as it activates and mobilizes effector cells in response to

challenges faced by the organism. It also stimulates HSCs and HSPCs

to replenish depleted lineage cells, thus restoring homeostasis in vivo

(74). Recent studies have revealed that microorganisms can indirectly

influence the differentiation of HSPCs by releasing inflammatory

cytokines through mature immune cells and non-hematopoietic cells
FIGURE 3

Gut microbiota influences the fate differentiation of HSCs through the bone marrow microenvironment. (A) Gut microbiota alters the mechanical
properties of the bone marrow, which in turn affects the fate of HSCs. Disruption of the gut microbiome through antibiotic treatment leads to
osteoporosis, resulting in changes to bone strength and mechanical properties, as well as decreased levels of parathyroid hormone (PTH). This, in turn,
affects the bias of HSPCs towards the bone marrow. In high-fat obese mice, gut microbiota alterations also impact the trabecular number of the bone
marrow, leading to a reduction in the number of LSK cells. (B) Gut microbiota regulates hematopoietic fate by influencing inflammatory signaling. During
infection, microbes trigger the production of pro-inflammatory factors, which drive HSCs to undergo emergency myeloid cell regeneration. Additionally,
microbes can differentiate into intestinal repair cells during acute intestinal inflammation by expanding HSCs. (C) Gut microbiota influences HSCs fate
through stromal cells in the bone marrow. NOD1 ligands from the microbial community contribute to the expansion of the HSPC pool and the
maintenance of homeostatic hematopoiesis by inducing the production of various hematopoietic cytokines (IL-7, Flt3L, SCF, TPO, and IL-6) in MSCs.
CX3CR1+ monocytes capture bacterial DNA and produce TNF-a, IL-1b, and IL-6, which control HSPC expansion. (D) Metabolites produced by gut
microbiota also play a role in the fate differentiation of HSCs. For example, the gut microbiota metabolite butyrate regulates iron acquisition, which in
turn controls HSCs self-renewal and differentiation. In mice that have survived radiation exposure, the gut microbiota metabolite SCFA promotes
hematopoietic recovery. (Created with BioRender.com, academic licenses have been granted).
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during both homeostasis and infection. This process can alter the

hematopoietic niche, thereby regulating HSPCs’ homing,

differentiation, and proliferation (73, 75).

Infection is a common inflammatory stressor in the

hematopoietic system. Following an infection, bone marrow cells

decreased, but microbial components and pro-inflammatory

cytokines can prompt HSPCs to undergo emergency marrow

regeneration (76). Microbial components induce the proliferation

and differentiation of HSPCs towards the myeloid lineage, resulting

in an increase in the number of myeloid progenitor cells and mature

myeloid cells. For example, sepsis induced by cecal ligation and

puncture in mice leads to increased bone marrow production,

elevated neutrophil counts, and aggravated inflammation (77).

Similarly, infection with murine malaria causes an increase in

splenic granulocytes and myeloid progenitor cells in the bone

marrow (78). Candida albicans infection also enhances the

production of HSPCs and macrophages (79). Commensal gram-

negative bacteria like Escherichia coli can expand HSPCs during

acute intestinal inflammation and guide them to the inflamed

mesenteric lymph nodes via GM-CSFR activation. These HSPCs

can potentially differentiate into Ly6C+/G+ bone marrow cells

specialized in intestinal tissue repair (80). At the molecular level,

HSCs stimulated by lipopolysaccharide (LPS) undergo chromatin

remodeling following a secondary bacterial challenge, which leads

them to approach myeloid-specific enhancers and produce more

GMP. This indicates that LPS can epigenetically prime HSCs and

promote the expansion of myeloid progenitors (81). Different

microbial components have other effects as well. LPS selectively

induces monocyte and neutrophil differentiation, while CpG DNA

promotes monocyte and dendritic cell production (82). During

Escherichia coli infection, HSCs are significantly reduced, but HSCs

in mice treated with antibiotics (ABX) exhibit an increase.

In the analysis of the effects of ABX mice on HSCs production

in response to LPS, it was observed that HSCs expansion only

occurred in ABX mice (83). After being infected systemically with

Listeria monocytogenes, both germ-free and orally antibiotic-

treated mice showed an increased pathogen burden and acute

mortality. However, when the gut microbiota was reconstituted in

germ-free mice, defects in bone marrow production and resistance

to Listeria monocytogenes were restored (12), suggesting that the

gut microbiota plays a role in guiding the development of innate

immune cells by promoting hematopoiesis.
4.3 Gut microbiota regulates HSCs by
altering bone marrow matrix cells

The bone marrow niche consists of various types of cells,

including HSCs, MSCs, monocytes, macrophages, and others.

These cells, collectively referred to as matrix cells, are capable of

recognizing each other as well as HSCs. Through intercellular

communication, matrix cells can potentially influence the

differentiation and proliferation of HSCs. Recent studies have also

revealed that microorganisms can indirectly impact the

differentiation of HSCs and HSPCs through interactions with

matrix cells, which can alter the hematopoietic niche (73, 75).
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MSCs in the bone marrow express multiple pattern recognition

receptors and produce inflammatory cytokines when exposed to

Toll-like receptor (TLR) agonists (84, 85). The NOD1 ligand from

the microbial community induces the production of various

hematopoietic cytokines (IL-7, Flt3L, SCF, TPO, and IL-6) in

MSCs, contributing to the expansion of the HSPC pool and the

maintenance of steady-state hematopoiesis (58). However,

the NOD1 ligand alone does not significantly stimulate

the proliferation of HSCs, MPPs, or CLPs, nor enhance the

expansion of these cells induced by cytokines. Moreover, MSCs

from germ-free mice exhibit dysregulated cytokine production and

increased culture proliferation, but these abilities normalize when

germ-free mice are colonized with microbiota (75). ScRNA-seq

reveals that changes in gene expression related to metabolic

pathways, HIF-1/inflammatory signaling, and neurodegenerative

pathways are associated with the abnormal functionality of MSCs in

germ-free mice (75). Recently, lactate derived from the gut has been

found to be related to the expression of SCF on MSCs and, along

with type I interferons (IFN-1), Stat signaling (86), and iron

availability (83), it also regulates hematopoiesis in the bone

marrow (87). The gut microbiota stimulates the expansion of

macrophages and the quantity and differentiation of GMPs in the

bone marrow, facilitating the development of bone marrow cells,

maintaining the activity of HSCs and lymphocytes, and promoting

hematopoietic homeostasis and host immune responses to

pathogens (12).

CX3CR1+ monocytes coexist with hematopoietic progenitor

cells in the perivascular area. When studying how microbial-

derived molecules, such as MDM, migrate to the bone marrow

and exert their control over hematopoiesis, it has been found that

bacterial DNA reaches the bone marrow through systemic blood

circulation and is captured by CX3CR1+ monocytes. These

monocytes sense the bacterial DNA through TLRs and produce

TNF-a, IL-1b, and IL-6, which control the expansion of

hematopoietic progenitor cells without affecting the differentiation

potential of HSCs (87).
4.4 Gut microbiota affects HSCs
through metabolites

Microbiota-derived metabolites have been shown to have an

impact on HSCs. For instance, lactate, a microbial product, reaches

the bone marrow through the bloodstream and stimulates LepR+

MSCs surrounding the marrow sinus to secrete SCF, which is

crucial for the proliferation of HSCs. This activation of HSCs for

hematopoiesis and erythropoiesis occurs in a Gpr81-dependent

manner (88). In mice with radiation-induced damage to the

hematopoietic system, certain “elite survivors” were found to have

a unique gut microbiota composition. Bacterial taxa such as

Lachnospiraceae and Enterococcaceae were associated with post-

radiotherapy hematopoietic recovery and gut repair. These bacteria

were also more abundant in leukemia patients undergoing radiation

therapy. The gut microbiota promotes post-radiation hematopoiesis

and intestinal repair by producing microbe-associated MAMPs

while reducing pro-inflammatory reactions (89).
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Exposure to benzene has been found to hinder the self-renewal

and erythroid differentiation of mouse hematopoietic progenitor

cells. A study analyzing the gut microbial composition and

metabolism revealed that guanidine derived from Mollicuts_RF39

may play a vital role in the early hematopoietic damage caused by

benzene exposure (90). Additionally, the gut microbial metabolite

indole-3-propionic acid has been shown to alleviate damage to the

hematopoietic system and stomach caused by radiation exposure

(91). Zhang et al. also discovered that the gut microbial community

regulates macrophages in the bone marrow, influencing the self-

renewal and differentiation of HSCs by ensuring iron acquisition in

the bone marrow under stress conditions. Another study found that

radiation inhibited the activity of HSCs in mice treated with ABX,

while ABX treatment led to a significant increase in HSCs in the

bone marrow (83). Furthermore, exposure to nanoplastic

pollutants, which can enter the bone marrow and affect

hematopoiesis, inhibited the renewal and differentiation abilities

of HSCs, but supplementation with probiotics was able to reverse

the nanoplastic-induced hematopoietic damage by influencing the

composition of the gut microbiota and metabolites (92).

With age, the microbiota undergoes changes and there is an

increase in gut permeability. In a study on the aging of HSCs, it was

observed that transplanting the gut microbiota of young mice into

aged mice resulted in the reversal of the gut structure and reshaping

of the gut microbial composition and metabolic spectrum in the

aged mice. The presence of Lachnospiraceae bacteria and

tryptophan-related metabolic products was found to promote the

recovery of hematopoietic function. This effectively enhanced

hematopoietic lineage differentiation in elderly recipient mice,

improved the self-renewal ability of HSCs, and enhanced their

hematopoietic engraftment ability for short-term-HSCs and long-

term-HSCs. Furthermore, it was observed that this intervention

could reverse the aging of HSCs (93).
5 Gut microbiota influences the
development of hematologic
malignancies through the bone
marrow microenvironment

The homeostatic balance between HSCs self-renewal and

differentiation, which is crucial for replenishing lost blood cells, is

regulated by complex interactions between intrinsic and extrinsic

factors. Improper regulation of these competing programs can lead to

the malignant proliferation of HSCs, resulting in the transformation

of these cells into tumor cells and the development of malignant

disorders in the blood system. Hematological malignancies arising

from hematopoietic abnormalities are highly diverse and associated

with a poor prognosis and high mortality rate. The development of

these malignancies is influenced by genetic, microenvironmental, and

metabolic factors (94). Recently, several studies have demonstrated

that gut microbiota play an important role in the development of

hematologic malignancies, and that gut microbiota affect the

development and progression of hematologic tumors by altering

the bone marrow microenvironment (Figure 4).
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5.1 Acute leukemia

Leukemia is a condition where abnormal hematopoietic stem

cells proliferate uncontrollably, leading to the destruction of normal

bone marrow function and bone marrow failure. This results in the

uncontrolled growth of malignant clones (95). Leukemic cells can

be categorized into acute and chronic types based on their level of

differentiation and natural progression. Acute leukemia (AL)

originates from primitive hematopoietic stem cells and early naïve

cells, progresses rapidly, and has a relatively short course. It can

further be classified into acute lymphoblastic leukemia (ALL) and

acute myeloid leukemia (AML) based on the cell type (96). The

interaction between leukemic cells and the microenvironment plays

a crucial role in the development of ALL. Leukemic cells remodel

the bone marrow ecological niche, creating an immunosuppressive

microenvironment that promotes leukemic progression. Studies

have shown that this remodeling leads to impaired function of

various immune cells, such as NK cells, T cells, and macrophages

(97). Additionally, there is an increase in immunosuppressive

agents like Tregs and granulocyte-myeloid-derived suppressor

cells (G-MDSCs). Tregs secrete inhibitory cytokines that suppress

the cytotoxic activity of T cells and reduce macrophage

phagocytosis. On the other hand, G-MDSCs produce reactive

oxygen species (ROS) and inhibit NK cell activity. In the bone

marrow ecological niche, MSCs also contribute to leukemic cell

growth by secreting chemokines, NF-kB, and metabolites (98). Gut

microbiota plays a role in the development and progression of

leukemia by influencing the bone marrow microenvironment.

However, an intact microbiota can prevent leukemia growth. The

microbiota produces metabolites, including SCFAs, which help

maintain the intestinal epithelial barrier, suppress inflammatory

cytokines, and control host immunity through epigenetic changes.

SCFAs inhibits histone deacetylase activity, promotes the

differentiation of Tregs, and maintains a balance between Tregs

and Th17 cells (97). When the microbial ecology is dysregulated,

leukemia progression can occur. Factors such as antibiotics,

pretreatment regimens, changes in diet or medications can lead to

a loss of beneficial bacteria and an increase in pathogenic bacteria.

An increase in LPS-producing bacteria can cause mucositis,

disruption of the mucus layer, and impairment of the intestinal

barrier (99, 100). This leads to the leakage of LPS into the

bloodstream, promoting leukemia progression. Consequently,

pathogens can invade the lamina propria and activate the

immune response, resulting in an imbalance of Tregs and Th17

cells and the secretion of proinflammatory cytokines like IL-1b, IL-
6, and TNF-a. These cytokines, in turn, stimulate the production of

ROS, nitrogen, and sulfur, causing oxidative damage and further

inducing leukemia progression (101).
5.2 Multiple myeloma

MultipleMyeloma (MM) is the secondmost common hematologic

malignancy characterized by the accumulation of malignant plasma

cells in the bone marrow. The development of MM is a complex

process influenced by genetic and environmental factors, resulting in
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various pathomechanisms. MM development is closely associated with

changes in its bone marrow microenvironment, such as chronic

antigenic B-cell stimulation, inflammation, and immune modulation

(102). Patients with MM and mouse models of MM commonly exhibit

elevated levels of inflammatory cytokines, including TNF-a and IL-6,

which are linked to disease onset, progression, symptom burden, and

prognosis (103, 104). Inflammation can create an environment that

promotes the survival of tumorigenic HSCs (105). Mutant HSPCs have

shown resistance to inflammation, possibly through apoptosis

induction, inactivity, or enhanced self-renewal and differentiation of

HSCs (106). Moreover, the mutant cells themselves can produce

inflammatory cytokines, particularly TNF-a, and stimulate the

production of inflammatory cytokines by surrounding normal cells

(107, 108).

The composition of the microbiome and its metabolites also have

an impact on the bone marrow microenvironment, influencing the
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development of myeloma. In Rag-1-deficient mice, dysregulation of

the microbiota leads to a decrease in the production of HSCs and

HSPCs, resulting in a reduction in lymphocytes. Dysbiosis of the

microbiota has also been associated with a decrease in the production

of SCF by the microbiota, which can lead to lower levels of SCFA.

This, in turn, can increase the activation of inflammatory mediators

like IL-6 and the NF-kB pathway, potentially contributing to the

progression of myeloma. Moreover, an increase in the nitrogen-

cycling microbiota in the intestinal lumen may promote glutamine

synthesis and contribute to the progression of myeloma (109). In a

transgenic mouse model, specific bacteria like Prevotella

heparinolytica can promote the differentiation of Th17 cells, which

thenmigrate to the bonemarrow and produce IL-6. This IL-6 induces

Stat3 phosphorylation in mouse plasma cells, activating eosinophils

and further promoting the release of IL-6, thus contributing to

inflammation-mediated progression of MM (110).
FIGURE 4

Gut microbiota influence the development of hematologic malignancies (leukemia, multiple myeloma, lymphoma) through the bone marrow
microenvironment. In acute leukemia, microbiota dysbiosis leads to an increase in the number of LPS-producing bacteria. This disrupts the intestinal
barrier and causes an imbalance of Tregs and Th17 cells in the gut. Additionally, pro-inflammatory factors such as IL-6, IL-1b, and TNF-a are
secreted, which activate the production of ROS. This results in oxidative damage and promotes the conversion of HSCs and MPP into leukemic stem
cells in the bone marrow, thereby affecting cancer progression. In multiple myeloma, microbial imbalance in mice stimulates the differentiation of
plasma cells and CD4+ T cells into Th17 cells. Th17 cells migrate to the bone marrow and produce IL-17, which induces plasma cell proliferation and
contributes to the progression of multiple myeloma. In lymphoma patients, the presence of LPS in the microbiota interacts with TNF signaling and
enhances the NF-kB pathway through TLR4 signaling. Ultimately, this leads to increased survival and proliferation of intestinal B cells, which in turn
induces lymphoma in the bone marrow. (Created with BioRender.com, academic licenses have been granted).
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5.3 Lymphoma

Lymphomas are malignant tumors that arise from the abnormal

proliferation and differentiation of lymphocytes during an immune

response. These tumors can develop in various parts of the body

and are characterized by painless enlargement of lymph nodes.

Localized masses are a common clinical manifestation, often

accompanied by symptoms of organ compression. Lymphomas

are classified into Hodgkin’s lymphoma and non-Hodgkin’s

lymphoma based on histopathologic features (111). In animal

models, the gut microbiota has been identified as a potential

contributing factor to lymphomagenesis (112). Tegla et al.

conducted a study on lymphoma patients and found an increased

presence of Staphylococcus spp., a genus of bacteria, compared to

healthy individuals. The Staphylococcus spp. directly influences

antigen presentation, T-cell clonal expansion, and the production

of pro-inflammatory cytokines, thereby promoting disease

progression in lymphoma (113). Another study analyzed the gut

microbiota of lymphoma patients and identified a distinct microbial

signature (114). They observed a significant decrease in commensal

microorganisms, particularly the butyrate-producing Eubacterium

rectum, in lymphoma patients. Furthermore, when the researchers

transferred Eubacterium rectum-deficient microbiota from

lymphoma patients into mice, it triggered inflammation and TNF

production. The presence of LPS in the microbiota of lymphoma

patients interacted with TNF signaling and enhanced the NF-kB
pathway through MyD88-dependent TLR4 signaling, leading to

increased survival and proliferation of intestinal B cells. In the

gastrointestinal tract, defective intestinal microbiota of Eubacterium

rectum stimulates B cells by releasing TNF, which in turn sensitizes

B cells to LPS. These extracellular substances can bind to membrane

TNF and TLR4, activating NF-kB signaling through a MyD88-

dependent mechanism as an extrinsic pathway. These discoveries

provide insights into the mechanisms behind inflammation-

associated lymphoma and suggest the possibility of targeting the

gut microbiota for therapeutic interventions.
6 Concluding and perspectives

Mature HSCs are primarily located in the bone marrow niche,

where the bone marrow microenvironment controls their self-

renewal and fate differentiation. There is growing evidence

suggesting that the gut microbiota influences HSCs within the

bone marrow and plays a crucial role in determining their fate.

However, the specific mechanisms by which the gut microbiota

regulates HSCs fate through the bone marrow microenvironment

are still not well understood. In the in vivo bone marrow niche, the

gut microbiota can impact HSCs fate differentiation and

proliferation by affecting various factors such as bone marrow
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mechanical properties, inflammatory signals, bone marrow

stromal cells, and metabolites. During the development of

hematologic malignancies, HSCs can alter the microenvironment,

thereby influencing the disease process. The gut microbiota is

essential in hematopoiesis and cancer progression through the

bone marrow microenvironment. Future studies will enhance our

understanding of how the microbiota regulates the bone marrow

microenvironment during hematopoiesis. Hopefully, this

knowledge will enable us to develop strategies that leverage the

gut microbiota to support healthy hematopoiesis in patients with

disrupted gut ecology and improve therapeutic approaches for

hematopoiesis-related diseases.
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Glossary

HSCs Hematopoietic stem cells

SCFAs Short-chain fatty acids

MPPs Multipotent progenitors

HSPCs Hematopoietic stem and progenitor cells

CMPs Common myeloid progenitors

CLPs Common lymphoid progenitors

GMPs Granulocyte-macrophage progenitors

MEPs Megakaryocyte-erythrocyte progenitors

MSCs Mesenchymal stem cells

CAR CXCL12-abundant reticular

Tregs Regulatory T cells

SCF Stem cell factor

TPO Thrombopoietin

3D Three-dimensional

2D Two-dimensional

OPN Osteopontin

G-CSF Granulocyte colony-stimulating factor

IFN Interferon

TFs Transcription factors

MAMPs Microbe-associated molecular patterns

TLRs Toll-like receptors

NOD Nucleotide-binding oligomerization domain

Myd88 Myeloid differentiation primary response 88

ScRNA-seq Single-cell RNA sequencing

HFD High-fat diet

ABX Antibiotics

G-MDSCs Granulocyte-myeloid-derived suppressor cells

ROS Reactive oxygen species

LPS Lipopolysaccharide

MM Multiple myeloma

IFN-1 Type I interferons

AL Acute leukemia

ALL Acute lymphoblastic leukemia

AML Acute myeloid leukemia
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